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Abstract—This paper proposes a framework for learning time-
varying graphs with multiple temporal resolutions from multi-
variate time series signals. Our method estimates multiresolution
graphs by a top-down approach: Graphs are learned from a
segment of the time-series data corresponding to the desired
temporal resolution, and we impose a constraint so that the
learned graphs at the target temporal resolution are close to
that in the lower temporal resolution. The proposed approach
overcomes the problem of existing time-varying graph learning
methods that must infer graphs in a single temporal resolution.
Experimental results with synthetic data demonstrate that our
method outperforms a baseline graph learning method.

Index Terms—Graph learning, network topology inference,
multiresolution graph, time-varying graph.

I. INTRODUCTION

Many practical applications on data science and mining have

to handle massive sensor data. Since these sensors are often

distributed nonuniformly in a physical space, analyzing them

by taking into account their underlying structure, i.e., graph,

will improve the qualities and efficiencies of data analysis

drastically. Graph signal processing (GSP) [1], [2] is a useful

tool to handle such data on graphs, and many applications of

GSP have been found [3]–[5]. However, in many problems,

graphs are not given a priori. Therefore, graph learning [6],

[7], techniques and algorithms for estimating a graph from

observed data and/or feature values, is required in various

applications especially for sensor measurements.

Time-varying graph learning, one of the problem settings in

graph learning, aims to infer a set of graphs where its element

(i.e., one graph) corresponds to a graph in a specific time slot

[8], [9]. In contrast to static graph learning approaches [10]–

[12], the time-varying methods assume that the relationship

among entities could be changed over time while some global

temporal structures are shared during measurements. In [8],

[9], time-varying graphs are inferred by imposing constraints

for temporal variations of graphs between neighboring tempo-

ral windows. In these methods, the temporal window size—

temporal resolution—has to be fixed. This means that, even for

time-varying graph learning, a set of graphs with one temporal

resolution can only be obtained.

In practice, we encounter the cases where data and their

underlying graphs present different behaviors in different

temporal resolutions. For example, temperatures have hourly,

daily, monthly, and even yearly behaviors that correspond to

different temporal resolutions. These temperatures are also

related spatially where the spatial relationship is represented

as a graph. Moreover, graphs in one temporal resolution

will be affected by those in different temporal resolutions.

Unfortunately, the existing time-varying graph learning meth-

ods cannot extract such behaviors because they ignore the

relationship among different temporal resolutions.

To overcome the above-mentioned problems, we propose a

framework for learning a set of time-varying graphs, i.e., a

set of sets of graphs, with multiple temporal resolutions. The

proposed method is realized by a top-down approach where it

learns graphs from corresponding segments of time series data

such that each of the graphs is close to the graph at the lower

temporal resolution. We formulate a graph learning problem at

each temporal segment of data, that can be done by extending

a static graph learning method based on graph smoothness

[11], [12]. At the same time, we can incorporate a constraint

on the information of the graph in a lower resolution with our

formulation. The graph learning problem can be convex and

solved efficiently by a primal-dual splitting algorithm [13].

The main contributions of this paper are summarized as

follows:

• This study is the first attempt to infer time-varying graphs

with multiple temporal resolutions.

• Our framework enables us to infer graphs at an arbitrary

temporal resolution from multivariate time series signals.

• We can prevent from missing global structures, i.e.,

graphs in a low temporal resolution, at even a high

temporal resolution.

Notation: The graph G = (V , E ,W) is a weighted graph

with N vertices in the set V and edges in the set E , where the

number of nodes and edges are denoted by N = |V| and E =
|E|. The matrix W denotes a weighted adjacency matrix. In

this paper, we assume a graph is undirected with nonnegative

edges and does not have self-loops, i.e., W is symmetric with

nonnegative elements and its all diagonal elements are zero.

Graph Laplacian is given by L = D −W, where D is the

degree matrix defined as Dii =
∑

j Wij . The graph Fourier

transform (GFT) and the inverse GFT are defined by x̂ = UTx

and x = Ux̂, where U is the eighenvector matrix of L

The lowercase and uppercase bold letters represent a vector

and matrix, and a calligraphic letter represents a set. We use

the following definitions of symbols: 1 = [1, . . . , 1]T, ◦ is

Hadamard product of two matrices, and ⌊·⌋ represents the floor
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Multiresolution Graph Learning at Level 2

Multivariate Time Series Signal

Fig. 1. The overview of multiresolution graph learning.

function.

II. GRAPH LEARNING BASED ON SIGNAL SMOOTHNESS

Suppose the following signal generation model of graph

signals [12]: x = Uh+ǫ, where x ∈ R
N is an observed signal,

h ∈ R
N is a latent variable represented in the graph frequency

domain, and ǫ ∼ N (0, σ2
ǫ I) is an additive white Gaussian

noise. The maximum a posteriori estimation of h with the

assumption that p(h) = N (0,Λ†) and p(x|h) = N (Uh, σ2
ǫ I)

leads to the following optimization problem:

min
L,y
‖x− y‖22 + αyTLy, (1)

where y = Uh. When the observed signal is noise-free, the

graph is learned by minimizing xTLx, which measures the

smoothness of signals on graphs. While the problem in (1) has

been originally solved by an alternative approach, Kalofolias

[11] also uses this graph smoothness measure to formulate a

graph learning problem as the following convex optimization

problem:

min
W∈Wm

‖W ◦ Z‖1 − α1Tlog(W1) + β||W||2F , (2)

where α and β are parameters, and Wm is a valid set of

weighted adjacency matrices defined by

Wm =
{

W ∈ R
N×N
+ |W = WT,Wii = 0

}

. (3)

The first term in (2) corresponds to the smoothness of K ob-

served signals {xk}Kk=1 given by ‖W◦Z‖1,=
1
2

∑K
k=1 x

T

kLxk

where Z is the pairwise distance matrix defined as Zij =
∑K

k=1 ‖(xk)i − (xk)j‖2. The second term of (2) forces the

degree on each vertex to be positive without preventing edge

weights from becoming zero. The third term controls the

sparseness of the learned weighted adjacency matrix.

III. PROPOSED METHOD

A. Problem Formulation

We consider a problem of estimating multiresolution time-

varying graphs from a multivariate time series signal X ∈
R

N×T = [x1, . . . ,xT ], where xt ∈ R
N is the tth measurement

of the time series signal1. Our framework recursively performs

the following two operations:

1Indeed, we can use the same method if multiple X’s can be observed. In
this paper, for brevity, we assume we have only one time series data X.

1) Dividing X into two equal-sized temporal segments with

no overlapping.

2) Learning two weighted adjacency matrices where each

of them corresponds to one data segment with a con-

straint from the “parent” graph, i.e., one at a lower

temporal resolution.

These recursive operations result in multiresolution graphs as

shown in Fig. 1. Here, the divided segment is denoted by

Xl,m ∈ R
N×T/2l , where l and m represent the temporal reso-

lution level and the segment index at the lth level, respectively.

Additionally, the weighted adjacency matrix corresponding to

Xl,m is denoted by Wl,m ∈ R
N×N .

To formulate the multiresolution graph learning problem in

our framework, we extend the static graph learning problem

of (2) with a constraint that promotes to inherit a part of the

connectivities at the lower temporal resolution. Consequently,

the graph learning problem is formulated by the following

convex optimization problem:

min
Wl,m∈Wm

‖Wl,m ◦ Zl,m‖1 − α1Tlog(Wl,m1)

+β‖Wl,m‖
2
F + η‖Wl,m −Wl−1,⌊m/2⌋‖1,

(4)

where Wl−1,⌊m/2⌋ is the adjacency matrix at the lower

resolution that corresponds to the parent of Wl,m (please

refer to Fig. 1) and Zl,m is the pairwise distance matrix

of Xl,m. Particularly, the fourth term of (4) promotes the

sparseness of the difference between Wl,m and Wl−1,⌊m/2⌋.

This prevents from missing global structures in graph learning

at high temporal resolutions.

The target matrix Wl,m of (4) must be a symmetric matrix

with all-zero diagonal elements. This means we need to

consider (4) only for the upper (or lower) triangular part of

Wl,m. Hence, we can rewrite (4) in a vector form which only

contains the upper triangular parts of the matrices. Let w, z,

and c be the vector forms of Wl,m, Zl,m, and Wl−1,⌊m/2⌋,

respectively, and also let S be a linear operator satisfying

Sw = Wl,m1. Then, the vector form of the optimization

problem (4) is rewritten as

min
w∈Wv

2zTw− α1Tlog(Sw) + β‖w‖22 + η‖w− c‖1, (5)

where Wv =
{

w ∈ R
N(N−1)/2 | wi ≥ 0 (i = 1, 2, . . .)

}

.

This set is equivalent to the nonnegative constraint. By con-

verting the original problem into the vector form, we can

eliminate the symmetric and diagonal constraints of (3).

B. Optimization

The optimization problem in (5) can be solved using a

primal-dual splitting (PDS) algorithm. We can further rewrite

(5) by introducing the indicator function as follows:

min
w

2zTw−α1Tlog(Sw)+ β‖w‖22+ η‖w− c‖1+ ιWv
(w),

(6)

where ιWv
is the indicator function of Wv . By introducing a

dual variable v, we can convert the optimization problem of
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(6) into the applicable form of PDS algorithm as follows:

f1(w) = β‖w‖22 with ξ = 2β,

f2(w) = 2zTw+ ιWv
(w),

f3(v) = f3,1(v1) + f3,2(v2),

(7)

where v := Aw = [vT

1 vT

2 ]
T, A = [ST I]T, f3,1(v1) =

−α1Tlog(v1), and f3,2(v2) = η‖v2 − c‖1. The proximal

operators for f2, f3,1, and f3,2 can be calculated as follows:

(

proxγf2(x))i =

{

0 xi ≤ 2γzi

xi − 2γzi otherwise,
(8)

(

proxγf3,1(x))i =
xi +

√

x2
i + 4αγ

2
, (9)

(

proxγf3,2(x))i =

{

ci |xi − ci| ≤ γη

sgn(xi)(|xi| − γη) otherwise.

(10)

Consequently, the primal-dual splitting algorithm for solving

(6) is given by the following iteration:































w(n+1) := proxγ1f2
(w(n) − γ1(2βw + STv

(n)
1 + v

(n)
2 )),

v
(n)
1 ← v

(n)
1 + γ2S(2w

(n+1) −w(n)),

v
(n)
2 ← v

(n)
2 + γ2(2w

(n+1) −w(n)),

v
(n+1)
1 := v

(n)
1 − γ2prox 1

γ2
f3,1

(
v
(n)
1

γ2
),

v
(n+1)
2 := v

(n)
2 − γ2prox 1

γ2
f3,2

(
v
(n)
2

γ2
).

(11)

We summarize the entire algorithm for the multiresolution

graph learning in Algorithm 1 shown below.

Algorithm 1 Multiresolution graph learning at level L

Input: X, L

Output: Wl,m (l = 0, . . . , L, m = 0, . . . 2l − 1)
Compute Z0,0 from X

Solve (2) with Z0,0 to learn W0,0

for l = 1, . . . , L do

Divide X into 2l data segments Xl,0 . . .Xl,2l−1

for m = 0, . . . , 2l − 1 do

Compute Zl,m from Xl,m

Solve (4) with Zl,m and Wl−1,⌊m/2⌋ to learn Wl,m

end for

end for

IV. EXPERIMENTAL RESULTS

In this section, we perform experiments with synthetic data

to validate our multiresolution graph learning approach.

A. Synthetic Dataset

First, we construct a set of time-varying multiresolution

graphs with four levels (l = 0, . . . , 3) as shown in Fig. 2.

The number of vertices N is set to N = 81 and edge weights

TABLE I
AVERAGE GRAPH LEARNING PERFORMANCE AT EACH LEVEL.

F-measure Relative error

Level 1 2 3 1 2 3

Baseline 0.814 0.710 0.646 0.487 0.566 0.661
TVGL [9] - - 0.716 - - 0.638

MRGL 0.880 0.814 0.749 0.544 0.569 0.619

between vertices are random values drawn from a uniform

distribution from the interval [0.3, 1].
The lowest resolution graph, i.e., the graph reflecting the

global structure, is W0,0 as shown in Fig. 2(a), where the

graph has a grid-like structure while the edges only run

vertically, except for the horizontal edges at the middle of the

grid. In the next resolution level (l = 1), horizontal edges have

been added as shown in Figs. 2(b) and (c). The common edges

in W0,0 and W1,i are set to have the same weights (and also

common edge weights are shared in parent and children graphs

for all resolution levels). From l = 1 to 2, diagonal edges from

top right to bottom left have been added as shown in Figs.

2(d)–(g). Finally, diagonal edges from top left to bottom right

have been appended in the highest resolution graphs. In this

way, we can construct a set of multiresolution graphs.

From this set of prototype graphs, we then construct

time-varying graphs {W1, . . . ,WT }. We set T = 240 in

this experiment. Since the number of mutiresolution graphs

in the highest resolution is eight, each of them has been

duplicated 30 times and then they are concatenated, i.e.,

Wt := W3,⌊(t−1)/30⌋ (t = 1, . . . , 240).

Then, a multivariate time series signal X used in the exper-

iment is generated from {W1, . . . ,WT } with the following

Gaussian Markov random field model: N (xt−1, (Lt+σ2I)−1)
where Lt is the graph Laplacian corresponding to Wt, σ

2 is a

variance of i.i.d. white Gaussian noise and set to 0.5. Note that

x1 is generated from N (0, (Lt + σ2I)−1), where we assume

xt = 0 for t ≤ 0.

B. Performance Comparison

To compare the performance of the proposed method (here-

inafter referred to MRGL as an abbreviation of multiresolution

graph learning), we use the method that solves (2) instead

of (4) in Algorithm 1, i.e., single-resolution graph learning,

as a baseline method. Additionally, we also compare the

proposed method with a time-varying graph learning (TVGL)

method based on the sparseness of temporal variations [9].

The performances of these methods are compared in terms of

F-measure and relative error. F-measure reflects the accuracy

of structures in learned graphs (whether edges are located in

correct positions regardless of their weights) and relative error

reflects the accuracy of edge weights.

Table I summarizes the average performance of the baseline,

TVGL, and MRGL in all levels. Note that we only evaluate the

performance of the TVGL in the highest temporal resolution

because it is a single-resolution framework. As shown in

the table, F-measures of the MRGL outperforms both of the

alternative methods consistently in all levels. The relative

errors of the baseline and MRGL are comparable, but the

baseline is slightly better than the MRGL in the low resolution.
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(a) W0,0 (b) W1,0 (c) W1,1 (d) W2,0 (e) W2,1 (f) W2,2 (g) W2,3

(h) W3,0 (i) W3,1 (j) W3,2 (k) W3,3 (l) W3,4 (m) W3,5 (n) W3,6 (o) W3,7

Fig. 2. Visualization of the ground truth graphs.

(a) W1,0 (b) W2,0 (c) W2,1 (d) W3,0 (e) W3,1 (f) W3,2 (g) W3,3

(h) W1,0 (i) W2,0 (j) W2,1 (k) W3,0 (l) W3,1 (m) W3,2 (n) W3,3

Fig. 3. Visualization of learned multiresolution graphs: (Top) graphs learned by the baseline method. (Bottom) graphs learned by the MRGL.

On the other hand, the MRGL outperforms the baseline

and TVGL in the highest resolution. This implies that the

proposed multiresolution constraint in (4) would improve the

performance in a higher resolution.

Fig. 3 visualizes the learned multiresolution graphs while

it only shows a part of the graphs due to the limitation of

space. Clearly, the graphs learned by our proposed method

have a sparser structure than the baseline. Also, thanks to

the multiresolution constraint, graphs obtained by the MRGL

in higher resolutions inherit the structure in the lower level,

while those in the baseline do not have such characteristics as

seen in Figs. 3(b) and (d) as well as Figs. 3(c) and (g). This

is because the baseline method has to run its graph learning

method independently in each temporal resolution.

V. CONCLUSION

In this paper, we propose the first framework for learning

graphs with multiple temporal resolutions from multivariate

time series data. The proposed framework utilizes a top-down

approach to construct a hierarchical time-varying graphs. The

graph learning problem in our framework can be formulated

as a convex optimization problem with a constraint such that

higher-resolution graphs inherit the structure in the lower res-

olution. The convex optimization problem can be solved using

a primal-dual splitting algorithm. The experimental results

demonstrated that our method can estimate edges in correct

positions and have a multiresolution property as expected.
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