
Optimization of False-Overlap Detection of Tile Assembly in

Tile-based Rendering
Bowen Yang*, Meng Fan†, Mengqiao Han†, Yurong Geng†

*Northwestern Polytechnical University, Xi’an, China
E-mail:yangbowen@xupt.edu.cn Tel:+86-13991226699

†Xi’an University of Posts and Telecommunications, Xi’an, China
hanmengqiao@163.com,18829290884@163.com,742793340@qq.com

Abstract—With the rapid development of mobile devices, terminal
devices put forward more requirements on GPU's real-time
performance and power consumption. In this paper, tile-based
architecture is adopted to improve the utilization of Mobile GPU
resources on Mobile Graphics Processor (MGP).This architecture
improves the rasterization execution rate through tile-binning
generated tile list. However, before the execution of tile-binning, the
overlap test will accumulate a large amount of computation when
calculating the overlap relationship between primitives and triangles,
even if a reasonable detection algorithm is adopted. In this paper, we
propose a new method for segmentation of primitives, design an
overlap detection algorithm with this method, and analyze the
feasibility. Finally, the algorithm is mapped to the tile assembly
platform using sort display algorithm, which aims to provide a
concise tile list structure and an efficient overlap detection algorithm
for mobile graphics processors. By using this algorithm, we can
reduce memory overhead by 15% to 35%, CPU latency by 24% to
55%, and computing resources by 32% to 45%.
Index Terms—primitives segmentation method, overlap detection

algorithm, Memory Overhead

I. INTRODUCTION

The use of mobile devices has many limitations, such as
finite power supply, low computing power and small size. The
most basic problem is power supply. Compared to the
development speed of integrated circuits according to Moore's
Law [1], battery powered technology is developing much
more slowly. Therefore, the low power design of hardware is
the focus of research. The key problem to achieve low power
consumption is to reduce the internal data transactions
between computing component and memory, the processor's
annual computing power increases by about 71%, while
DRAM bandwidth increases by 25%, which causes the
storage wall problem to become more serious [2]. Various
mobile graphics hardware approaches have been proposed for
optimizing storage performance, including tile-based
rendering [3], specialized embedded DRAM [4], compression
algorithms and early-z depth test [5]. In tile-based rendering,
the storage of tile information is one of the main sources of
mobile GPU power consumption [6].
Antochi et al. roughly classified the related display

algorithms of the tile-based architecture into three categories
[7]: Direct, Two-step, and Sort, where the Sort algorithm is
often used because of the highest execution rate. However,
the intermediate data structure generated by the Sort
algorithm requires the most memory, the solution is to
optimize the structure of the tile list, and it can be generally
divided into two types: store tiles according to the primitive
[8][9][10] and store primitives according to the tile. Among
them, the first method requires more storage space and may
be better in data reading [11]. So we choice the first method.
The key to this method is to detect tiles which do not overlap
with primitives.
Although the traditional Bounding box (BBOX) detection

algorithm [12][13][14] can easily eliminate tiles that no
overlap with primitives, has the advantages of simple design
and low hardware utilization. And Hsieh H et al. also
proposed a representation method of Bounding box
segmentation, but when these methods process some large
triangle primitives, the resource utilization and processing
efficiency are not high enough .In this paper, based on these
methods, an improved approach is proposed to achieve the
purpose of eliminating most irrelevant tiles in advance,
significantly reducing the cumulative amount of calculation,
making the calculation of coverage rate more efficient and
accurate.

II. MGPARCHITECTURE

Since the number of vertex processing is less than the
number of pixel processing, which causes vertex processor
computing resources to be idle, this will result in performance
bottleneck that computing resources cannot be fully utilized
[18]. Therefore, this paper uses the unified shader architecture
of Fig.1 to use the Z-buffer to solve the performance issue
[19].

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

126978-988-14768-8-3/20/$31.00 ©2020 APSIPA APSIPA-ASC 2020

Fig. 1 MGP SystemArchitecture

In the architecture, data, status and control information are
exchanged with the main processor through the CPU_IF
(CPU Interface) module, and signal synchronization between
bus data and graphics processing hardware is completed. Then,
the FEP((Front End Processor) unit is used to decompose,
organize and preliminarily schedule the graphics rendering
tasks.And completing the transformation and illumination
processing of the vertexes in the USP (Unified Shading
Processor), including the vertexes, texture coordinates, raster
position, light source position and illumination calculation of
the vertex coordinates, etc. Finally, the SGU
(Screen-coordinate Generating Unit) performs operations such
as element assembly, cropping, and viewport transformation,
and the tile is divided by the TGU unit, in order to create a tile
list, which send to the IDB (Intermediate Data Buffer)for
storage through the MMU (Memory Management Unit).
In the pixel processing stage, perform rasterization and

anti-aliasing on the FGU (Fragment Generating Unit) tile by
tile, output to the VTU (Visibility Test Unit) pixel by pixel
and compare the depth of each pixel in the TDB (Tile Depth
Buffer) to eliminate hidden surfaces. Then send it to the USP
unit to execute lighting calculation, texture mapping, etc. The
pixel color is saved in the TCB (Tile Color Buffer). After
processing the individual tile, write its pixel coordinate
position and attributes to the FB (Frame buffer).

III. RELATEDWORK

In order to reduce the complexity of the assembly process
of the primitive, the data of the vertexes of the primitive are
uniformly represented by triangles, points and lines are
converted into triangles, thereby unifying the data to simplify
data structure and the processing of the rasterization stage.
Based on the Open GL ES2.0 standard [20], the original

vertex data types are divided into three categories: points,
lines, and triangles. The lines include: L_LOOP, L_STRIP,
and LS. The triangles include: TR_STRIP, TR_FAN, and
TRS. It is assumed that a series of vertex data V0, V1, V2, V3,
V4, V5, V6 etc.ares input. The line and the triangle indicate
the vertex data form as shown in Fig.2 and Fig.3 respectively.

Fig.2 L_LOOP, L_STRIP and LS three line types

Fig.3 TRS, TR_STRIP and TR_FAN triangle types

Fig.4 Triangle representation of points and lines

Fig.4 illustrates the method of converting points and lines
into triangle representations.Fig.4 shows the representation of
the three triangles. How to choose the mode requires
consideration of the compression ratio. The graphics vertex
compression ratio of TRS is the smallest, using 3 vertex data
to represent 1 triangle primitive, but TR_STRIP and TR_FAN
types using 1 vertex data to represent 1 triangle primitive.
Therefore, in order to obtain a better graphics vertex data
compression ratio, most of the TR_STRIP and TR_FAN
triangle types are used. This article uses the triangle
representation of TR_STRIP. Fig.5 illustrates the conversion
of vertex data from the TRS to TR_STRIP process and the
recording process of the mask.

Fig.5 Conversion process from TRS to TR_STRIP

In summary, the basic data conversion process of the vertex
data stream is as follows: First, each of the three vertexes in
the data stream is divided into a group, and each group can
represent a triangle primitive, which is combined into TRS
form. Secondly, the TRS is converted in the form of
TR_STRIP and recorded with a mask.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

127

IV. PRIMITIVE REPRESENTATION METHODAND
OVERLAP DETECTIONALGORITHM

A. Traditional primitive representation and its limitations
In the traditional detection algorithm, the triangle primitive

is usually represented by BBOX. According to the maximum
value of the three vertexes of the triangle, a BBOX containing
the triangle primitive is made, and the detection algorithm
only needs to process the tile inside the BBOX. As shown in
Fig. 6, the orange area intersects the bounding box ABCD,
and all the tiles in the area are processed when the detection is
performed. The gray area does not intersect the BBOX, so the
triangle primitive have no coverage relationship with all tiles
in this area.

Fig.6 The BBOX represent
the triangle primitive

Fig.7 Representation method

of dividing triangle primitive

BBOX

Hsieh H et al. designed a segmented BBOX representation
method. They can divide the BBOX of a triangle primitive
into three rectangular boxes according to the original vertex of
the triangle, and these vertexes are also the vertexes of the
BBOX. Then, the edges of the triangle primitives become the
diagonal of these rectangles, and coverage detection becomes
a mathematical model processing. As shown in Fig. 7, the
triangle element bounding box AEGF is divided into three
rectangular boxes: ADCG, IBFC and AEBH. The calculation
of the correlation detection algorithm is performed in each
rectangular box. The advantage of this approach is that it can
be in three processed in parallel within three rectangular
boxes to speed up the processing.
Although the segmented triangle primitive BBOX

representation method can divide a bounding box into
multiple rectangular boxes for processing, it can reduce the
number of tiles in BBOX, and improve the computational
parallelism. For larger triangular primitive and some special
smaller triangle primitive, there are still many tiles which
need to be calculated, resulting in excessive computational
cumulant and low processing efficiency. These two cases are
discussed separately below.
For the larger triangular primitives shown in Fig.8 (a), the

segmented BBOX representation method can divide the
bounding box AFED into multiple parallel processing
rectangles, but some rectangular boxes still contain a large
number of tiles. For example, there are still more tiles in the

red rectangular box AHCD and the green rectangular box
BECG, which need to perform overlap detection calculation,
and then accumulate the calculation amount. If the two
vertexes C and B of the triangle in Fig.8(a) are moved to the
right and up respectively, then the case shown in Fig. 8(b) will
be obtained. In this case, the size of the bounding box AFED
is constant, the area of the triangle ABC is reduced, which
leads to a sudden increase in the number of tiles in the red
rectangular frame AHCD and the green rectangular frame
AFBG in which the overlap detection calculation is required,
and even if a sufficiently optimized detection algorithm is
used, a huge amount of calculation is accumulated. In
rasterization, narrow-angle triangles are often used to test the
accuracy of algorithms such as attribute differences. The
characteristics of such triangles are fine and long, as shown in
Fig. 8(c), when the two vertexes C and B of the triangle are
very close to the point E, a long and narrow triangle appears,
and the area of the triangle ABC is very small, so that the
number of tiles in the red rectangle box AHCD and the green
rectangle box AFBG that need to be overlapped and detected
is almost equal to the number of tiles in the AFED, in which
case the cumulative amount of calculation is the largest.

a. Larger area

triangle primitive

b. Smaller area

triangle primitive

c. Long narrow

triangle primitive

Fig.8 Larger triangle element segmentation method

The right triangle element shown in Fig.9, although the
triangle element does not look very large (the number of Tiles
contained in the bounding box is much smaller than that
shown in Fig. 7), since the triangle vertex ABC and the
bounding box vertex ABDC are coincident, the bounding box
cannot be divided into multiple rectangular boxes. So there is
still a part of the Tile that needs to perform overlap detection
calculation.

Fig.9 Right triangle primitive

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

128

B. Improved primitive representation
In view of the above problems, this section proposes an

improved triangle element segmentation method, which can
eliminate the unrelated Tiles in advance and significantly
reduces the computation.Based on this, the detection
algorithm is proposed. As shown in Fig.10(a), taking the red
rectangular frame AGCD as an example, where H is the
midpoint on the AC side of the triangle, according to the
coordinates of the point H and the coordinates of the point D,
it is easy to get the range of the yellow rectangle r0 in the
figure. All tiles that exist in the region (tiles must be included
as a whole) will be removed directly. If the rectangular frame
is large, that is, after removing r0, a large number of Tiles still
exist in the red rectangular frame AGCD, and a similar
operation can be performed again. As shown in Fig.10(b),
calculate the AH edge midpoint J, the HC edge midpoint I, the
range of the area of the yellow rectangle r1 is obtained, and all
the tiles existing in the range are eliminated, and so on.
Finally, the Tile that needs to be calculated by the detection
algorithm is only marked by the red dot in the figure. If the
bounding box generated by the triangle ABC contains more
Tile numbers, or the bounding box size is constant, the
triangle area is smaller (for example, the narrow triangle),
then the treatment effect is more obvious.

a. Large area triangle primitive

a. Smaller area triangle primitive

Fig.10 Improve Representation method of dividing triangle primitive BBOX

In summary, when the number of Tiles to be calculated is
large, the improved primitive representation method proposed
in this section can effectively reduce the cumulative amount
of calculation and improve the processing speed of the TGC.
By calculating the calculation amount required for calculating
each region r0, r1···rn in Fig.10(b), as shown in Table 1, it is

used for calculation as the number of Tiles in different regions
is eliminated. The amount of calculation in the area will be
multiplied, and the elimination operation will be used
iteratively. After reaching a certain threshold, the amount of
calculation will increase. Therefore, it is particularly
important to judge the number of times the culling area is
used, and the judgment is based on comparing the calculation
amount for calculating the current culling area with the
number of times of calculation for calculating the remaining
tiling, wherein the calculation amount of the til is calculated
as Table 2 shows. For example, if it is determined whether the
Nth culling area needs to be calculated, and the number of
tiles that are not currently eliminated is M, only an
approximate comparison of 4 (N-1) and 4M size is required.
If 4(N-1) ≥ 4M, then each tile is calculated directly using the
detection algorithm; if 4(N-1) < 4M, then the calculation of
the culling region can be performed.

Table 1 Calculation of the amount of calculations each time the culling area
is calculated

data item
Addition
times

Number of
divisions

First tile elimination 1 1
Second tile elimination 2 2
Nth Tile Elimination 2（N-1） 2（N-1）

Table 2 Calculation of the amount of calculations each time the tile is
overwritten

Number of tiles to
be calculated

Multiplication
times

Number of
subtractions

one Tile 3 1
two Tile 6 2
M Tile 3M M

C. Theoretical Derivation and Feasibility Analysis of
Detection Algorithm
Assuming that the three vertexes of the triangle are on the

same plane, select one of the vertexes, and the other two
vertexes are only relative displacements to the point. For
example, if point A is selected as the starting point, then point
B is equivalent to moving a distance in the AB direction, and
point C is equivalent to moving a distance in the direction of
the AC. Therefore, for any point P in the plane, it can be
expressed by Equation 1, where the coefficient U or V is a
negative value, which is equivalent to moving in the opposite
direction. It is easy to find that when U = V = 0, P = A, when
U = 0 and V = 1, P = B, and when U = 1 and V = 0, P = C, if
and only if equation 2 is satisfied, the point P is located inside
the triangle ABC.
By using equation 3, we can transform equation 1 into

equation 4. The two sides of the equation are respectively
multiplied by V0 and V1. Note that U, V are natural numbers
and others are vectors, then formula.5 can be expanded for
computation equation.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

129

）（）（ AB*VAC*UAP (1)

1VU
0V
0U

(2)

AP2V
AB1V
AC0V

AB*VAC*UAP ）（）（

(3)

1V*V0V*U2V (4)

）（）（

）（）（

1V1V*V1V0V*U1V2V
0V1V*V0V0V*U0V2V

(5)

))0V1V)(1V0V()1V1V)(0V0V((
))0V2V)(1V0V()1V2V)(0V0V((V

))0V1V)(1V0V()1V1V)(0V0V((
))1V2V)(0V1V()0V2V)(1V1V((U

(6)

It can be observed from formula.6 that when three vertexes
of a triangle are given, for any point P in the plane, only two
of the numerators can be changed to determine the positional
relationship between the point P and the triangle. Just change
the V2 in the molecule on the right side of the equation to
determine the positional relationship between point P and the
triangle.
The partitioning method proposed in this paper can

pre-empt a part of the tiles that do not overlap with the
primitives, and reduce the cumulative amount of coverage
calculation. As shown in Fig.11, after calculated three
midpoints of D, E, and F, all the tiles contained in the yellow
rectangular frame are eliminated. If the above processing is
continued, the amount of calculation for the midpoint will
increase, and the computational cost of the tiles that need to
be eliminated and tested will exceed the cost of direct testing.
Therefore, for the tiles represented by orange in the Fig.12,
which is necessary to determine whether or not to overlap
with the triangle by the coverage calculation.

Fig.11 Calculation of remaining tiles

The core problem of the algorithm proposed in this paper is
to find the value relationship of U, V and U+V in formula.2.
As you can observe from formula.6 that the denominators of
the two equations are identical and the size of the value is
only related to the coordinates of the three vertexes of the

triangle, which brings us three benefits:
(1) From the vector form of Cauchy inequality, we can get

the formula.7 to be constant, so the denominator part must be
positive. Therefore, we only need to judge the positive or
negative of the numerator.
(2) Because U+V<=1, as shown in formula.8, the inequality

can be multiplied by the denominator to avoid the division of
floating point numbers.
(3) Since the denominator part has nothing to do with the

value of point P, the calculation of V0, V1 and the
denominator can be completed in advance in the
transformation process in the primitive assembly.

)VV)(VV()VV)(VV(01101100 (7)

0)))(())(((
-))(())(((

)))(())(((

01101100

02101200

12010211

VVVVVVVV
VVVVVVVV
VVVVVVVV
） (8)

In summary, the pseudo code of the algorithm is:
A=（V1·V1）（V2·V0）-（V1·V0）（V2·V1）

B=（V0·V0）（V2·V1）-（V0·V1）（V2·V0）

C=（V0·V0）（V1·V1）-（V0·V1）（V1·V0）

for row_next_C to row_End _B

if ((B && C) < 0)

The tile is a false-overlap tile for the primitive

else

Calculation D=B+C-A

if (D > 0)

The tile is a false-overlap tile for the

primitive

else

The tile overlap with the primitive

V. Experimental results and analysis

The verification of the reliability of the detection algorithm
is divided into two parts: First, whether the Tile processed by
the algorithm can be correctly written into the Tile list, for
which we use a rasterizer that can process 16×16 size Tile
blocks in the Tile list. The vertexes of the primitives on
multiple Tiles are scanned and transformed, and the attribute
differences are filled with Matlab. Secondly, the generated
Tile list contains the amount of Tile information and the
calculated cumulant whether is less than the amount of Tile
information obtained by other algorithms. For this purpose,
we count the amount of Tiles used to store primitives in the
Tile list and display them on the FPGA prototype system.
A. Tile list structure
The Tile list structure constructed by combining multiple

tiles of a certain primitive, when rasterizing, can quickly

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

130

operate the linked list by indexing the primitives, thereby
improving the rendering execution rate, but Store more
intermediate data. Therefore, the Tile list built in this article
stores the tiles that need to be rendered.
When the screen is divided into tiles, it is inevitable that a

triangle primitive covers multiple tiles. The proposed
algorithm is used to calculate the coverage relationship
between the triangle primitive and the tile, and the triangle
coverage factor is used for description. If the triangle element
to be drawn intersects with the current tile, and the graphic in
the tile is not a triangle, the triangle division circuit first
subdivides the primitive on the tile into multiple triangles, and
then writes into the Tile list to make the rasterization only
triangles are manipulated during processing to improve
rendering efficiency. After the Triangle Division, we need to
create a tile list to store the current tile number, the element
information, the triangle element number subdivided on the
Tile, and the position coordinates of the triangle and their
attributes.
The processing procedure is as shown in Fig.12, assuming

that the currently tested triangle primitive 1 and primitive 2
are located in Tile(m-1,n), Tile(m,1), Tile(m,2) respectively.
First, the triangle information of the original primitive 1 and
the primitive 2 is stored; then, the triangle is subdivided by
the Triangle Division circuit, and the

original primitive number, triangle number Tri #1~#n+1， the
corresponding coordinate position and its properties
corresponding to each Tile after subdivision are stored in the
corresponding Tile (m-1, n), Tile (m, 1) and Tile (m, 2), which
are generated into a Tile list.During the subdivision process,
Tile(m-1,n) contains primitives 1 and 2, so the display
relationship needs to be tested during pixel rendering. Tile(m,
2) only contains element 2, and the stored pixels will be
displayed on the screen without depth testing. In the Tile list,
the tag bit is added, and the tile with the tag bit marked 1 is
tested for visibility. The tile with the tag bit marked 0 can be
skipped directly.

Fig.12 Tile list generation process

B. Result data rasterized rendering output
The implementation steps are as follows: the original

vertex coordinates are transformed by vertex data, the points
and lines are converted into triangles, and then the Tile-list is
generated in the TA platform, but a certain triangle element
may span multiple tiles, all related tiles are selected in the
Tile-list, then scanned by the rasterizer in the pixel shader,
and restored by Matlab software. Finally, the difference
between the software result and the theoretical figure will be
analyzed and compared, and the conclusion will be drawn.
Fig.13 shows the verification process based on this algorithm.

Fig.13 Verification process flow chart

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

131

The rendering result output by the rasterization circuit is
shown in Fig.14, where Fig.14(a) represents a triangle
primitive covering multiple Tiles. Because the amount of Tile
data is too large, it is difficult to verify Tile by Tile. The four
tiles that make up each vertex are grouped together (yellow
part) for verification. Fig.14(b) is the result of three sets of
vertexes drawn according to the intercepted waveform
diagram after functional simulation. It should be noted that
64×64 small squares do not represent Tile, but four Tiles with
size 16×16. Fig. 14(c) shows the result of performing FPGA
test by capturing the RGB data stored in Ram and filling it
with Matlab. After analysis and comparison, the detection
algorithm for large triangle primitives designed in this section
can accurately generate the Tile list and record the attribute
information on each Tile, and call the linked list information
through the rasterizer to correctly complete the scan traversal
of the triangle.

a. Triangle primitive

b. Drawing results for different tiles

c. Matlab restores FPGA test results
Fig.14 Output comparison

C. FPGA prototype system output
Fig.15 is a platform for the prototype system of the IP core

(mainly including: TGC circuit, rasterizer and depth test).

Fig.15 System verification flow chart

The data path is described as follows: First, the vertex
stream processed by the vertex shader is stored in the DDR3
of the PS (Processing System) through the ARM processor,
and the control information is sent to the IP core through the
AXI bus. Second, the processing of the IP core is performed.
The process includes: reading the vertex data in the DDR3,
generating a Tile list after the element assembly process,
writing it back to the DDR3 of the PL (Programmable Logic)
side through the memory interface, and reading the PL by the
visibility test and the rasterization circuit. The linked list
information in the DDR3 is tiled, and the result data is written
back to the PS side DDR3 through the AXI-Interconnect;
finally, the rendered graphic pixel data is output to the display
through the HDMI display path. The platform diagram of the
development board prototype system is shown in Fig. 16.

a. Street light

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

132

b. Multiple rectangular combined images
Fig.16 FPGA prototype system output image

D. Experimental results analysis
Based on the TA circuit platform (supporting tiles of 32×32

and 16×16 sizes), the triangle primitive representation method
and detection algorithm designed in this paper are mapped.
Reference [18] for the 32×32 size Tile, for its own detection
algorithm, in the case of window sizes of 640×480,
1280×1048 and 1200×1600, test the 5-frame benchmark
model Doom3 for each frames, all tiles are rendered
independently. The TA platform designed in this paper
supports screen scaling rates of 640×480 and 1280×1048. The
platform implementation and Tile list generation will carry
out on FPGA, and statistics of the average of the primitives in
the Tile list generated based on the BBox test and the
detection algorithm of this paper. Quantity, and compared
with the literature [17]. Table 1 is a comparison of the
reliability of the three detection algorithms.

Table.1 Average Amounts of Primitives in All Tile Lists

Benchmark

Screen Size

Doom3

640×480

Doom3

1024×1048

school logo

640×480

BBOX 47514.80 141434.00 4586.57

In Ref. [17] 26769.84 59982.16 -

Algorithm 26734.81 59974.83 2471.54

By comparing the average number of primitives in the Tile
list in Table 3, we can see that the average number of
primitives stored in the Tile list generated by the detection
algorithm in this paper and the algorithm in the Reference [17]
is reduced by 40%~60% compared with the traditional BBOX
method. When the picture element is larger, the advantage is
more obvious. Comparing this paper with the number of
primitives produced in [17] is roughly the same, because these
algorithms used can calculate relatively accurate coverage.
However, the difference is that the algorithm proposed in this
paper can pre-eliminate most of the Tiles that does not overlap
the primitives, which reduces the amount of computation and
improves the rendering efficiency of mobile GPU.
In Ref.[21] proposes a tile binning algorithm that

eliminates the minimization of graphics without overlapping
tiles, and counts memory occupancy and CPU latency. Table.2
shows the performance comparison of the intermediate data

generated by the algorithm in terms of storage space, CPU
latency and computing resources.

Table.2 Performance Comparison

-
Memory
Overhead

CPU
latency

Reduced computing
resources

In Ref. [21] 16~35% 23~54% -

Algorithm 15~35% 24~55% 32~45%

Both the literature [21] and the detection algorithms
proposed in this chapter can reduce the memory overhead by
nearly 30%, because the traditional BBOX method is used,
and in general applications, there will be an error of about
30% error [22]. That is, there are a lot of tiles in the Tile list
that don't need to be rendered.
Compared with the literature [21], the calculation of this

chapter is reduced by 32%~45%. The main reasons are as
shown in Table 3:

Table 3 Whether each Tile and the primitive overlaps

calculation

for each tile

Multiplication

times

Number of

subtractions

Area of

elimination

In Ref. [17] 3 1
(y1-y0)(x1-

x0)/4

Algorithm 4 1 -

In Table 3, (x0, y0), (x1, y1) represent the coordinates of
two points used to calculate the starting vertex of the culling
area. The reduced computation is obtained in two parts. The
first part is to reduce one multiplication calculation for each
calculation of a Tile detection algorithm; the second part is to
pre-empt the area occupied by the Tile, which is also a key
factor to reduce the calculation amount.

V. CONCLUSION

We propose a new method for segmentation of primitives,
on this basis, an overlap detection algorithms is presented.
According to the analysis of experimental results on FPGA,
this algorithm can reduce memory overhead by 15% to 35%,
CPU latency by 24% to 55%, and computing resources by
32% to 45%.

ACKNOWLEDGMENT

The authors would like to acknowledge the grants from the
National Natural Science Foundation of China (61602377) ,
Shaanxi Science & Technology Co-ordination &
Innovation(2016KTZDGY02-04-02).

REFERENCES

[1]. Williams R S. What's Next? The end of Moore's law][J].
Computing in Science & Engineering, 2017, 19(2):7-13.
[2]. Owens J . Streaming Architectures and Technology

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

133

Trends[M]// GPU Gems \textln2. 2005.
[3]. Yoo J J, Lee J, Krishnadasan S, et al. Tile-based path rendering
for mobile device. Proceeding of SA '15 SIGGRAPH Asia 2015
Mobile Graphics and Interactive Applications , Article No. 5,
November 02 - 06, 2015, Kobe, Japan. New York, NY, USA:ACM,
2015, 6p.
[4]. Woo R, Choi S, Sohn J H, et al. A 210mW graphics LSI
implementing full 3D pipeline with 264Mtexels/s texturing for
mobile multimedia applications, Digest of Technical Papers of IEEE
International Solid-State Circuits Conference 2003, San Francisco,
CA, USA, IEEE, 2003:358-367.
[5]. Kim H Y , Yu C H , Kim L S . A memory-efficient unified
early z-test.[J]. IEEE Transactions on Visualization & Computer
Graphics, 2011, 17(9):1286-94.
[6]. Kim J S , Kim D H , Lee K Y , et al. A hierarchical tiling
algorithm for tile based rendering with Global Scratch Counter under
multi core environment[C]// Tencon IEEE Region 10 Conference.
IEEE, 2012.
[7]. Iosif Antochi. Suitability of tile-based rendering for low-power
2D graphics acceleratoers [D]. Technology University Delft, Delft,
the Netherlands, 2007.
[8]. Hsiao C C , Chung C P , Yang H C . A Hierarchical Primitive
Lists Structure for Tile-Based Rendering[C]// 2009 International
Conference on Computational Science and Engineering. IEEE, 2009.
[9]. Juurlink B , Antochi I , Crisu D , et al. GRAAL: A Framework
for Low-Power 3D Graphics Accelerators[J]. IEEE Computer
Graphics and Applications, 2008, 28.
[10]. Bratt I . The ARM® Mali-T880 Mobile GPU[C]// Hot Chips
27 Symposium. IEEE, 2016.
[11]. Hsiao C C , Chu S L , Dai S S . Efficient rendering and cache
replacement mechanisms for hierarchical tiling in mobile GPUs[C]//
Global High Tech Congress on Electronics. IEEE, 2013.
[12]. Hsieh E, Pentkovski V, Piazza T. ZR:a 3D API transparent

technology for chunk rendering[C]// Acm/ieee International
Symposium on Microarchitecture. 2001.
[13]. Cox M, Bhandari N. Architectural implications of
hardware-accelerated bucket rendering on the PC[C]// Acm
Siggraph/eurographics Workshop on Graphics Hardware. 1997.
[14]. Chen M, Stoll G, Igehy H, et al. Simple models of the impact
of overlap in bucket rendering[C]// Acm Siggraph/eurographics
Workshop on Graphics Hardware. 1998.
[15]. Antochi I , Juurlink B , Vassiliadis S , et al. Scene
management models and overlap tests for tile-based rendering[C]//
Euromicro Symposium on Digital System Design. IEEE, 2004.
[16]. Eberly D H. 3D Game Engine Design, Second Edition: A
Practical Approach to Real-Time Computer Graphics (The Morgan
Kaufmann Series in Interactive 3D Technology)[M]. 2006.
[17]. Hsieh H C , Hsiao C C , Yang H C , et al. Methods for
Precise False-Overlap Detection in Tile-Based Rendering[C]// 2009
International Conference on Computational Science and Engineering.
IEEE, 2009.
[18]. Yoo H, Woo J, Sohn J, et al. Mobile 3D Graphics SoC : From
Algorithm to Chip. Wiley-IEEE Press, 2010:352.
[19]. Moya V, González C, Roca J, et al. A Single (Unified) Shader
GPU Microarchitecture for Embedded Systems. Lecture Notes in
Computer Science, 2005, 3793:286-301.
[20]. Pulli K, Aamio T, Miettinen V, et al. Mobile 3D graphics with
OpenGL ES and M3G[M]. San Francisco: Morgan Kaufmann, 2007.
[21]. Yoo J J , Lee S , Jung S , et al. Tile binning algorithm for
vector graphics minimizing false overlap[C]// IEEE International
Conference on Consumer Electronics. IEEE, 2013.
[22]. Gottesfeld S. Simple models of the impact of overlap in
bucket rendering[C]// Acm Siggraph/eurographics Workshop on
Graphics Hardware. ACM, 1998.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

134

