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Abstract— For the characteristics of the depth map with a 

large smooth area, it is not necessary in the 3D-High-Efficiency 

Video Coding (3D-HEVC) to use TZ search for inter-frame 

prediction. According to the parallelism of depth map inter-

frame algorithms, analyzed the parallelism of full search, three-

step search and diamond search in the array structure, this 

paper proposes a parallel implementation method of 3D-HEVC 

depth map inter-frame prediction based on array processor. 

Considering only the depth map encoding, the experimental 

results show that the synthesized frequency under the BEE4 

FPGA chip is as high as 100.261MHZ. Compared with the 

software 3D-HEVC Test Model (HTM) version 16.1, without 

affecting the video quality, the speedup ratio of the full search 

mode can reach 35, the speedup ratio of the three-step search 

mode can reach 160, and the speedup ratio of the diamond 

search can reach 233. 

Keywords—3D-HEVC, Depth map, Inter-frame prediction, 

Fast search algorithm. 

I. INTRODUCTION 

The Joint Collaborative Team on 3D Video Coding 

Extension Development (JCT-3V) developed the 3D-High 

Efficiency Video Coding (3D-HEVC)[1-2]. The multi-view 

video plus depth (MVD) data format has been standardized as 

the 3D video representation, which contains multiple views of 

texture within the associated depth map for each view[3]. The 

depth maps coding techniques can be classified into two 

categories depending on the relationship with the 

corresponding texture video, independent coding and texture-

assisted depth coding[4]. The encoding techniques used in 

depth maps are basically the same as those of texture frames. 

The motion parameter inheritance technique is used to exploit 

the motion similarity between depth and texture videos. 

However, compared to texture video, depth video exhibits 

distinct characteristics, which describes the geometry of the 

3D scene[5]. It is usually composed of large portions of flat 

regions separated by sharp edges[6-7]. In order to avoid the 

generation of new depth values and ringing artifacts at depth 

maps edges, the motion compensation doesn’t include an 

interpolation. The motion vectors are coded with sample 

instead of quarter-sample accuracy[8]. 

Since video pictures and depth maps represent different 

properties of the same video scene, the motion characteristics 

should be similar. The best block matching of each block of 

the current frame is found in the reference frame using inter-

frame prediction[9], as shown in Figure 1. A new inter coding 

mode for depth maps is added in which the partitioning of a 

block of sub-blocks as well as the associated motion 

parameters are inferred from the co-located block in the 

associated video picture[ 10 ]. HTM that is 3D-HEVC 

reference software[11] uses test zone search (TZS)[12] for 

depth maps motion estimation. TZS is very irregular in 

accessing stored values during the calculation of sum of 

absolute differences (SAD) values and in the search process 

using a variety of algorithms, the storage of constant reading 

and writing operation, resulting in great energy consumption. 

In TZS, the search region is defined by the vector predictive 

value, either diamond search, scanning or other search 

approach has been employed. However, the coding 

complexity is still burden on TZS. Therefore, the parallel 

implementation of optimized search algorithms has attracted 

more attention. 

 

Current 

block

Current frame

Matching 

block

Reference frame

MV
（i,j）

 

Fig.1 Motion estimation block matching process 
 

Parallelizing 3D-HEVC coding on a parallel computing 

platform is an effective method to solve the high coding 

complexity. At present there are two kinds of parallel methods, 

Global Parallel Method (GPM)[13-14 ] and Local Parallel 

Method (LPM)[15-16].GPM is widely used in the H.264 / 

AVC motion estimation algorithm because it does not 

consider the data dependency between prediction units (PUs), 

so the degree of parallelism (DP) is very high but the coding 
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loss is also large. LPM guarantees the rate-distortion 

performance, but the parallelism is low. It cannot make full 

use of the many processing units of the parallel computing 

platform, which seriously affects the efficiency of parallel 

processing. 

In order to reduce the coding complexity, a new method of 

optimization algorithm, hardware and parallel mapping 

strategy is designed. This paper first optimizes the inter-frame 

predict algorithm for 3D-HEVC depth maps is optimized, 

then proposes a video processor consisting of 1024 thin core 

processing units (PEs) interconnected by adjacent components 

to form 32×32 array processing[17], which is used by the 

communication mechanism of global on-chip network and 

local shared memory, finally the fast search algorithm to 

parallel mapping is implemented on this video array processor. 

The design flow is shown in Figure 2. 
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video array 
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Fig.2 Optimize fast inter-frame prediction across algorithm, hardware and 
parallel mapping strategy 

 

The remainder of the paper is organized as follows: Section 

II introduces the recent related work of 3D-HEVC depth maps 

inter prediction algorithm. Section III introduces the parallel 

implementation of the 3D-HEVC depth maps inter-frame 

algorithm in the video array structure, including detailed 

introduction the overall structure and communication 

mechanism of video array processor. In Section IV presents 

the implementation results and analyzes in detail. Finally, 

Section V summarizes the full text. 

II. RELATED WORKS 

A. Depth Map Features 
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Fig.3 Texture's SAD heat map         Fig.4 Depth map's SAD heat map  

 

In 3D-HEVC, depth maps have sharp edges and large range 

smoothing regions[ 18 ]. The 3D-HEVC depth maps test 

sequences of depth_balloons, depth_Newspaper and 

Poznan_Street are analyzed, the distribution of their SADs is 

calculated as shown in Figure 3 and Figure 4. It can be found 

that the SAD distribution of texture mapping is more 

complicated, and there are local optimal values. It is difficult 

for fast algorithms to find the best matching block. However, 

the SAD value distribution of the corresponding depth maps 

is relatively regular, and there is a large area of smooth area. 

So the fast algorithm can quickly find the optimal SAD value. 

Saldanha M[19] pointed out that the motion estimation of 

depth maps accounts for 19.74% of the total encoding time. 

This is due to the complexity of the search algorithm, without 

considering the characteristics of the depth maps. He put 

forward diamond search which can be used to reduce coding 

complexity in the premise of ensuring coding efficiency. In 

this paper, three fast algorithms, including full search (FS), 

three-step search (TSS), and diamond search (DS), are 

analyzed and compared. The comparison results obtained 

using the video array processor is presented in Section V. 

B. Algorithm Parallelism Analysis 

The parallelism of LPM is less than GPM, but the encoding 

quality is much higher. The LPM introduces a motion 

estimation region (MER), and each coding tree unit (CTU) 

can be divided into a plurality of non-overlapping MERs.  
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Fig.5 MER sketch map 

 

Within the same MER, all PUs is independent of one 

another and block matching can be performed in parallel. As 

shown in Figure 5, a CTU can be divided into four MERs, 

which are executed sequentially from MER0 to MER3. PU8 

and PU9 in MER3 are independent of each other. When 

processing MER3, PU8 and PU9 can be processed in parallel. 

The DP in local parallelism can be denoted in Equation (1).  

 

( )

min( ( ))

Size MER
DP

Size PU
=                             (1) 

                                                         

The size of MER is usually 16×16 or 8×8. The minimum 

size of PU is 4×4. The maximum DP of local parallelism is 16, 

so the parallelism of the video array processor cannot be fully 

utilized. Considering data dependencies without affecting 

code quality, how to make full use of multi-core array 

structure is the key to research. Traditional LPM does not 

affect video quality, but its parallelism is too low. Therefore, 

CTU level parallelism and MER level parallelism are added. 

1) CTU Level Parallel  

In 3D-HEVC, CTU is the largest encoding unit. Adjacent 

CTUs have data dependencies, while non-adjacent CTUs are 

independent of each other and can be executed in parallel. 

Figure 6 shows the sequence in which CTUs are executed in 

parallel. CTUs with the same tag can be executed in parallel.   
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Fig.6 CTU level parallel 

                                                                       

The degree of parallelism at the CTU level is related to the 

resolution of the image. The resolution is higher; the degree 

of parallelism is higher. The calculation process of DP is 

shown in Equation (2). W and H represent the width and 

height of the image divided according to the CTU, 

respectively. Therefore, the DPCTU of the 1024×768 sequence 

is 8, and the DPCTU of the 1920×1088 sequence is up to 15.  

 

min( ( ), )
2

CTU

W
DP ceil H=                    (2) 

 

2) MER Level Parallel  

MER level parallel is similar to CTU level. Non-adjacent 

MERs can be executed in parallel without data dependence. 

As shown in Figure 7, a CTU is evenly divided into sixteen 

MERs. The same labeled MER without data dependency can 

be processed in parallel. So DPMER is 2. 
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Fig.7 MER level parallel 

 

3) PU Level Parallel 

The MER can be divided into four 8×8, eight 8×4 and 

sixteen 4×4 PUs. Since there is no data correlation between 

all PUs inside the MER, they can be processed in parallel. As 

shown in Figure 8, the DP of the PU level can reach 28 

( DPPU =4+8+16=28 ). 
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Fig.8 Local parallel (PU level) scheme 

 

In summary, the parallelism of the 3D-HEVC depth maps 

is equal to the product of DPPU, DPCTU, and DPMER, that is, 

the number of PUs that can be processed simultaneously, as in 

Equation (3). The maximum parallelism of the 1024×768 

depth maps sequence is 448，the maximum parallelism of the 

1920×1088 depth maps sequence can reach 840. This 

parallelism is not as good as GPM, but it is enough to take full 

advantage of the video array structure and the coding loss is 

small. 

                                                        

depthmap PU CTU MERDP DP DP DP=               (3) 

 

In [ 20 ] and [ 21 ], a new parallel method for motion 

estimation based on LPM is proposed. Compared to the serial 

implementation of 1920×1080 and 2560×1600 video 

sequences, experiments based on 64-core systems show that 

the acceleration ratios in parallel mode are 30 and 40 times, 

respectively. And the quality of the code has also improved. A 

new fast and effective depth video compression method based 

on 3D image morphing is proposed[22], which can guarantee 

the quality of reconstructed depth maps, reduce inter 

prediction error and ensure real-time performance. However, 

this improvement is only in algorithm optimization and does 

not consider hardware implementation. 

In this paper, a 32×32 video array processor is proposed, 

which composed of 1024 thin core processing units (PEs) 

interconnected by adjacent. It utilized a global on-chip 

network and a local shared memory communication 

mechanism. The fast search algorithms implement parallel 

mapping on the video array processor.  

III. HARDWARE IMPLEMENTATIONS 

A. Structure of Video Array Processor 
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Fig.9 Partial architecture of video array processor units 

 

The video array processor consists of 1024 light core PEs, 

in which each 4×4 PEs is one processor cluster (PEG). The 

communication mechanism based on local shared memory on 

global network. Intra cluster data interaction adopted adjacent 

interconnection and shared storage. Inter cluster 

telecommunication is used by network on chip. Its partial 
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structure is shown in Figure 9. The PE processing unit is 

implemented by extracting, decoding, executing, and writing 

back to the four-stage pipeline. It consists of a 32-bit 

instruction register, an 8×16-bit register file, a 256×16-bit 

data/instruction memory, an arithmetic logic unit, and other 

parts. 

B. Communication Mechanism 
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Fig.10 High speed switching unit 
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Fig.11 Two stage switching fabric 

 

First, determine the location of the PE access storage unit. 

In this paper, intra cluster the data access is implemented by a 

high-speed switching unit, the structure is shown in Figure 10. 

Each local PE corresponds to one local storage bank. In view 

of the high frequency of data interaction in the cluster, local 

PE is set as the highest priority access to the local storage 

bank. The local PE accesses other banks in the PEG through a 

two-stage switch fabric and supports 16-channel read/write 

parallel access, as shown in Figure 11. The four PE requests 

in the same column is performed the first level arbitration. 

Four requests from different rows are sent to the second level 

arbitrator at the same time. The polling strategy is used to 

arbitrate when there are multiple requests for the same row's 

storage bank. After the first level arbitration, the four requests 

of the same row are subjected to second level arbitration. If 

the four requests are aimed different banks, they are directly 

exported to the corresponding storage bank. If multiple 

requests are in the same bank, polling strategy is applied to 

arbitrate. 

Inter-cluster data communication is achieved through an 

on-chip network of low latency virtual channel routers. The 

inter cluster communication mechanism consists of three parts, 

namely the main part of PEG, network adapters and on-chip 

network routers. In order to reduce power consumption and 

design complexity, only the PE in the lower right corner of 

the 4×4 PE array is allowed to transmit data to the on-chip 

network. The remaining fifteen PEs can write to this PE 

storage through shared storage access or continuous 

interconnect access and then initiate inter cluster 

communication. The main function of the network adapter is 

to connect PEG and router. The output data and destination 

address in the packets whose data format that can be received 

by the routing network, are sent to the routing network. The 

router could send remote data packets from the source node to 

the target node. It uses the XY deterministic routing algorithm 

without deadlock and the packet switching network. 

IV. PARALLEL IMPLEMENTATION 

A. Parallel implementation based on FS 
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Fig.12 Parallel operation of PEG01 
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Fig.13 Parallel operation of PEG10 

 

The FS depth maps motion estimation algorithm in a video 

array processor mapping scheme is shown in Figure 12 and 

Figure 13. The parallel processing of MER is done with two 

clusters PEG01 and PEG10, where PEG01 processes four 8×8 
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and eight 8×4 parallel processing in parallel, and PEG10 

processes 16 4x4 parallel processing in parallel. The mapping 

process on PEG01 is as follows. 

Step 1: Loading raw data. PEG01 has a 16-bit external 

memory connected to PE00 for storing raw video data. The 

CTU is divided into sixteen 16×16 MERs and stored in the 

order in which they are executed. The first MER is stored in 

addresses 0-255. 

Step 2: Loading reference data. PE00, PE01, PE02, and 

PE03 perform four 8×8 block matching operations, 

respectively, and build 16×16 search windows centered on 

four 8×8 blocks in the reference frame, and then load four 

search windows. For each of the four PE data storage units, 

the storage address is 256-511. PE10, PE11, PE12, PE13, 

PE20, PE21, PE22, and PE23 perform eight 8×4 block 

matching operations, respectively, and build a 16×16 search 

window centered on these eight 8×4 blocks. The search 

windows are loaded into the respective data storage units of 

the 8 PEs, and the storage addresses are 256-511. 

Step 3: The original MER is divided into four 8×8 PU 

blocks and sent to PE00, PE01, PE02 and PE03. The MER is 

divided into eight 8×4 PU blocks and sent to PE10, PE11, 

PE12, PE13, PE20, PE21, PE22, and PE23. 

Step 4: PE00 sends an indication signal to each of the 12 

PEs through shared memory (address 254). After PE00-PE23 

receive the PE00 indication signal, each PE can start block 

matching. Otherwise, it can only wait. 

Step 5: After the handshake succeeds, each PE starts to 

calculate the SAD value and writes the smaller SAD value to 

the address 255 of the corresponding PE data storage. 

Step 6: Continue to acquire different reference blocks from 

the respective search windows according to the full search 

mode, and calculate and compare the SAD value with the 

original PU block until all reference blocks within the search 

window are acquired. 

Step 7: After each PE finds the minimum SAD value and 

finds the best matching block, PE00 writes the minimum SAD 

value obtained by each PE into the PE00 data storage unit 

through the shared storage mechanism, and then uniformly 

outputs all the minimum SAD values through the shared 

register. 

PEG10 completes the motion estimation process of sixteen 

4×4 PU blocks. The parallel mapping idea is basically the 

same as PEG01, as shown in Figure 13. 

The MER block motion estimation parallel processing is 

completed based on the FS mode. Then, the motion 

estimation of the remaining fifteen MER blocks is performed 

in accordance with the order in which the MER is executed. If 

the two MERs can operate in parallel, four clusters are 

processed in parallel until the CTU block matching process is 

completed. After processing the CTU, the next CTU block 

matching operation follows the order in which the CTUs are 

executed. If multiple CTUs can be processed in parallel, 

multiple clusters are used for parallel processing until motion 

estimation for the entire frame is completed. 

B．Parallel implementation based on fast search 

The parallel implementation of the depth maps motion 

estimation algorithm based on TSS, and DS in the video array 

processor is consistent with the mapping method of the full 

search algorithm. Through PEG01, four 8×8 blocks and eight 

8×4 block matching operations are performed, and through 

PEG10, sixteen 4×4 block matching operations are completed. 

The results of analyzing and comparing the three algorithms 

are given in Section V. 

V. EXPERIMENTAL RESULTS 

A. Parallel Performance Analysis 

Table 1 shows the performance comparison of parallel FS-

based depth maps motion estimation algorithms in video array 

architecture with other implementations. It can be seen from 

Table 1 that the FS algorithm implemented in this paper 

occupies a large amount of resources and consumes a lot of 

power, but the operating frequency is closer to ASIC. In 

addition, the complete depth maps motion estimation process 

is implemented in this paper through reconfigurable arrays, 

while the dedicated hardware in [18] is limited to the 

calculation of SAD values, and the entire block matching 

process is not completed. The DP achieved by reconfigurable 

arrays is much higher than that of ASIC, and the block 

matching process can be accomplished using multiple search 

modes, unlike dedicated hardware that is only limited to fixed 

mode. 

 
Table 1 Performance parameters of depth maps motion estimation 

 Technology 
Frequency/

MHZ 
Gate count/K Power/mW 

[18] (TZS) 45nm 100 62 2.56 

[18] (SDSP) 45nm 100 34 1.38 

[23] 0.18μm 180 160 14.7 

This paper (FS) FPGA（Bee4） 100.261 280 667 

 

B. Parallel Discussion 

After functional simulation and FPGA testing, the DP of 

the FS-based motion estimation algorithm is analyzed and 

compared. As shown in Figure 14, the 3D-HEVC depth maps 

in the four test sequences (depth_balloons, 

Poznan_Street_depth, depth_Newspaper, and 

Poznan_Hall2_depth) of the two different resolutions 

(1024×768, 1920×1088) are statistically analyzed based on 

the results of the FS motion estimation, and compared with 

the traditional LPM and the literature [21]. The abscissa in 

(a)-(d) represents the time node at which the entire frame of 

the image is encoded. The execution time of one frame of 

image is divided into 10 time segments. The ordinate 

represents DP of the algorithm. (e)-(f) gives the change in 

parallelism as the number of processor cores increases. 

As can be seen from (a)-(d), the parallelism of the parallel 

method designed in this paper gradually increases after the 

start of image coding, and then slowly decreases after 

reaching the maximum value. Literature [21] adds CTU level 

parallelism to LPM, and the DP is greatly improved. The 

parallel method designed in this paper will increase MER 
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level parallelism on the basis of [21], so the degree of 

parallelism is higher than it. In addition, the CTU level of the 

DP is related to the image resolution. The higher the 

resolution, the higher the degree of parallelism at the CTU 

level. Therefore, for the method designed in this paper and 

[21], the higher the resolution, the larger the DP value. The 

DP value of LPM does not change. 

 

 

 

   

(a) depth_balloons(1024×768)                     (b) Poznan_Street_depth(1920×1088)                        (c) depth_Newspaper(1024×768)  

  

(d) Poznan_Hall2_depth(1920×1088)                             (e) resolutions 1024×768                                   (f) resolutions 1920×1088 

Fig.14 test sequences based FS are compared with the LPM and [21] 

 

   

(a) Coding quality of 8×8 blocks                                    (b) Coding quality of 8×4 blocks                             (c) Coding quality of 4×4 blocks 

Fig. 15 Comparison of PSNR-Y after three PU sizes parallel mapping 

 

It can be seen from (e) and (f) in Figure 14 that different 

parallel modes have maximum DP for different resolution 

depth map test sequences. When the number of PEs is less 

than the maximum DP, the parallelism of various parallel 

modes will increase as the number of PEs increases. 

Conversely, the DP will not increase. For a test sequence with 

a resolution of 1024×768, the DP in this paper does not 

increase  when the number of processor cores exceeds 450. 

For resolution of 1920×1088, the DP in this paper does not 

increase  when the number of processor cores exceeds 840.   
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C. Coding quality analysis 

In order to analyze the coding quality of the fast algorithm, 

the Y-component of peak signal to noise ratio (PSNR-Y) of 

the depth map motion estimation algorithm based on full 

search, three-step search and diamond search is compared. 

Figure 15 shows the PSNR-Y values of the motion estimation 

process when the algorithm is divided into 8×8, 8×4, and 4×4 

PU blocks in parallel mapping. 

For all five test sequences, the PSNR-Y value of the motion 

estimation process based on FS mode is the largest and the 

coding quality is the best. As the size of the PU block 

becomes smaller, the larger the PSNR-Y value, the higher the 

matching accuracy, and the searched matching block are 

almost the same as the original block. This also explains the 

large area smooth area of the depth map and the small 

variation range. For the 3D-HEVC depth map, the motion 

estimation process based on the fast search mode such as TSS 

is small, and even the matching accuracy of the FS can be 

achieved. Therefore, for the depth map, a fast algorithm can 

be used to estimate the motion. 

D. Analysis of coding speed 

After analyzing the encoding quality of the fast algorithm, 

the encoding speed of the fast algorithm is also analyzed and 

compared. Table 2 calculates the encoding time of the 

HTM16.1 and the depth maps motion estimation algorithm 

designed in five test sequences. Compared with the software 

HTM16.1 implementation, the motion estimation algorithm 

based on video array processor has greatly improved the 

coding speed. Among them, the speedup ratio of the FS mode 

can reach 35, and the speedup ratio of the TSS mode is 160, 

and the speedup ratio of DS can reach 233. 
 

Table 2. Parallel implementation results evaluation on HTM 16.1 random 

access mode  

Sequence 

FS TSS DS 

△ PSNR-

Y(dB) 

Speed-

up 

△ PSNR-

Y(dB) 

Speed-

up 

△PSNR-

Y(dB) 

Speed- 

up 

depth_Newspaper 10.80 27 10.11 122.04 1.12 176.02 

depth_balloons 5.62 22 4.72 99.44 4.36 143.42 

depth_Poznan_Street 2.28 41 0.75 186.18 0.72 267.22 

depth_Poznan_Hall2 -4.36 44 -5.59 199.80 -6.06 286.78 

depth_GhostTownFly -4.26 45 -5.62 204.34 -6.68 293.29 

Average 2.016 35.8 0.874 162.36 -1.308 233.346 

VI. CONCLUSIONS 

For the motion estimation of 3D-HEVC depth maps, the 

fast algorithm can not only approach the precision of FS, 

but also increase the coding speed greatly. That is to say, 

fast algorithm can improve encoding speed and reduce 

coding time under the condition of guaranteeing the 

encoding quality of depth maps. This paper has a significant 

improvement in maximum parallelism based on the new 

parallel approach proposed by LPM. From the experimental 

results and analysis, it can be verified that the depth map 

has a large area of smooth area, so a fast search can be 

used for block matching of the depth maps. This parallel 

scheme greatly saves the time required for 3D depth maps 

coding, and improves computational efficiency and 

resource utilization. The next step in this work will 

continue to explore the characteristics of the depth map 

fast search algorithm, which can take full advantage of the 

characteristics of the reconfigurable array structure in the 

mapping process. 
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