
Fast Inter-frame Prediction Based Array Processor for

Depth Maps in 3D-HEVC

Yun Zhu*, Lin Jiang†1, Hui Song*, Xiaoyan Xie*, Anqi Wang*, Xubang Shen††
* Xi’an University of Posts and Telecommunications, Xi’an, China

E-mail: zhuyun@xupt.edu.cn, 1255532038@qq.com, xxy@xupt.edu.cn, 982725333@qq.com
†Xi’an University of Science and Technology, Xi'an, China

E-mail: jianglin@xust.edu.cn
††Xi'an Microelectronic Technology Research Institute, Xi’an, China

E-mail: shenxubang@163.net

1 Corresponding author.

Abstract— For the characteristics of the depth map with a

large smooth area, it is not necessary in the 3D-High-Efficiency

Video Coding (3D-HEVC) to use TZ search for inter-frame

prediction. According to the parallelism of depth map inter-

frame algorithms, analyzed the parallelism of full search, three-

step search and diamond search in the array structure, this

paper proposes a parallel implementation method of 3D-HEVC

depth map inter-frame prediction based on array processor.

Considering only the depth map encoding, the experimental

results show that the synthesized frequency under the BEE4

FPGA chip is as high as 100.261MHZ. Compared with the

software 3D-HEVC Test Model (HTM) version 16.1, without

affecting the video quality, the speedup ratio of the full search

mode can reach 35, the speedup ratio of the three-step search

mode can reach 160, and the speedup ratio of the diamond

search can reach 233.

Keywords—3D-HEVC, Depth map, Inter-frame prediction,

Fast search algorithm.

I. INTRODUCTION

The Joint Collaborative Team on 3D Video Coding

Extension Development (JCT-3V) developed the 3D-High

Efficiency Video Coding (3D-HEVC)[1-2]. The multi-view

video plus depth (MVD) data format has been standardized as

the 3D video representation, which contains multiple views of

texture within the associated depth map for each view[3]. The

depth maps coding techniques can be classified into two

categories depending on the relationship with the

corresponding texture video, independent coding and texture-

assisted depth coding[4]. The encoding techniques used in

depth maps are basically the same as those of texture frames.

The motion parameter inheritance technique is used to exploit

the motion similarity between depth and texture videos.

However, compared to texture video, depth video exhibits

distinct characteristics, which describes the geometry of the

3D scene[5]. It is usually composed of large portions of flat

regions separated by sharp edges[6-7]. In order to avoid the

generation of new depth values and ringing artifacts at depth

maps edges, the motion compensation doesn’t include an

interpolation. The motion vectors are coded with sample

instead of quarter-sample accuracy[8].

Since video pictures and depth maps represent different

properties of the same video scene, the motion characteristics

should be similar. The best block matching of each block of

the current frame is found in the reference frame using inter-

frame prediction[9], as shown in Figure 1. A new inter coding

mode for depth maps is added in which the partitioning of a

block of sub-blocks as well as the associated motion

parameters are inferred from the co-located block in the

associated video picture[10]. HTM that is 3D-HEVC

reference software[11] uses test zone search (TZS)[12] for

depth maps motion estimation. TZS is very irregular in

accessing stored values during the calculation of sum of

absolute differences (SAD) values and in the search process

using a variety of algorithms, the storage of constant reading

and writing operation, resulting in great energy consumption.

In TZS, the search region is defined by the vector predictive

value, either diamond search, scanning or other search

approach has been employed. However, the coding

complexity is still burden on TZS. Therefore, the parallel

implementation of optimized search algorithms has attracted

more attention.

Current

block

Current frame

Matching

block

Reference frame

MV
（i,j）

Fig.1 Motion estimation block matching process

Parallelizing 3D-HEVC coding on a parallel computing

platform is an effective method to solve the high coding

complexity. At present there are two kinds of parallel methods,

Global Parallel Method (GPM)[13-14] and Local Parallel

Method (LPM)[15-16].GPM is widely used in the H.264 /

AVC motion estimation algorithm because it does not

consider the data dependency between prediction units (PUs),

so the degree of parallelism (DP) is very high but the coding

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

118978-988-14768-8-3/20/$31.00 ©2020 APSIPA APSIPA-ASC 2020

loss is also large. LPM guarantees the rate-distortion

performance, but the parallelism is low. It cannot make full

use of the many processing units of the parallel computing

platform, which seriously affects the efficiency of parallel

processing.

In order to reduce the coding complexity, a new method of

optimization algorithm, hardware and parallel mapping

strategy is designed. This paper first optimizes the inter-frame

predict algorithm for 3D-HEVC depth maps is optimized,

then proposes a video processor consisting of 1024 thin core

processing units (PEs) interconnected by adjacent components

to form 32×32 array processing[17], which is used by the

communication mechanism of global on-chip network and

local shared memory, finally the fast search algorithm to

parallel mapping is implemented on this video array processor.

The design flow is shown in Figure 2.

fast inter-frame

prediction

algorithm

video array

processor
parallel mapping

Fig.2 Optimize fast inter-frame prediction across algorithm, hardware and
parallel mapping strategy

The remainder of the paper is organized as follows: Section

II introduces the recent related work of 3D-HEVC depth maps

inter prediction algorithm. Section III introduces the parallel

implementation of the 3D-HEVC depth maps inter-frame

algorithm in the video array structure, including detailed

introduction the overall structure and communication

mechanism of video array processor. In Section IV presents

the implementation results and analyzes in detail. Finally,

Section V summarizes the full text.

II. RELATED WORKS

A. Depth Map Features

616 629 638 659 689 701 707 695 662 605 538 490 520

452 476 498 544 602 645 680 684 673 650 624 613 657

251 290 324 383 457 518 570 586 585 575 577 587 635

53 103 146 213 292 359 420 444 450 444 455 470 510

120 62 7 65 144 213 275 306 320 317 331 348 377

263 196 132 62 11 76 134 169 190 197 216 237 266

376 309 244 175 108 46 11 49 79 96 118 140 165

484 421 356 293 230 170 113 71 34 9 17 43 67

604 544 490 434 376 318 257 209 167 136 108 80 52

729 679 636 589 534 475 407 349 302 271 248 228 204

856 817 789 754 706 650 577 511 460 429 413 407 389

931 917 921 908 873 820 749 683 634 603 590 593 582

961 974 1018 1038 1028 981 913 852 806 772 759 765 762

48 45 42 36 27 18 9 3 0 0 0 24 56

36 33 30 24 15 9 3 0 0 0 0 20 48

24 21 18 12 6 3 0 0 0 0 0 16 40

12 9 6 3 0 0 0 0 0 0 0 16 36

4 0 0 0 0 0 0 0 0 0 0 16 32

8 0 0 0 0 0 0 0 0 0 4 20 36

12 0 0 0 0 0 0 0 0 0 8 24 40

16 0 3 6 9 9 6 3 0 0 12 28 44

16 3 9 12 21 21 15 9 3 0 16 32 48

35 10 15 24 33 33 24 15 6 4 20 36 52

69 29 18 30 42 42 30 18 6 8 24 40 60

103 48 15 24 33 33 24 15 6 12 28 48 72

137 64 9 15 21 21 15 9 3 16 36 60 80

Fig.3 Texture's SAD heat map Fig.4 Depth map's SAD heat map

In 3D-HEVC, depth maps have sharp edges and large range

smoothing regions[18]. The 3D-HEVC depth maps test

sequences of depth_balloons, depth_Newspaper and

Poznan_Street are analyzed, the distribution of their SADs is

calculated as shown in Figure 3 and Figure 4. It can be found

that the SAD distribution of texture mapping is more

complicated, and there are local optimal values. It is difficult

for fast algorithms to find the best matching block. However,

the SAD value distribution of the corresponding depth maps

is relatively regular, and there is a large area of smooth area.

So the fast algorithm can quickly find the optimal SAD value.

Saldanha M[19] pointed out that the motion estimation of

depth maps accounts for 19.74% of the total encoding time.

This is due to the complexity of the search algorithm, without

considering the characteristics of the depth maps. He put

forward diamond search which can be used to reduce coding

complexity in the premise of ensuring coding efficiency. In

this paper, three fast algorithms, including full search (FS),

three-step search (TSS), and diamond search (DS), are

analyzed and compared. The comparison results obtained

using the video array processor is presented in Section V.

B. Algorithm Parallelism Analysis

The parallelism of LPM is less than GPM, but the encoding

quality is much higher. The LPM introduces a motion

estimation region (MER), and each coding tree unit (CTU)

can be divided into a plurality of non-overlapping MERs.

PU0PU0

PU1

PU2 PU3

PU4

PU3

PU5

PU6

PU7

PU8

PU9

MER2 MER3

MER0 MER1

Fig.5 MER sketch map

Within the same MER, all PUs is independent of one

another and block matching can be performed in parallel. As

shown in Figure 5, a CTU can be divided into four MERs,

which are executed sequentially from MER0 to MER3. PU8

and PU9 in MER3 are independent of each other. When

processing MER3, PU8 and PU9 can be processed in parallel.

The DP in local parallelism can be denoted in Equation (1).

()

min(())

Size MER
DP

Size PU
= (1)

The size of MER is usually 16×16 or 8×8. The minimum

size of PU is 4×4. The maximum DP of local parallelism is 16,

so the parallelism of the video array processor cannot be fully

utilized. Considering data dependencies without affecting

code quality, how to make full use of multi-core array

structure is the key to research. Traditional LPM does not

affect video quality, but its parallelism is too low. Therefore,

CTU level parallelism and MER level parallelism are added.

1) CTU Level Parallel

In 3D-HEVC, CTU is the largest encoding unit. Adjacent

CTUs have data dependencies, while non-adjacent CTUs are

independent of each other and can be executed in parallel.

Figure 6 shows the sequence in which CTUs are executed in

parallel. CTUs with the same tag can be executed in parallel.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

119

Execution

order

1 2 3 4 5 6 7 8 9

3

5

7

9

11

13

15

4 5 6 7 8 9 1110

6 7 8 9 10 11 12 13

8 9 10 11 12 13 14 15

10 11 12 13 14 15 16 17

12 13 14 15 16 17 18 19

14 15 16 17 18 19 20 21

16 17 18 19 20 21 22 23

1

2

3 3

4 4

5 5 5

22

23

Fig.6 CTU level parallel

The degree of parallelism at the CTU level is related to the

resolution of the image. The resolution is higher; the degree

of parallelism is higher. The calculation process of DP is

shown in Equation (2). W and H represent the width and

height of the image divided according to the CTU,

respectively. Therefore, the DPCTU of the 1024×768 sequence

is 8, and the DPCTU of the 1920×1088 sequence is up to 15.

min((),)
2

CTU

W
DP ceil H= (2)

2) MER Level Parallel

MER level parallel is similar to CTU level. Non-adjacent

MERs can be executed in parallel without data dependence.

As shown in Figure 7, a CTU is evenly divided into sixteen

MERs. The same labeled MER without data dependency can

be processed in parallel. So DPMER is 2.

1 2 3 4

3 4 5 6

5 6 7 8

7 8 9 10

1

2

33

......

10

Execution

order

Fig.7 MER level parallel

3) PU Level Parallel

The MER can be divided into four 8×8, eight 8×4 and

sixteen 4×4 PUs. Since there is no data correlation between

all PUs inside the MER, they can be processed in parallel. As

shown in Figure 8, the DP of the PU level can reach 28

(DPPU =4+8+16=28).

MER size= 16

PU

8×8

8×4 4×4

8×8

4×4

PU

8×4

PU

8×8

8×4 4×4

8×8

4×4

PU

8×4
Fig.8 Local parallel (PU level) scheme

In summary, the parallelism of the 3D-HEVC depth maps

is equal to the product of DPPU, DPCTU, and DPMER, that is,

the number of PUs that can be processed simultaneously, as in

Equation (3). The maximum parallelism of the 1024×768

depth maps sequence is 448，the maximum parallelism of the

1920×1088 depth maps sequence can reach 840. This

parallelism is not as good as GPM, but it is enough to take full

advantage of the video array structure and the coding loss is

small.

depthmap PU CTU MERDP DP DP DP= (3)

In [20] and [21], a new parallel method for motion

estimation based on LPM is proposed. Compared to the serial

implementation of 1920×1080 and 2560×1600 video

sequences, experiments based on 64-core systems show that

the acceleration ratios in parallel mode are 30 and 40 times,

respectively. And the quality of the code has also improved. A

new fast and effective depth video compression method based

on 3D image morphing is proposed[22], which can guarantee

the quality of reconstructed depth maps, reduce inter

prediction error and ensure real-time performance. However,

this improvement is only in algorithm optimization and does

not consider hardware implementation.

In this paper, a 32×32 video array processor is proposed,

which composed of 1024 thin core processing units (PEs)

interconnected by adjacent. It utilized a global on-chip

network and a local shared memory communication

mechanism. The fast search algorithms implement parallel

mapping on the video array processor.

III. HARDWARE IMPLEMENTATIONS

A. Structure of Video Array Processor

Memory cell

4*4PE

High speed

switching unit

cluster

PEG details

R

cluster

R

cluster

R

cluster

R

cluster

R

cluster

R

cluster

R

cluster

R

cluster

R

cluster

R

cluster

R

cluster

R

cluster

R

cluster

R

cluster

R

cluster

R

cluster

Fig.9 Partial architecture of video array processor units

The video array processor consists of 1024 light core PEs,

in which each 4×4 PEs is one processor cluster (PEG). The

communication mechanism based on local shared memory on

global network. Intra cluster data interaction adopted adjacent

interconnection and shared storage. Inter cluster

telecommunication is used by network on chip. Its partial

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

120

structure is shown in Figure 9. The PE processing unit is

implemented by extracting, decoding, executing, and writing

back to the four-stage pipeline. It consists of a 32-bit

instruction register, an 8×16-bit register file, a 256×16-bit

data/instruction memory, an arithmetic logic unit, and other

parts.

B. Communication Mechanism

BK00 BK01 BK02 BK03

BK10 BK11 BK12 BK13

BK20 BK21 BK22 BK23

BK30 BK31 BK32 BK33

PE00 PE01 PE01 PE03

PE10 PE11 PE12 PE13

PE20 PE21 PE22 PE23

PE30 PE31 PE32 PE33

High speed

switching unit

PE array

BANK array

Local PE and

corresponding

local BANK

Fig.10 High speed switching unit

PE00_REQ
PE10_REQ
PE20_REQ
PE30_REQ

PE01_REQ
PE11_REQ
PE21_REQ
PE31_REQ

PE02_REQ
PE12_REQ
PE22_REQ
PE32_REQ

PE03_REQ
PE13_REQ
PE23_REQ
PE33_REQ

BK00_REQ
BK01_REQ
BK02_REQ
BK03_REQ

BK10_REQ
BK11_REQ
BK12_REQ
BK13_REQ

BK20_REQ
BK21_REQ
BK22_REQ
BK23_REQ

BK30_REQ
BK31_REQ
BK32_REQ
BK33_REQ

Fig.11 Two stage switching fabric

First, determine the location of the PE access storage unit.

In this paper, intra cluster the data access is implemented by a

high-speed switching unit, the structure is shown in Figure 10.

Each local PE corresponds to one local storage bank. In view

of the high frequency of data interaction in the cluster, local

PE is set as the highest priority access to the local storage

bank. The local PE accesses other banks in the PEG through a

two-stage switch fabric and supports 16-channel read/write

parallel access, as shown in Figure 11. The four PE requests

in the same column is performed the first level arbitration.

Four requests from different rows are sent to the second level

arbitrator at the same time. The polling strategy is used to

arbitrate when there are multiple requests for the same row's

storage bank. After the first level arbitration, the four requests

of the same row are subjected to second level arbitration. If

the four requests are aimed different banks, they are directly

exported to the corresponding storage bank. If multiple

requests are in the same bank, polling strategy is applied to

arbitrate.

Inter-cluster data communication is achieved through an

on-chip network of low latency virtual channel routers. The

inter cluster communication mechanism consists of three parts,

namely the main part of PEG, network adapters and on-chip

network routers. In order to reduce power consumption and

design complexity, only the PE in the lower right corner of

the 4×4 PE array is allowed to transmit data to the on-chip

network. The remaining fifteen PEs can write to this PE

storage through shared storage access or continuous

interconnect access and then initiate inter cluster

communication. The main function of the network adapter is

to connect PEG and router. The output data and destination

address in the packets whose data format that can be received

by the routing network, are sent to the routing network. The

router could send remote data packets from the source node to

the target node. It uses the XY deterministic routing algorithm

without deadlock and the packet switching network.

IV. PARALLEL IMPLEMENTATION

A. Parallel implementation based on FS

PE00 PE01 PE02 PE03

PE10 PE11 PE12 PE13

PE20 PE21 PE22 PE23

PE30 PE31 PE32 PE33

Video data

8×8 8×8 8×8 8×8

8×4 8×4
8×4 8×4

8×4
8×48×4

8×4

NOP NOP NOP NOP

MER

Output

of SAD

Receiving the

video data and

sent to PEs

Second block

matching

operations

SAD is sent to

PE00 after

matching operation

Fourth block

matching

operations

First block

matching

operation

Second block

matching

operations

Eighth block

matching

operations

The SAD value is

sent to PE00 after

the matching

operation

Fig.12 Parallel operation of PEG01

PE00 PE01 PE02 PE03

PE10 PE11 PE12 PE13

PE20 PE21 PE22 PE23

PE30 PE31 PE32 PE33

Video data

4×4 4×4 4×4 4×4

4×4 4×4

4×4

4×4

4×4
4×44×4

4×4

MER

Output

of SAD

Receivin the video

data and sent to

the processing

element

Second block

matching

operations

The SAD value is

sent to PE00 after

the matching

operation

Fourth block

matching

operations

Fifth block

matching

operations

The SAD value is

sent to PE00 after

the matching

operation

Twelfth block

matching

operations

The SAD value is

sent to PE00 after

the matching

operation

4×4
4×4 4×4

4×4

Eighth block

matching

operations

Sixteenth block

matching

operations

Thirteenth block

matching

operations

Fig.13 Parallel operation of PEG10

The FS depth maps motion estimation algorithm in a video

array processor mapping scheme is shown in Figure 12 and

Figure 13. The parallel processing of MER is done with two

clusters PEG01 and PEG10, where PEG01 processes four 8×8

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

121

and eight 8×4 parallel processing in parallel, and PEG10

processes 16 4x4 parallel processing in parallel. The mapping

process on PEG01 is as follows.

Step 1: Loading raw data. PEG01 has a 16-bit external

memory connected to PE00 for storing raw video data. The

CTU is divided into sixteen 16×16 MERs and stored in the

order in which they are executed. The first MER is stored in

addresses 0-255.

Step 2: Loading reference data. PE00, PE01, PE02, and

PE03 perform four 8×8 block matching operations,

respectively, and build 16×16 search windows centered on

four 8×8 blocks in the reference frame, and then load four

search windows. For each of the four PE data storage units,

the storage address is 256-511. PE10, PE11, PE12, PE13,

PE20, PE21, PE22, and PE23 perform eight 8×4 block

matching operations, respectively, and build a 16×16 search

window centered on these eight 8×4 blocks. The search

windows are loaded into the respective data storage units of

the 8 PEs, and the storage addresses are 256-511.

Step 3: The original MER is divided into four 8×8 PU

blocks and sent to PE00, PE01, PE02 and PE03. The MER is

divided into eight 8×4 PU blocks and sent to PE10, PE11,

PE12, PE13, PE20, PE21, PE22, and PE23.

Step 4: PE00 sends an indication signal to each of the 12

PEs through shared memory (address 254). After PE00-PE23

receive the PE00 indication signal, each PE can start block

matching. Otherwise, it can only wait.

Step 5: After the handshake succeeds, each PE starts to

calculate the SAD value and writes the smaller SAD value to

the address 255 of the corresponding PE data storage.

Step 6: Continue to acquire different reference blocks from

the respective search windows according to the full search

mode, and calculate and compare the SAD value with the

original PU block until all reference blocks within the search

window are acquired.

Step 7: After each PE finds the minimum SAD value and

finds the best matching block, PE00 writes the minimum SAD

value obtained by each PE into the PE00 data storage unit

through the shared storage mechanism, and then uniformly

outputs all the minimum SAD values through the shared

register.

PEG10 completes the motion estimation process of sixteen

4×4 PU blocks. The parallel mapping idea is basically the

same as PEG01, as shown in Figure 13.

The MER block motion estimation parallel processing is

completed based on the FS mode. Then, the motion

estimation of the remaining fifteen MER blocks is performed

in accordance with the order in which the MER is executed. If

the two MERs can operate in parallel, four clusters are

processed in parallel until the CTU block matching process is

completed. After processing the CTU, the next CTU block

matching operation follows the order in which the CTUs are

executed. If multiple CTUs can be processed in parallel,

multiple clusters are used for parallel processing until motion

estimation for the entire frame is completed.

B．Parallel implementation based on fast search

The parallel implementation of the depth maps motion

estimation algorithm based on TSS, and DS in the video array

processor is consistent with the mapping method of the full

search algorithm. Through PEG01, four 8×8 blocks and eight

8×4 block matching operations are performed, and through

PEG10, sixteen 4×4 block matching operations are completed.

The results of analyzing and comparing the three algorithms

are given in Section V.

V. EXPERIMENTAL RESULTS

A. Parallel Performance Analysis

Table 1 shows the performance comparison of parallel FS-

based depth maps motion estimation algorithms in video array

architecture with other implementations. It can be seen from

Table 1 that the FS algorithm implemented in this paper

occupies a large amount of resources and consumes a lot of

power, but the operating frequency is closer to ASIC. In

addition, the complete depth maps motion estimation process

is implemented in this paper through reconfigurable arrays,

while the dedicated hardware in [18] is limited to the

calculation of SAD values, and the entire block matching

process is not completed. The DP achieved by reconfigurable

arrays is much higher than that of ASIC, and the block

matching process can be accomplished using multiple search

modes, unlike dedicated hardware that is only limited to fixed

mode.

Table 1 Performance parameters of depth maps motion estimation

 Technology
Frequency/

MHZ
Gate count/K Power/mW

[18] (TZS) 45nm 100 62 2.56

[18] (SDSP) 45nm 100 34 1.38

[23] 0.18μm 180 160 14.7

This paper (FS) FPGA（Bee4） 100.261 280 667

B. Parallel Discussion

After functional simulation and FPGA testing, the DP of

the FS-based motion estimation algorithm is analyzed and

compared. As shown in Figure 14, the 3D-HEVC depth maps

in the four test sequences (depth_balloons,

Poznan_Street_depth, depth_Newspaper, and

Poznan_Hall2_depth) of the two different resolutions

(1024×768, 1920×1088) are statistically analyzed based on

the results of the FS motion estimation, and compared with

the traditional LPM and the literature [21]. The abscissa in

(a)-(d) represents the time node at which the entire frame of

the image is encoded. The execution time of one frame of

image is divided into 10 time segments. The ordinate

represents DP of the algorithm. (e)-(f) gives the change in

parallelism as the number of processor cores increases.

As can be seen from (a)-(d), the parallelism of the parallel

method designed in this paper gradually increases after the

start of image coding, and then slowly decreases after

reaching the maximum value. Literature [21] adds CTU level

parallelism to LPM, and the DP is greatly improved. The

parallel method designed in this paper will increase MER

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

122

level parallelism on the basis of [21], so the degree of

parallelism is higher than it. In addition, the CTU level of the

DP is related to the image resolution. The higher the

resolution, the higher the degree of parallelism at the CTU

level. Therefore, for the method designed in this paper and

[21], the higher the resolution, the larger the DP value. The

DP value of LPM does not change.

(a) depth_balloons(1024×768) (b) Poznan_Street_depth(1920×1088) (c) depth_Newspaper(1024×768)

(d) Poznan_Hall2_depth(1920×1088) (e) resolutions 1024×768 (f) resolutions 1920×1088

Fig.14 test sequences based FS are compared with the LPM and [21]

(a) Coding quality of 8×8 blocks (b) Coding quality of 8×4 blocks (c) Coding quality of 4×4 blocks

Fig. 15 Comparison of PSNR-Y after three PU sizes parallel mapping

It can be seen from (e) and (f) in Figure 14 that different

parallel modes have maximum DP for different resolution

depth map test sequences. When the number of PEs is less

than the maximum DP, the parallelism of various parallel

modes will increase as the number of PEs increases.

Conversely, the DP will not increase. For a test sequence with

a resolution of 1024×768, the DP in this paper does not

increase when the number of processor cores exceeds 450.

For resolution of 1920×1088, the DP in this paper does not

increase when the number of processor cores exceeds 840.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

123

C. Coding quality analysis

In order to analyze the coding quality of the fast algorithm,

the Y-component of peak signal to noise ratio (PSNR-Y) of

the depth map motion estimation algorithm based on full

search, three-step search and diamond search is compared.

Figure 15 shows the PSNR-Y values of the motion estimation

process when the algorithm is divided into 8×8, 8×4, and 4×4

PU blocks in parallel mapping.

For all five test sequences, the PSNR-Y value of the motion

estimation process based on FS mode is the largest and the

coding quality is the best. As the size of the PU block

becomes smaller, the larger the PSNR-Y value, the higher the

matching accuracy, and the searched matching block are

almost the same as the original block. This also explains the

large area smooth area of the depth map and the small

variation range. For the 3D-HEVC depth map, the motion

estimation process based on the fast search mode such as TSS

is small, and even the matching accuracy of the FS can be

achieved. Therefore, for the depth map, a fast algorithm can

be used to estimate the motion.

D. Analysis of coding speed

After analyzing the encoding quality of the fast algorithm,

the encoding speed of the fast algorithm is also analyzed and

compared. Table 2 calculates the encoding time of the

HTM16.1 and the depth maps motion estimation algorithm

designed in five test sequences. Compared with the software

HTM16.1 implementation, the motion estimation algorithm

based on video array processor has greatly improved the

coding speed. Among them, the speedup ratio of the FS mode

can reach 35, and the speedup ratio of the TSS mode is 160,

and the speedup ratio of DS can reach 233.

Table 2. Parallel implementation results evaluation on HTM 16.1 random

access mode

Sequence

FS TSS DS

△ PSNR-

Y(dB)

Speed-

up

△ PSNR-

Y(dB)

Speed-

up

△PSNR-

Y(dB)

Speed-

up

depth_Newspaper 10.80 27 10.11 122.04 1.12 176.02

depth_balloons 5.62 22 4.72 99.44 4.36 143.42

depth_Poznan_Street 2.28 41 0.75 186.18 0.72 267.22

depth_Poznan_Hall2 -4.36 44 -5.59 199.80 -6.06 286.78

depth_GhostTownFly -4.26 45 -5.62 204.34 -6.68 293.29

Average 2.016 35.8 0.874 162.36 -1.308 233.346

VI. CONCLUSIONS

For the motion estimation of 3D-HEVC depth maps, the

fast algorithm can not only approach the precision of FS,

but also increase the coding speed greatly. That is to say,

fast algorithm can improve encoding speed and reduce

coding time under the condition of guaranteeing the

encoding quality of depth maps. This paper has a significant

improvement in maximum parallelism based on the new

parallel approach proposed by LPM. From the experimental

results and analysis, it can be verified that the depth map

has a large area of smooth area, so a fast search can be

used for block matching of the depth maps. This parallel

scheme greatly saves the time required for 3D depth maps

coding, and improves computational efficiency and

resource utilization. The next step in this work will

continue to explore the characteristics of the depth map

fast search algorithm, which can take full advantage of the

characteristics of the reconfigurable array structure in the

mapping process.

ACKNOWLEDGMENT

This work was supported by the National Natural Science

Foundation of China (No. 61834005, 61772417, 61802304,

61602377, 61874087, 61634004), Shaanxi Provincial Co-

ordination Innovation Project of Science and Technology (No.

2016KTZDGY02-04-02), Shaanxi Provincial Key R&D Plan

(No. 2017GY-060), Shaanxi International Science and

Technology Cooperation Program (No. 2018KW-006).

REFERENCES

[1] Sullivan, G. J., Boyce, J. M., Chen, Y., Ohm, J. R., Segall, C. A.,

& Vetro, A. “Standardized extensions of high efficiency video

coding (HEVC)”. IEEE Journal of selected topics in Signal

Processing, (2013).7(6), 1001-1016.

[2] Tech, G., Chen, Y., Müller, K., Ohm, J. R., Vetro, A., & Wang,

Y. K. “Overview of the multiview and 3D extensions of high

efficiency video coding”. IEEE Transactions on Circuits and

Systems for Video Technology, (2016).26(1), 35-49.
[3] Müller, K., Schwarz, H., Marpe, D., Bartnik, C., Bosse, S., Brust,

H., & Tech, G. “3D high-efficiency video coding for multi-view

video and depth data”. IEEE Trans. Image Processing,

(2013).22(9), 3366-3378.
[4] Lei, J., Li, S., Zhu, C., Sun, M. T., & Hou, C. “Depth Coding

Based on Depth-Texture Motion and Structure Similarities”.

IEEE Trans. Circuits Syst. Video Techn., (2015). 25(2), 275-286.
[5] Zhu, C., Li, S., Zheng, J., Gao, Y., & Yu, L. “Texture-aware

depth prediction in 3D video coding”. IEEE Transactions on

Broadcasting, (2016). 62(2), 482-486.
[6] Mora, E. G., Jung, J., Cagnazzo, M., & Pesquet-Popescu, B.

“Initialization, limitation, and predictive coding of the depth

and texture quadtree in 3D-HEVC”. IEEE Transactions on

Circuits and Systems for Video Technology, (2014).24(9), 1554-

1565.
[7] Conceição, R., Avila, G., Corrêa, G., Porto, M., Zatt, B., &

Agostini, L. “Complexity reduction for 3D-HEVC depth map

coding based on early skip and early DIS scheme”. (2016,

September). In Image Processing (ICIP), 2016 IEEE

International Conference on (pp. 1116-1120). IEEE.
[8] Schwarz, H., Bartnik, C., Bosse, S., Brust, H., Hinz, T.,

Lakshman, H., ... & Tech, G. “3D video coding using advanced

prediction, depth modeling, and encoder control methods”.

(2012, May). In Picture Coding Symposium (PCS), 2012(pp. 1-

4). IEEE.
[9] Yu, F., Hui, M., Han, W., Wang, P., Dong, L. Q., & Zhao, Y. J.

“The application of improved block-matching method and

block search method for the image motion estimation”. Optics

Communications, (2010).283(23), 4619-4625.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

124

[10] Müller, K., Schwarz, H., Marpe, D., Bartnik, C., Bosse, S.,

Brust, H., & Tech, G. “3D high-efficiency video coding for

multi-view video and depth data”. IEEE Trans. Image

Processing, (2013).22(9), 3366-3378.
[11] Chen, Y., Tech, G., Wegner, K., & Yea, S. “Test model 9 of

3D-HEVC and MV-HEVC”. (2014).Joint Collaborative Team

on 3D Video Coding Extension Development of ITU-T SG, 16.
[12] Tang, X. L., Dai, S. K., & Cai, C. H. “An analysis of TZSearch

algorithm in JMVC”. (2010).International Conference on

Green Circuits and Systems (pp.516-520). IEEE.
[13] E. Marth and G. Marcus, “Parallelization of the x264 encoder

usingopenCL,”in Proc.ACM SIGGRAPH, Jul. 2010, pp.1–72.

[14] Xiao Z, Baas B M. “A 1080p H.264/AVC Baseline Residual

Encoder for a Fine-Grained Many-Core System”. IEEE

Transactions on Circuits & Systems for Video Technology,

2011, 21(7):890-902.
[15] Minhua, Z. “Configurable and CU-group level parallel

merge/skip”. (2012). JCTVC-H0082, JCT-VC of ITU-T

SG16WP3and ISO/IEC, CA, USA.
[16] Yu, Q., Zhao, L., & Ma, S.. “Parallel AMVP candidate list

construction for HEVC”. (2012, November) Visual

Communications and Image Processing (VCIP), 2012 IEEE(pp.

1-6). IEEE.
[17] Yun, Z. , Jiang, L. , Wang, S. , Huang, X. , Song, H. , & Li, X. .

“Design of reconfigurable array processor for multimedia

application”. Multimedia Tools and Applications, 2018, 77(3):

3639-3657.

[18] Saldanha, M., Sanchez, G., Zatt, B., Porto, M., & Agostini, L.

“Energy-aware scheme for the 3d-hevc depth maps prediction”.

Journal of Real-Time Image Processing, (2017).13(1), 1-15.
[19] Saldanha, M., Sanchez, G., Zatt, B., Porto, M., & Agostini, L.

“Complexity reduction for the 3D-HEVC depth maps coding”.

(2015, May). Circuits and Systems (ISCAS), 2015 IEEE

International Symposium on (pp. 621-624). IEEE.
[20] Yan, C., Zhang, Y., Dai, F., & Li, L. “Highly parallel

framework for HEVC motion estimation on many-core

platform”. (2013, March). Data Compression Conference

(DCC), 2013 (pp. 63-72). IEEE.
[21] Yan, C., Zhang, Y., Xu, J., Dai, F., Zhang, J., Dai, Q., & Wu, F.

“Efficient parallel framework for HEVC motion estimation on

many-core processors”. IEEE Transactions on Circuits and

Systems for Video Technology, (2014). 24(12), 2077-2089.
[22] Wang, X., Şekercioğlu, Y. A., Drummond, T., Natalizio, E.,

Fantoni, I., & Frémont, V. “Fast Depth Video Compression for

Mobile RGB-D Sensors”. IEEE Transactions on Circuits and

Systems for Video Technology, (2016).26(4), 673-686
[23] Li, Peng , and H. Tang . "A low-power VLSI implementation

for fast full-search variable block size motion estimation."

International Journal of Electronics ， 100.7-9(2013):1240-

1255.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

125

