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Abstract— For the characteristics of the depth map with a
large smooth area, it is not necessary in the 3D-High-Efficiency
Video Coding (3D-HEVC) to use TZ search for inter-frame
prediction. According to the parallelism of depth map inter-
frame algorithms, analyzed the parallelism of full search, three-
step search and diamond search in the array structure, this
paper proposes a parallel implementation method of 3D-HEVC
depth map inter-frame prediction based on array processor.
Considering only the depth map encoding, the experimental
results show that the synthesized frequency under the BEE4
FPGA chip is as high as 100.261MHZ. Compared with the
software 3D-HEVC Test Model (HTM) version 16.1, without
affecting the video quality, the speedup ratio of the full search
mode can reach 35, the speedup ratio of the three-step search
mode can reach 160, and the speedup ratio of the diamond
search can reach 233.

Keywords—3D-HEVC, Depth map, Inter-frame prediction,
Fast search algorithm.

L INTRODUCTION

The Joint Collaborative Team on 3D Video Coding
Extension Development (JCT-3V) developed the 3D-High
Efficiency Video Coding (3D-HEVC)[1-2]. The multi-view
video plus depth (MVD) data format has been standardized as
the 3D video representation, which contains multiple views of
texture within the associated depth map for each view[3]. The
depth maps coding techniques can be classified into two
categories depending on the relationship with the
corresponding texture video, independent coding and texture-
assisted depth coding[4]. The encoding techniques used in
depth maps are basically the same as those of texture frames.
The motion parameter inheritance technique is used to exploit
the motion similarity between depth and texture videos.
However, compared to texture video, depth video exhibits
distinct characteristics, which describes the geometry of the
3D scene[5]. It is usually composed of large portions of flat
regions separated by sharp edges[6-7]. In order to avoid the
generation of new depth values and ringing artifacts at depth
maps edges, the motion compensation doesn’t include an
interpolation. The motion vectors are coded with sample
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instead of quarter-sample accuracy[8].

Since video pictures and depth maps represent different
properties of the same video scene, the motion characteristics
should be similar. The best block matching of each block of
the current frame is found in the reference frame using inter-
frame prediction[9], as shown in Figure 1. A new inter coding
mode for depth maps is added in which the partitioning of a
block of sub-blocks as well as the associated motion
parameters are inferred from the co-located block in the
associated video picture[ 10 ]. HTM that is 3D-HEVC
reference software[11] uses test zone search (TZS)[12] for
depth maps motion estimation. TZS is very irregular in
accessing stored values during the calculation of sum of
absolute differences (SAD) values and in the search process
using a variety of algorithms, the storage of constant reading
and writing operation, resulting in great energy consumption.
In TZS, the search region is defined by the vector predictive
value, either diamond search, scanning or other search
approach has been employed. However, the coding
complexity is still burden on TZS. Therefore, the parallel
implementation of optimized search algorithms has attracted
more attention.
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Fig.1 Motion estimation block matching process

Parallelizing 3D-HEVC coding on a parallel computing
platform is an effective method to solve the high coding
complexity. At present there are two kinds of parallel methods,
Global Parallel Method (GPM)[13-14] and Local Parallel
Method (LPM)[15-16].GPM is widely used in the H.264 /
AVC motion estimation algorithm because it does not
consider the data dependency between prediction units (PUs),
so the degree of parallelism (DP) is very high but the coding
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loss is also large. LPM guarantees the rate-distortion
performance, but the parallelism is low. It cannot make full
use of the many processing units of the parallel computing
platform, which seriously affects the efficiency of parallel
processing.

In order to reduce the coding complexity, a new method of
optimization algorithm, hardware and parallel mapping
strategy is designed. This paper first optimizes the inter-frame
predict algorithm for 3D-HEVC depth maps is optimized,
then proposes a video processor consisting of 1024 thin core
processing units (PEs) interconnected by adjacent components
to form 32x32 array processing[17], which is used by the
communication mechanism of global on-chip network and
local shared memory, finally the fast search algorithm to
parallel mapping is implemented on this video array processor.
The design flow is shown in Figure 2.

parallel mapping

fast inter-frame
prediction
algorithm

video array
processor

Fig.2 Optimize fast inter-frame prediction across algorithm, hardware and
parallel mapping strategy

The remainder of the paper is organized as follows: Section
IT introduces the recent related work of 3D-HEVC depth maps
inter prediction algorithm. Section III introduces the parallel
implementation of the 3D-HEVC depth maps inter-frame
algorithm in the video array structure, including detailed
introduction the overall structure and communication
mechanism of video array processor. In Section IV presents
the implementation results and analyzes in detail. Finally,
Section V summarizes the full text.

II.  RELATED WORKS

A. Depth Map Features
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Fig.3 Texture's SAD heat map Fig.4 Depth map's SAD heat map

In 3D-HEVC, depth maps have sharp edges and large range
smoothing regions[ 18 ]. The 3D-HEVC depth maps test
sequences of depth_balloons, depth Newspaper and
Poznan_Street are analyzed, the distribution of their SADs is
calculated as shown in Figure 3 and Figure 4. It can be found
that the SAD distribution of texture mapping is more
complicated, and there are local optimal values. It is difficult
for fast algorithms to find the best matching block. However,
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the SAD value distribution of the corresponding depth maps
is relatively regular, and there is a large area of smooth area.
So the fast algorithm can quickly find the optimal SAD value.
Saldanha M[19] pointed out that the motion estimation of
depth maps accounts for 19.74% of the total encoding time.
This is due to the complexity of the search algorithm, without
considering the characteristics of the depth maps. He put
forward diamond search which can be used to reduce coding
complexity in the premise of ensuring coding efficiency. In
this paper, three fast algorithms, including full search (FS),
three-step search (TSS), and diamond search (DS), are
analyzed and compared. The comparison results obtained
using the video array processor is presented in Section V.

B. Algorithm Parallelism Analysis

The parallelism of LPM is less than GPM, but the encoding
quality is much higher. The LPM introduces a motion
estimation region (MER), and each coding tree unit (CTU)
can be divided into a plurality of non-overlapping MERs.

MERO MERI1
______ v el
PUO PU2 PU3
el PUS5
PU4 PUG
PU8
PU7
PU9
- -
o ‘/
MER2 MER3

Fig.5 MER sketch map

Within the same MER, all PUs is independent of one
another and block matching can be performed in parallel. As
shown in Figure 5, a CTU can be divided into four MERs,
which are executed sequentially from MERO to MER3. PUS8
and PU9 in MER3 are independent of each other. When
processing MER3, PU8 and PU9 can be processed in parallel.
The DP in local parallelism can be denoted in Equation (1).

_ Size(MER) (1)
min(Size(PU))
The size of MER is usually 16x16 or 8x8. The minimum
size of PU is 4x4. The maximum DP of local parallelism is 16,
so the parallelism of the video array processor cannot be fully
utilized. Considering data dependencies without affecting
code quality, how to make full use of multi-core array
structure is the key to research. Traditional LPM does not
affect video quality, but its parallelism is too low. Therefore,
CTU level parallelism and MER level parallelism are added.

1) CTU Level Parallel

In 3D-HEVC, CTU is the largest encoding unit. Adjacent
CTUs have data dependencies, while non-adjacent CTUs are
independent of each other and can be executed in parallel.
Figure 6 shows the sequence in which CTUs are executed in
parallel. CTUs with the same tag can be executed in parallel.
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The degree of parallelism at the CTU level is related to the
resolution of the image. The resolution is higher; the degree
of parallelism is higher. The calculation process of DP is
shown in Equation (2). W and H represent the width and
height of the image divided according to the CTU,
respectively. Therefore, the DPcry of the 1024%768 sequence
is 8, and the DPcry of the 1920x1088 sequence is up to 15.

DP,

ey = min(ceil (), H) @)

2) MER Level Parallel

MER level parallel is similar to CTU level. Non-adjacent
MERs can be executed in parallel without data dependence.
As shown in Figure 7, a CTU is evenly divided into sixteen
MERs. The same labeled MER without data dependency can
be processed in parallel. So DPygx is 2.
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Fig.7 MER level parallel
3) PU Level Parallel

The MER can be divided into four 8x8, eight 8x4 and
sixteen 4x4 PUs. Since there is no data correlation between
all PUs inside the MER, they can be processed in parallel. As
shown in Figure 8, the DP of the PU level can reach 28
( DPpy =4+8+16=28).

MER size= 16
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Fig.8 Local parallel (PU level) scheme
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In summary, the parallelism of the 3D-HEVC depth maps
is equal to the product of DPpy, DPcry, and DPugr, that is,
the number of PUs that can be processed simultaneously, as in
Equation (3). The maximum parallelism of the 1024x768
depth maps sequence is 448, the maximum parallelism of the
1920x1088 depth maps sequence can reach 840. This
parallelism is not as good as GPM, but it is enough to take full
advantage of the video array structure and the coding loss is
small.

DP

depthmap

x DP,

MER

=DP,, xDP., 3)

In [20] and [21], a new parallel method for motion
estimation based on LPM is proposed. Compared to the serial
implementation of 19201080 and 2560%x1600 video
sequences, experiments based on 64-core systems show that
the acceleration ratios in parallel mode are 30 and 40 times,
respectively. And the quality of the code has also improved. A
new fast and effective depth video compression method based
on 3D image morphing is proposed[22], which can guarantee
the quality of reconstructed depth maps, reduce inter
prediction error and ensure real-time performance. However,
this improvement is only in algorithm optimization and does
not consider hardware implementation.

In this paper, a 32x32 video array processor is proposed,
which composed of 1024 thin core processing units (PEs)
interconnected by adjacent. It utilized a global on-chip
network and a local shared memory communication
mechanism. The fast search algorithms implement parallel
mapping on the video array processor.

III. HARDWARE IMPLEMENTATIONS
A.  Structure of Video Array Processor
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Fig.9 Partial architecture of video array processor units

The video array processor consists of 1024 light core PEs,
in which each 4x4 PEs is one processor cluster (PEG). The
communication mechanism based on local shared memory on
global network. Intra cluster data interaction adopted adjacent
interconnection and shared storage. Inter cluster
telecommunication is used by network on chip. Its partial
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structure is shown in Figure 9. The PE processing unit is
implemented by extracting, decoding, executing, and writing
back to the four-stage pipeline. It consists of a 32-bit
instruction register, an 8x16-bit register file, a 256x16-bit
data/instruction memory, an arithmetic logic unit, and other
parts.

B.  Communication Mechanism
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Fig.11 Two stage switching fabric

First, determine the location of the PE access storage unit.
In this paper, intra cluster the data access is implemented by a
high-speed switching unit, the structure is shown in Figure 10.
Each local PE corresponds to one local storage bank. In view
of the high frequency of data interaction in the cluster, local
PE is set as the highest priority access to the local storage
bank. The local PE accesses other banks in the PEG through a
two-stage switch fabric and supports 16-channel read/write
parallel access, as shown in Figure 11. The four PE requests
in the same column is performed the first level arbitration.
Four requests from different rows are sent to the second level
arbitrator at the same time. The polling strategy is used to
arbitrate when there are multiple requests for the same row's
storage bank. After the first level arbitration, the four requests
of the same row are subjected to second level arbitration. If
the four requests are aimed different banks, they are directly
exported to the corresponding storage bank. If multiple
requests are in the same bank, polling strategy is applied to
arbitrate.

Inter-cluster data communication is achieved through an
on-chip network of low latency virtual channel routers. The
inter cluster communication mechanism consists of three parts,
namely the main part of PEG, network adapters and on-chip
network routers. In order to reduce power consumption and
design complexity, only the PE in the lower right corner of
the 4x4 PE array is allowed to transmit data to the on-chip
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network. The remaining fifteen PEs can write to this PE
storage through shared storage access or continuous
interconnect access and then initiate inter cluster
communication. The main function of the network adapter is
to connect PEG and router. The output data and destination
address in the packets whose data format that can be received
by the routing network, are sent to the routing network. The
router could send remote data packets from the source node to
the target node. It uses the XY deterministic routing algorithm
without deadlock and the packet switching network.

IV. PARALLEL IMPLEMENTATION

A. Parallel implementation based on FS
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Fig.13 Parallel operation of PEG10

The FS depth maps motion estimation algorithm in a video
array processor mapping scheme is shown in Figure 12 and
Figure 13. The parallel processing of MER is done with two
clusters PEG01 and PEG10, where PEG01 processes four 8x8
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and eight 8x4 parallel processing in parallel, and PEG10
processes 16 4x4 parallel processing in parallel. The mapping
process on PEGO1 is as follows.

Step 1: Loading raw data. PEGO1 has a 16-bit external
memory connected to PEOO for storing raw video data. The
CTU is divided into sixteen 16x16 MERs and stored in the
order in which they are executed. The first MER is stored in
addresses 0-255.

Step 2: Loading reference data. PE0OO, PEO1, PE02, and
PEO3 perform four 8%8 block matching operations,
respectively, and build 16x16 search windows centered on
four 8x8 blocks in the reference frame, and then load four
search windows. For each of the four PE data storage units,
the storage address is 256-511. PE10, PE11, PE12, PE13,
PE20, PE21, PE22, and PE23 perform eight 8x4 block
matching operations, respectively, and build a 16x16 search
window centered on these eight 8x4 blocks. The search
windows are loaded into the respective data storage units of
the 8 PEs, and the storage addresses are 256-511.

Step 3: The original MER is divided into four 8x8 PU
blocks and sent to PE00, PEO1, PE02 and PEO3. The MER is
divided into eight 8x4 PU blocks and sent to PE10, PEI1,
PE12, PE13, PE20, PE21, PE22, and PE23.

Step 4: PEOO sends an indication signal to each of the 12
PEs through shared memory (address 254). After PE00-PE23
receive the PEOO indication signal, each PE can start block
matching. Otherwise, it can only wait.

Step 5: After the handshake succeeds, each PE starts to
calculate the SAD value and writes the smaller SAD value to
the address 255 of the corresponding PE data storage.

Step 6: Continue to acquire different reference blocks from
the respective search windows according to the full search
mode, and calculate and compare the SAD value with the
original PU block until all reference blocks within the search
window are acquired.

Step 7: After each PE finds the minimum SAD value and
finds the best matching block, PEOO writes the minimum SAD
value obtained by each PE into the PEOO data storage unit
through the shared storage mechanism, and then uniformly
outputs all the minimum SAD values through the shared
register.

PEG10 completes the motion estimation process of sixteen
4x4 PU blocks. The parallel mapping idea is basically the
same as PEGO1, as shown in Figure 13.

The MER block motion estimation parallel processing is
completed based on the FS mode. Then, the motion
estimation of the remaining fifteen MER blocks is performed
in accordance with the order in which the MER is executed. If
the two MERs can operate in parallel, four clusters are
processed in parallel until the CTU block matching process is
completed. After processing the CTU, the next CTU block
matching operation follows the order in which the CTUs are
executed. If multiple CTUs can be processed in parallel,
multiple clusters are used for parallel processing until motion
estimation for the entire frame is completed.

B . Parallel implementation based on fast search
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The parallel implementation of the depth maps motion
estimation algorithm based on TSS, and DS in the video array
processor is consistent with the mapping method of the full
search algorithm. Through PEGO1, four 8§x8 blocks and eight
8x4 block matching operations are performed, and through
PEG10, sixteen 4x4 block matching operations are completed.
The results of analyzing and comparing the three algorithms
are given in Section V.

V. EXPERIMENTAL RESULTS

A. Parallel Performance Analysis

Table 1 shows the performance comparison of parallel FS-
based depth maps motion estimation algorithms in video array
architecture with other implementations. It can be seen from
Table 1 that the FS algorithm implemented in this paper
occupies a large amount of resources and consumes a lot of
power, but the operating frequency is closer to ASIC. In
addition, the complete depth maps motion estimation process
is implemented in this paper through reconfigurable arrays,
while the dedicated hardware in [18] is limited to the
calculation of SAD values, and the entire block matching
process is not completed. The DP achieved by reconfigurable
arrays is much higher than that of ASIC, and the block
matching process can be accomplished using multiple search
modes, unlike dedicated hardware that is only limited to fixed
mode.

Table 1 Performance parameters of depth maps motion estimation

Frequency/

Technology MHZ Gate count/K Power/mW
[18] (TZS) 45nm 100 62 2.56
[18] (SDSP) 45nm 100 34 1.38
[23] 0.18um 180 160 147
This paper (FS) FPGA (Bee4) 100.261 280 667
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B.  Parallel Discussion

After functional simulation and FPGA testing, the DP of
the FS-based motion estimation algorithm is analyzed and
compared. As shown in Figure 14, the 3D-HEVC depth maps

in the four  test sequences (depth_balloons,
Poznan_Street depth, depth_Newspaper, and
Poznan_Hall2 depth) of the two different resolutions

(1024x768, 1920x1088) are statistically analyzed based on
the results of the FS motion estimation, and compared with
the traditional LPM and the literature [21]. The abscissa in
(a)-(d) represents the time node at which the entire frame of
the image is encoded. The execution time of one frame of
image is divided into 10 time segments. The ordinate
represents DP of the algorithm. (e)-(f) gives the change in
parallelism as the number of processor cores increases.

As can be seen from (a)-(d), the parallelism of the parallel
method designed in this paper gradually increases after the
start of image coding, and then slowly decreases after
reaching the maximum value. Literature [21] adds CTU level
parallelism to LPM, and the DP is greatly improved. The
parallel method designed in this paper will increase MER
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level parallelism on the basis of [21], so the degree of
parallelism is higher than it. In addition, the CTU level of the
DP is related to the image resolution. The higher the
resolution, the higher the degree of parallelism at the CTU
level. Therefore, for the method designed in this paper and

7-10 December 2020, Auckland, New Zealand

[21], the higher the resolution, the larger the DP value. The
DP value of LPM does not change.
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Fig. 15 Comparison of PSNR-Y after three PU sizes parallel mapping

It can be seen from (e) and (f) in Figure 14 that different
parallel modes have maximum DP for different resolution
depth map test sequences. When the number of PEs is less
than the maximum DP, the parallelism of various parallel
modes will increase as the number of PEs increases.

123

Conversely, the DP will not increase. For a test sequence with
a resolution of 1024x768, the DP in this paper does not
increase when the number of processor cores exceeds 450.
For resolution of 1920x1088, the DP in this paper does not
increase when the number of processor cores exceeds 840.
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C. Coding quality analysis

In order to analyze the coding quality of the fast algorithm,
the Y-component of peak signal to noise ratio (PSNR-Y) of
the depth map motion estimation algorithm based on full
search, three-step search and diamond search is compared.
Figure 15 shows the PSNR-Y values of the motion estimation
process when the algorithm is divided into 8x8, 8x4, and 4x4
PU blocks in parallel mapping.

For all five test sequences, the PSNR-Y value of the motion
estimation process based on FS mode is the largest and the
coding quality is the best. As the size of the PU block
becomes smaller, the larger the PSNR-Y value, the higher the
matching accuracy, and the searched matching block are
almost the same as the original block. This also explains the
large area smooth area of the depth map and the small
variation range. For the 3D-HEVC depth map, the motion
estimation process based on the fast search mode such as TSS
is small, and even the matching accuracy of the FS can be
achieved. Therefore, for the depth map, a fast algorithm can
be used to estimate the motion.

D. Analysis of coding speed

After analyzing the encoding quality of the fast algorithm,
the encoding speed of the fast algorithm is also analyzed and
compared. Table 2 calculates the encoding time of the
HTM16.1 and the depth maps motion estimation algorithm
designed in five test sequences. Compared with the software
HTM16.1 implementation, the motion estimation algorithm
based on video array processor has greatly improved the
coding speed. Among them, the speedup ratio of the FS mode
can reach 35, and the speedup ratio of the TSS mode is 160,
and the speedup ratio of DS can reach 233.

Table 2. Parallel implementation results evaluation on HTM 16.1 random

access mode

FS TSS DS
Sequence A PSNR-  Speed- A PSNR- Speed- APSNR- Speed-
Y(dB) up Y(dB) up Y(dB) up
depth_Newspaper 10.80 27 10.11 122,04 1.12 176.02
depth_balloons 5.62 22 472 9944 436 143.42
depth_Poznan_Street 3 28 41 0.75 186.18  0.72 267.22
depth_Poznan Hall2 436 44 -5.59 199.80 -6.06  286.78
depth_GhostTownFly 476 45 -5.62 204.34  -6.68 293.29
Average 2.016 358 0.874 16236 -1308 233346
VI. CONCLUSIONS

For the motion estimation of 3D-HEVC depth maps, the
fast algorithm can not only approach the precision of FS,
but also increase the coding speed greatly. That is to say,
fast algorithm can improve encoding speed and reduce
coding time under the condition of guaranteeing the
encoding quality of depth maps. This paper has a significant
improvement in maximum parallelism based on the new
parallel approach proposed by LPM. From the experimental
results and analysis, it can be verified that the depth map
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has a large area of smooth area, so a fast search can be
used for block matching of the depth maps. This parallel
scheme greatly saves the time required for 3D depth maps
coding, and improves computational efficiency and
resource utilization. The next step in this work will
continue to explore the characteristics of the depth map
fast search algorithm, which can take full advantage of the
characteristics of the reconfigurable array structure in the
mapping process.
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