
An Evaluation of High-Throughput Scalable
Radix-4 FFT Processor Architecture Using

Fixed-Point Arithmetic
Tomotaka Kawabata and Hiroshi Tsutsui

Graduate School of Information Science and Technology, Hokkaido University

Abstract—In this paper, we propose a scalable and high-
throughput pipeline FFT processor architecture and evaluate its
variations. To achieve high-throughput with reasonable operating
frequency, the proposed architecture utilizes radix-4, where four
points are processed every clock cycle. Like IP core generators,
our architecture can be reconfigured by changing the number
of FFT stages to support various numbers of FFT points. Our
architecture is based on fixed-point arithmetic to relieve the
complexity but might be extended to support floating-point
implementation to keep high dynamic ranges. The proposed
architecture achieves four times the throughput of the operating
frequency. For example, 492 M samples/sec of throughput can be
achieved when the operating frequency is 123 MHz, which may be
a reasonable performance for 5G OFDM implementation. In this
case, the gate count of our 4K-point FFT is 443,419, excluding
SRAMs for pipeline buffers.

I. INTRODUCTION

In recent years, the demands for multimedia services in-
cluding video streaming has increased in the communication
field. To communicate such a large amount of information,
communications over wide frequency bands are required. In
wideband wireless digital communications, OFDM (orthogo-
nal frequency division multiplexing) is widely used [1] due
to its high efficiency and robustness to the multipath fading
effects. The OFDM is used in a wide range of applications
such as digital broadcasting and broadband mobile communi-
cations.

The fast Fourier transform (FFT) is one of the essential
digital processing techniques, required for OFDM modula-
tion and demodulation. Furthermore, the number of OFDM
subcarriers is increasing due to the demand for high-speed,
large-capacity communications, which is obvious from the
wireless communication trend towards 5G systems, so there
is a demand for high-throughput FFT processors with a large
number of points. In addition, since the required number of
FFT points varies along with communication standards and
their applications, scalable FFT processor designs are highly
required. Motivated by this, we propose a high-throughput and
scalable FFT processor design using a radix-4 butterfly oper-
ation circuit with stage-by-stage pipeline operation. Like IP
core generators, our architecture can be reconfigured changing
the number of FFT stages to support various numbers of FFT
points. Our architecture is based on fixed-point arithmetic to
relieve the complexity. The proposed architecture achieves four
times the throughput of the operating frequency. For example,

492 M samples/sec of throughput can be achieved when the
operating frequency is 123 MHz, which may be a reasonable
performance for 5G OFDM implementation. In this case, the
gate count of our 4K-point FFT is 443,419, excluding SRAMs
for pipeline buffers.

The rest of this paper is organized as follows. In Sec. II,
we briefly describe a theoretical background with our radix-4
approach. In Sec. III, we present our proposed high-throughput
scalable radix-4 FFT architecture. In Sec. IV, we show logic
synthesis results and evaluate the proposed approach. Finally,
Sec. V concludes this paper.

II. THEORETICAL BACKGROUND

This section describes the theoretical background of FFT
and twiddle factor (TF) processing for hardware implementa-
tions focusing on radix-4 FFT. The discrete Fourier transform
(DFT) of f(x), x = 0, 1, 2, . . . , N − 1 is expressed by

F (u) =
1

N

N−1∑
x=0

f(x)Wux, W = exp

(
−j2π 1

N

)
(1)

where Wux is called twiddle factors (TFs). The input for
DFT, f(x), is a time domain signal, while the output of DFT,
F (u), is the frequency domain representation of f(x). When
the DFT is directly calculated using the above formula, N2

multiplications are required resulting a lot of processing time,
that is, O(N2). When N is a power of 2, FFT can be applied
to reduce the computational cost from O(N2) to O(N logN).
In this paper, we utilize the Cooley-Tukey algorithm [2], which
is the most common FFT algorithm. This algorithm utilizes a
divide-and-conquer approach, where the processing is divided
into stages depending on the number of FFT points. At each
stage, inputs are multiplied with TFs, and so-called butterfly
operations are repeatedly applied.

Here, we describe the butterfly operation. In the case of the
smallest operation unit, that is, radix-2, the butterfly operation
is expressed by, {

x′0 = x0 + x1W
n,

x′1 = x0 − x1W
n,

(2)

where n is an integer, x0 and x1 are inputs, and x′0 and x′1
are outputs. The flow of this operation is shown in Fig. 1. It
is called a butterfly because of the shape of the symmetrical
addition and subtraction. TF Wn rotates the complex value x1

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

114978-988-14768-8-3/20/$31.00 ©2020 APSIPA APSIPA-ASC 2020

＋

✕✕
Fig. 1. Butterfly of radix-2 FFT

with the angle of n/N . When n equals 0, 1, and N/2, Wn

has special values, that is, W 0 =WN = 1, WN/2 = −1. The
butterfly operation utilizes this property.

The FFT repeats the butterfly operation changing the order
of processing data for each stage. When the radix number is
given by a, which has generally a power of 2, the number of
stages is logaN , and butterfly operations are performed N/a
times for each stage. When the FFT algorithm is decomposed
with a higher radix, the number of stages decreases. In
this case, however, the structure of butterfly operations may
become complicated. Therefore, the radix number of 2 or 4 is
generally used [3]. Since we are aiming at high-throughput
FFT processors in this paper, we use radix-4. In the case
of radix-4, assuming that four inputs can be processed in
one cycle, the throughput can be four times of the operating
frequency. In this sense, radix-4 can achieve the throughput
twice that of radix-2, when the operating frequencies are the
same. Therefore, by using radix-4, a high-throughput can be
realized while keeping a low operating frequency, resulting in
a low power consumption. Besides, in the case of the radix-4
butterfly operation, we can divide the operation into (a) the
multiplication part of the input data and the TFs, and (b)
the addition/subtraction part [4]. This approach can reduce the
number of multiplications compared to simple radix-2 imple-
mentations, resulting an efficient hardware implementation.

Here, we describe the radix-4 butterfly operation and its
design. The number of multiplications for an N -point FFT is
N
2 log2N . The multiplication requires a lot of computational

cost. Moreover, since the TFs also varies depending on the data
input order, the implementation becomes complicated and the
throughput may decrease. Therefore, we change the radix-4
butterfly operations.

Generally, the radix-4 butterfly operation is given by,
x′0 = x0 +Wn0x1 +Wn2(x2 +Wn1x3),

x′1 = x0 −Wn0x1 +Wn3(x2 −Wn1x3),

x′2 = x0 +Wn0x1 −Wn2(x2 −Wn1x3),

x′3 = x0 −Wn0x1 −Wn3(x2 +Wn1x3),

(3)

or 
x′0 = x0 +Wn0x1 +Wn2x2 +Wn1+n2x3,

x′1 = x0 −Wn0x1 +Wn3x2 −Wn1+n3x3,

x′2 = x0 +Wn0x1 −Wn2x2 −Wn1+n2x3,

x′3 = x0 −Wn0x1 −Wn3x2 +Wn1+n3x3,

(4)

where n0, n1, n2, and n3 are integers, x0, x1, x2, and x3
are inputs, and x′0, x′1, x′2, and x′3 are outputs. The TF values,

Fig. 2. Separation of TF multipliers and radix-4 butterfly core

Wn0, Wn1, Wn2, and Wn3, depend on the number of times
the butterfly operations are called. Therefore, we separate this
variable part, and we call the remaining fixed part a butterfly
core. The same calculation can be realized by multiplying the
input values with the corresponding TFs before the butterfly
core [5]. Assuming n3 = n2 +N/4, (4) can be written as

x′0 = y0 + y1 + y2 + y3,

x′1 = y0 − y1 − jy2 + jy3,

x′2 = y0 + y1 − y2 − y3,

x′3 = y0 − y1 + jy2 − jy3,

(5)


y0 = x0,

y1 =Wn0x1,

y2 =Wn2x2,

y3 =Wn1+n2x3,

(6)

where WN/4 = −j is used. As shown in Fig. 2, in the case of
(3), four multiplications are required. On the other hand, in the
case of (5) and (6), using three multiplications in (6), the radix-
4 butterfly calculation is realized owing to n3 = n2 + N/4,
and the variable TF multiplication part can be successfully
separated from the butterfly core.

III. HIGH-THROUGHPUT SCALABLE RADIX-4 FFT
PROCESSOR ARCHITECTURE

Based on the discussions described in the previous section,
we designed a high-throughput and scalable Radix-4 FFT
processor. The current design utilizes fixed-point arithmetic
to reduce complexity. We believe that this architecture can be
extended to use floating-point arithmetic when a high dynamic
range is required. The designed FFT processor consists of
Nstages = log4N stages. The number of stages may change
depending on the number of FFT points the implementation
should support. We assume that the designed FFT processor
will be used as a semi-conductor intellectual property (IP)
core, which can generate N -point FFT processor implementa-
tion when N is given. In other words, it is possible to support
any number of FFT points by simply changing the number of
stages and memory capacity.

A similar approach can be found in [6], where radix-2k

multi-path delay commutator (MDC) architectures are pro-
posed. In [6], FIFOs are used between stages for data shuffling
while, in our architecture, SRAMs are used as pipeline buffers.

The designed FFT processor uses the radix-4 butterfly
operation circuit repeatedly in each stage. Figure 3 shows the

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

115

block diagram of one stage. The input and output SRAMs store
all input/output data for the stage, whose number is N . Since
the proposed architecture is based on radix-4, each SRAM
has 4 banks so that 4 point data can be fed to the calculation
part simultaneously. After reading 4 point data from the input
SRAM, the radix-4 butterfly operation is performed, whose
output is stored into the output SRAM, which is regarded
as the input SRAM of the next stage. As mentioned before,
the radix-4 butterfly operation is divided to a twiddle factor
multiplier (multi) and a radix-4 butterfly operation circuit
(butterfly core). Note that the butterfly core does not include
any multiplication. Since the TF values are different for each
calculation, so the appropriate TF values are read from ROMs.
The proposed architecture utilizes FFT-stage based pipeline
operation as shown in Fig. 4, to achieve a high-throughput.
Fig. 4 assumes N = 4096 and Nstages = 6. In this case, the
output SRAM in Fig. 3 cannot be used as the input SRAM for
the next stage simultaneously. Therefore, we utilize a double
buffer configuration shown in Fig. 4. In this case the total
number of SRAMs is NSRAM = 2(Nstages + 1).

A. SRAM Access

In order to operate at the throughput of 4 sample/cycle,
each SRAM has 4 banks. The FFT requires rearrangement of
samples for each stage. The control module controls the data
rearrangement utilizing unpack/pack operations. To realize
this, we pack 4 samples into one word. Therefore, the depth
of each SRAM bank is

N samples

4 banks× 4 samples/word
(words/bank). (7)

The outputs from the butterfly core are 4 samples in one cycle.
These 4 outputs are packed into one word, which will be
stored into one corresponding SRAM bank. The set of each
four output words are stored into the 1st, 2nd, 3rd, and 4th
SRAM banks, respectively. Therefore, in the write/output side,
just one bank from four banks is selected to be written in each
cycle. As for the inputs, four words, which include 16 samples,
are read from four SRAM banks in one cycle. Each sample in
each word is fed into the multi/(butterfly core) module in each
cycle. In other words, four samples each of which is a part of
a different word are fed into the processing butterfly core in
each cycle. Unused 12 samples are not used. By utilizing such
approach, we unpack the word stored in the input SRAM,
and pack four samples as the input to the multi/(butterfly
core) module. Therefore, in the read/input side, four banks
are accessed in one cycle and every cycle.

B. Twiddle factor multiplier

Fig. 5 shows the twiddle factor multiplier (multi) module
where the inputs are multiplied with TFs. The TFs are stored
in ROMs whose depth depends on the number of FFT points.
Considering the symmetric property of trigonometric func-
tions, we can reduce the number of TF values to be stored
in the ROMs to N/4 TF values. Since it is necessary to read
the corresponding TF values, we use counters (cnt in the
figure) to control the addresses for the ROMs. In our design,

B
u
tte

rfly
 C

o
re

ROM

S
R

A
M

 re
a
d
 co

n
tro

l

S
R

A
M

 w
rite

 co
n
tro

l

Control
Top

Bank1

Bank0

Bank2

Bank3
M

u
lti

Bank1

Bank0

Bank2

Bank3

ROM

ROM

SRAM
for input

SRAM
for output

4

4

4

4

1

1

1

1

1

1

1

1

4

4

4

4

: n samples
n

Fig. 3. Block diagram of one stage

S
R
A
M
1

S
R
A
M
2

S
R
A
M
3

S
R
A
M
4

S
R
A
M
5

S
R
A
M
6

S
R
A
M
7

To
p

To
p

To
p

To
p

To
p

To
p

Stage1 Stage2 Stage3 Stage4 Stage5 Stage6

Fig. 4. Pipeline structure using a double buffer scheme (N = 4096, 6 stages)

ROM

rounding
 off

Multi

ROM

ROM

rounding
 off

rounding
 off

cnt1

cnt2

cnt3

in1

in2

in3

tf1

tf2

tf3

multi1

multi2

multi3

Fig. 5. The twiddle factor multiplier (multi) module where the inputs are
multiplied with TFs. The bit widths are parameterized as bw bits for samples
and bw1 bits for TF values.

the bit widths are parameterized as bw bits for samples and bw1

bits for TF values. In the current design, the resulted values
of multiplication are rounded again to the same bit width to
the sample bit width bw as shown in Fig. 5.

IV. CIRCUIT AREA EVALUATION

Using a 0.13µm CMOS cell library, we performed a logic
synthesis with an operating frequency of 123 MHz. As for the
bit width, we use a configuration where the number of bits
for both integer and fractional parts is 12 bits, resulting that
one complex value is represented by 48 bits. The ROMs were
implemented as combinational circuits. The number of TFs
stored in one ROM is 1/4 of the number of FFT points N .
The total number of butterfly cores is Nstages, the total number
of ROMs is 3×Nstages, and the total bit number of SRAMs

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

116

TABLE I
TOTAL NUMBER OF GATES OF EACH MODULE

FFT points (N) 64 256 1,024 4,096
The number of stages (Nstages) 3 4 5 6

Top 217,460 293,036 370,031 443,419
Control 7,792 10,779 13,862 17,024
Multi 186,520 245,590 309,535 369,422
Core 2,792×3 2,792×4 2,792×5 2,792×6

ROMs 124×3×3 399×3×4 1,222×3×5 4,045×3×6
SRAMs (number of total bits) 48×64×8 48×256×10 48×1,024×12 48×4,096×14

24,576 122,880 589,824 2,752,512
The gate counts are NAND gate equivalents. The gate counts show the total number of gates for each module
including all stages. The top module includes all modules.

is 48×N ×NSRAM. Table I shows the logic synthesis result
when the FFT points are 64, 256, 1,024, and 4,096. Note that
SRAMs are not included as gate counts. The gate counts in the
tables show the total number of gates for each module, includ-
ing all stages. Note that the top module includes all modules.
Since the butterfly core has a simple structure by separating
the TF multiplier, the size of butterfly core is relatively small,
that is, 2,792 gates/stage. The control modules which controls
SRAM access are not so large. The TF multiplier module
occupies a large percentage of the whole area because the
multiplications of the inputs and the TFs is performed. Note
that the size of this TF multiplier modules can be controlled
by changing the bit widths bw and bw1. The throughput can
be estimated as 4 sample/cycle×123 MHz = 492 M sample/sec
regardless of the number of FFT points, which is a significantly
high-throughput. Considering the FFT implementation for 5G
OFDM which requires 4,096-point FFT, we believe that this
throughput is reasonable.

V. CONCLUSION

We designed a high-throughput and scalable FFT proces-
sor and evaluated its hardware scale. By synthesizing using
a CMOS cell library, we demonstrated the proposed FFT
processors with different numbers of FFT points. Owing to
our scalable design, the circuit scale increases in proportion
to the number of FFT points, that is, the number of stages.
The current implementations show that the gate count of
our 4K-point FFT is 443,419 excluding SRAMs for pipeline
buffers. Most parts are by the TF multiplier, whose size
can be controlled by changing the bit widths to represent
samples. Further optimizations such as to realize the FFT
processor design optimized for a given target SNR constraint,
and floating-point designs to support a given high dynamic
range remain as future works.

In [6], FIFOs are used between stages for data shuffling
while, in our architecture, SRAMs are used as pipeline buffers.
The approach in [6] is scalable in terms of both throughput and
number of stages. Also, the architectures in [6] achieve lower
latency compared to our architecture. Further optimizations
referring MDC approaches to archive a low latency and
efficient implementation also remain as future works.

ACKNOWLEDGMENTS

The authors would like to thank the GI-CoRE GSB,
Hokkaido University for fruitful discussions. This work is
supported in parts by the Ministry of Internal Affairs and
Communications for SCOPE Program (185001003). This
work is also supported through the activities of VDEC, the
University of Tokyo, in collaboration with Synopsys, Inc.,
Cadence Design Systems, Inc., and Mentor Graphics, Inc.

REFERENCES

[1] B. Kang and J. Kim, “Low complexity multi-point 4-channel FFT
processor for IEEE 802.11n MIMO-OFDM WLAN system,” in Proc.
International Conference on Green and Ubiquitous Technology, 2012,
pp. 94–97.

[2] J. W. Cooley and J. W. Tukey, “An algorithm for the machine
calculation of complex fourier series,” Mathematics of Computation,
vol. 19, no. 90, pp. 297–301, 1965. [Online]. Available: http:
//www.jstor.org/stable/2003354

[3] Z. A. Abbas, N. B. Sulaiman, N. A. M. Yunus, W. Z. Wan Hasan,
and M. K. Ahmed, “An FPGA implementation and performance analysis
between radix-2 and radix-4 of 4096 point FFT,” in Proc. International
Conference on Smart Instrumentation, Measurement and Application
(ICSIMA), 2018, pp. 1–4.

[4] J. Takala and K. Punkka, “Butterfly unit supporting radix-4 and radix-2
FFT,” in Proc. International TICSP Workshop on Spectral Methods and
Multirate Signal Processing (SMMSP), vol. 30, 2005, pp. 47–54.

[5] R. Neuenfeld, M. Fonseca, and E. Costa, “Design of optimized radix-2
and radix-4 butterflies from FFT with decimation in time,” in Proc. Latin
American Symposium on Circuits Systems (LASCAS), 2016, pp. 171–174.

[6] M. Garrido, J. Grajal, M. A. Sanchez, and O. Gustafsson, “Pipelined
radix-2k feedforward FFT architectures,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 21, no. 1, pp. 23–32, 2013.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

117

