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Abstract— The Inception architecture proposed to GoogLeNet has 

the characteristics of few parameters, strong expression ability, 

and low degree of overfitting, which makes it possible for 

deployment of convolutional neural network (CNN) in mobile or 

embedded terminals with limited resources. In order to support 

the parallelling reconfigurable process of 28 × 28 and 32 × 32 

image recognition with 1 × 1, 3 × 3, and 5 × 5 convolution kernels 

on a 4 × 4 processing elements (PE) array, this paper converts the 

input image into a dimensional arrays, reducing the frequency of 

hardware accessed during the convolution calculating. By 

analyzing the data dependency among convolution and pooling 

operations in the network, an overlapping window data reuse 

scheme is proposed, which reduces the number of pixels loaded by 

external memory by 30%. On the array processor (DPR-CODEC) 

platform developed by the project team, the proposed method was 

verified with Minist and Cifar-10 functional testing data sets. The 

experimental results show that, at the operating frequency of 

123MHz, compared with the scheme without preprocessing, the 

preprocessing hardware access overhead is reduced to 45%, the 

data reuse rate of convolution calculation reaches 66.7%, and the 

operating power consumption is 6.395 W, the power per watt is 

0.176, and the performance is significantly improved compared to 

the FPGA version. 

Keywords— Convolutional neural network,Inception 

module,Parallelization,Reconfigure 

Ⅰ INTRODUCTION 

With the widespread application of CNN in the field of 

artificial intelligence, deep convolutional neural networks 

(Deep Convolutional Neural Network, DCNN) have become 

the development trend with the deeper layers and higher 

accuracy [1]. However, with the deepening of the network layer, 

a large amount of intermediate data is generated during the 

training process, the probability of overfitting will also increase, 

and the calculation complexity will increase [2], making the 

CPU time cost and GPU power consumption cost become The 

bottleneck of its application, not to mention deployment on 

embedded devices with limited resources. The existing DCNN-

based smart applications are all implemented in cloud 

computing. On the one hand, this design will greatly increase 

the load of data communication, on the other hand, it cannot 

provide effective protection for the user's data privacy. In recent 

years, academia has been trying to reduce the complexity of its 

network while ensuring the accuracy of DCNN calculations. 

The random sparse connections used in traditional methods to 

reduce the complexity of the network lead to a significant 

reduction in the calculation accuracy of CNN when the 

computer hardware and software are implemented. For this 

reason, Christian Szegedy proposed GoogLeNet [3], This 

network adds a large number of 1 × 1 convolution calculations 

before performing 3 × 3 and 5 × 5 convolution operations to 

reduce the dimension of the network and reduce the number of 

parameters to 6.8M and instead of using the average pool of 

fully connected network layer will increase the accuracy of 

0.6%, bringing additional capabilities, but also makes it 

possible to realize the neural network on a hardware platform 

of limited resources. 

Field Programmable Gate Array (FPGA) has a regular 

parallel structure and can be flexibly configured, which is very 

conducive to the research and development of CNN hardware 

acceleration. Due to the limited hardware resources of FPGA, 

it is usually difficult to map the entire CNN onto a single chip, 

so most FPGA-based implementations use a layer-by-layer 

mapping scheme based on serial execution between layers [1, 

4-5], and by sharing the same processor cluster (Process 

Element Group, PEG) to reduce area overhead. And such a 

design requires an on-chip controller to switch between layers, 

and adjust the iteration time and the data address. Generally, 

the calculation method of the shared processor cluster cannot 

be reconfigured at runtime, otherwise the design difficulty and 
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hardware overhead will be greatly increased [1]. To solve this 

problem, [6] proposed a FPGA available resources into a 

plurality of processors a method, each processor for different 

size convolutional layer CNN customized, thereby improving 

resource utilization. But for the Inception architecture, this 

design lacks specific optimizations, such as data reuse between 

branches and layers. This method often requires more 

bandwidth, and because of the on-chip bandwidth, it cannot 

effectively improve performance. [7] proposed a hierarchical 

processing, but this approach relies on the server requires one 

hand, on the other hand require more suitable communication 

mechanisms and protocols, large development costs and causes 

a problem of heterogeneous data. Reference [8] merges the 

processing of multiple CNN layers and allows intermediate 

data to be cached between adjacent layers, thereby reducing 

off-chip data transmission. However, on the one hand, this 

mechanism may severely limit the performance of the chip and 

increase the burden on the chip buffer, on the other hand, it 

lacks the optimal use of computing resources. 

Because the data locality of different convolution kernels in 

the Inception architecture is very different, the hierarchical 

mapping usually leads to insufficient utilization of the DSP 

(Digital Signal Process) and memory access bandwidth 

problems in the FPGA. This paper uses the dynamic 

reconfigurable array processor (DPR-CODEC) provided by the 

project team to study the parallel model of the Inception 

architecture, which can effectively combine the flexibility of 

general-purpose processors and the efficiency of dedicated 

hardware. By analyzing the potential parallelism in the network 

and mining the data dependencies between operations such as 

convolution and pooling, a data reuse scheme with overlapping 

windows is proposed, thereby reducing the overhead of 

hardware resources. Based on the 4 × 4 PE array, convolution 

kernels with sizes of 1 × 1, 3 × 3, and 5 × 5 are realized 

respectively, and reconstruction reconstruction of images with 

sizes of 28 × 28 and 32 × 32 is supported. The results show that, 

on the Virtex-6 field programmable gate array connected to the 

BEE4 platform, the proposed reconfigurable scheme has 

greatly improved the resource utilization rate and algorithm 

operation efficiency. 

Ⅱ CHARACTERISTIC ANALYSIS OF INCEPTION MODULE 

ALGORITHM 

2.1 INCEPTION MODULE 

In multiple versions of the Inception Module, 

Incepetion V1 is the main module that makes up GoogLeNet, 

as shown in Figure 1. This structure draws on the ideas of 

Network In Network [9], uses Inception Module as a 

standardized basic network, and builds a large-scale network 

after repeated stacking. Inception V1 uses fewer parameters 

to achieve the effect of a deeper number and stronger 

expression in the traditional model. By using the global 

average pooling layer to replace the fully connected layer, 

the amount of intermediate calculation parameters is greatly 

reduced (in the traditional CNN network, the amount of fully 

connected layer parameters accounts for almost 90%), 

making model training faster and reducing overfitting. In 

addition, the Inception Module designed in Inception V1 

improves the efficiency of parameter utilization. On the one 

hand, 1 × 1 convolution is used to achieve dimensionality 

reduction. On the other hand, convolution and aggregation 

can be performed simultaneously on multiple sizes. By 

constructing a dense block structure to approximate the 

optimal sparse structure, the purpose of improving 

performance without significantly increasing the amount of 

calculation is achieved. 

1×1 CONV

5×5 CONV

1×1 CONV 3×3 MAX POOL1×1 CONV

3×3 CONV 1×1 CONV

C=256

OF maps

C=192

C=128
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C=32

C=32

C=96

IF maps

 
Fig 1   Inception Module 

In the convolution layer, the convolution operation 

highly abstracts the input image to extract image features, 

that is, feature maps. The low-level feature map can obtain 

the detailed information of the input image (such as edges, 

colors, etc.), and the high-level feature map gradually 

obtains the overall characteristics of the input image (such 

as shape, contour, etc.). The sub-layered features used in 

convolution make it possible to achieve good recognition 

results. The convolutional layer receives n feature maps as 

input and generates m output feature maps. Each input image 

is convolved by multiple k × k shift windows, then each 

convolution result is added to the offset value, and the pixel 

value is limited to a reasonable range using a suitable 

nonlinear activation function. Commonly used activation 

functions include tanh, sigmoid and ReLU. Each element of 

the output image is calculated by Equation 1. 
𝑥𝑗

𝑙 = 𝑓(∑ 𝑥𝑖
𝑙−1 ∗ 𝑘𝑖𝑗

𝑙 + 𝑏𝑗
𝑙

𝑖∈𝑀𝑗
)      (1) 

Where f(x) is the activation function, 𝑥𝑗
𝑙  is the jth 

feature map of the lth layer, 𝑀𝑗 represents all input feature 

maps, 𝑘𝑖𝑗
𝑙  and𝑏𝑗

𝑙 represent the convolution kernel and offset 

terms in the lth layer . 

The pooling layer controls overfitting through the 

second extraction of features, so that the model has higher 
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fault tolerance, but does not change the number of feature 

maps. The pooling layer in CNN is generally implemented 

in the same convolution manner, that is, the filter slides on 

the input feature map, and each element of the output image 

is calculated by Equation 2. There are also different types of 

pooling operations, such as Mean-pooling and Max-pooling. 
𝑥𝑗

𝑙 = 𝑓(𝛽𝑗
𝑙𝑑𝑜𝑤𝑛(𝑥𝑗

𝑙−1) + 𝑏𝑗
𝑙)       (2) 

Where f(x) is the activation function, down means pooling 

operation, 𝑥𝑗
𝑙−1 is the jth feature map of layer l-1, and 𝛽𝑗

𝑙、𝑏𝑗
𝑙 

represent the bias item. By calculating the pixels of the n × n 

local area, a value of the output map is obtained, which is used 

to reduce the amount of data that needs to be stored in the 

memory, and only forward the features related to the 

classification. 

In the fully connected layer, all nodes in the input layer 

and the output layer are completely connected to each other. 

The weight matrix reflects the strength of each node. 

Mathematically, the output vector in the fully connected layer 

is shown in Equations 3 and 4. 
𝑢𝑙 = 𝑤𝑙𝑥𝑙−1 + 𝑏𝑙      (3) 

𝑥𝑙 = 𝑓(𝑢𝑙)       (4) 

Wherein, 𝑤𝑙  is the weight matrix of l th layer, 𝑢𝑙 

represents the fully connected operation of l th layer, 𝑓(𝑢𝑙) 

represents the activation of the fully connected operation of 

layer l, 𝑏𝑙 represents the layer l bias item. 

2.2 PARALLELISM OF CONVOLUTION CALCULATION 

The basic calculation mode of the convolutional layer is 

the image-kernel convolution. According to Equation 1, the 

operation process of the convolution layer is shown in 

Algorithm 1, which contains four cycles. For each layer of the 

four-layer loop, it can be expanded in parallel according to its 

data correlation to improve the parallelism of its execution. 
algorithm 1 Convolution algorithm 

Input：Initial data：𝑥 𝑙−1；Convolution kernel：𝑘𝑖𝑗
𝑙 ；Weight matrix：𝑤𝑙；

Bias item: 𝑏𝑙；Activation function: 𝑓(𝑢𝑙)；Total number of input feature 

maps：n；Total number of output feature maps：m；counter：i。 

Output：After the convolution calculation of network layer l：𝑥 𝑙 

1：Perform the convolution calculation according to the procedure in section 

2.1 

2：while i<=n do 

2：LOOP1：Traverse m output feature maps； 

3： LOOP2：Traverse n input feature maps； 

4：  LOOP3：The convolution window slides in the input feature map of 

XI * YI size； 

5：    LOOP4：k × k multiply-accumulate operations in a convolution 

window； 

7：end while 

10: return 𝑥 𝑙 

During the convolution operation of the upper layer 

feature map and the convolution kernel of size k × k connected 

to the neuron, since multiple convolution kernels without data 

correlation can perform convolution operations on the same 

feature map, Multiple convolutional output channels are 

generated, so the parallel calculation method of the array in the 

output channels can perform parallel processing on the k × k 

multiply-accumulate operations. Figure 2 (a) shows the 

expansion of the innermost loop LOOP4 to achieve parallelism 

within the convolution window. In the figure, Knm-Wxy is 

expressed as the weight value of the xth row and y column in 

the n × m th convolution kernel. 

 

(a) Internal parallelization of the convolution window 

 

(b) Input feature map internal parallel 

 

(c) Parallel input feature map 

 

(d) Parallel output feature map 

Fig2 Computational parallel diagram 

On the same input feature map, there is no data correlation 

between different neurons. According to this characteristic, it 

can be known that the convolution operation of the convolution 

window at each position can be performed in parallel in the 

array. Figure 2 (b) shows the expansion of LOOP3 to achieve 

the internal parallelization of the input feature map convolution 

window. In the figure, Knm-Wxy is expressed as the weight 

value of the xth row and yth column in the n × m th convolution 

kernel. 

For different input feature maps, there are N multiply-add 

convolution windows corresponding to each output neuron (N 

is the number of input feature maps), that is, each output value 

needs to be N × k × k Multiply-add operations. For different 
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feature maps, the same convolution window can use the 

distribution mode in the array to perform parallel operations. 
Figure 2 (c) shows the expansion of LOOP2 to achieve parallel 

processing between input feature maps. 

When processing multiple input feature maps, the same 

convolution kernel and multiple feature maps are used for 

convolution calculation, and the convolution kernel is shared 

on multiple feature maps. Therefore, for different output feature 

maps, the neurons at the same position connected to the 

convolution kernel of the previous layer are the same. To 

calculate the same position on the M output feature maps, N × 

M × k × k multiplication and addition operating. The same 

effect can be achieved by using multiple parallel techniques in 

the array to perform convolution operations on different input 

feature maps at the same scale. Figure 2 (d) shows the 

expansion of LOOP1 to achieve parallelism between output 

feature maps. 

These four types of parallel computing can further utilize 

the reconstruction mechanism to improve resource utilization. 
According to the characteristics of convolutional parallel 

computing, because there is no data correlation between each 

feature map, during the calculation process, the convolution 

kernels of 3 × 3 and 5 × 5 sizes are initialized on different 

reconfigurable arrays. In the configuration storage, by calling 

different configurations in the same processor cluster (Process 

Element Group, PEG), the algorithm switches for convolution 

kernels of different sizes. 

2.3 DATA REUSE OF CONVOLUTION KERNEL 

In the calculation process of the convolution kernel, since 

the convolution kernel moves in the vertical or horizontal order, 

a region where the height of the convolution kernel and the 

pixel of the input image coincide will be called a pixel window. 
Taking the 3 × 3 convolution kernel as an example, during the 

horizontal movement of the pixel window with a step size of S 

= 1, the overlapping area marked by the black frame has a total 

of two columns. There is a 2/3 overlap area in the pixel window 

corresponding to the sub-convolution operation, which means 

that the data multiplexing rate in each convolution calculation 

process exceeds 65%, as shown in Figure 3(a). When the 

convolution kernel is 5 × 5 operation and the step size is S = 1, 

there are four columns in the overlap area, each column 

contains 5 pixels, which will cause 4/5 overlap in the pixel 

window corresponding to the two convolution operations The 

area, that is, the data multiplexing rate of two convolution 

operations is as high as 80%, as shown in Figure 3 (b). Due to 

the limitation of on-chip storage resources, the data of these 

overlapping parts needs to be repeatedly loaded from external 

storage, which will occupy a large amount of storage bandwidth, 

bring great access delay, and affect the calculation efficiency. 
Therefore, this paper proposes a convolution algorithm that can 

fully reuse the data, so that the convolution operation can be 

efficiently calculated while reducing the number of accesses to 

external storage. For details, see section 3.2. 

复用窗口

第一次卷积
窗口

第二次卷积
窗口

 
（a）3x3 multiplexing window（b）5x5 multiplexing window 

Fig3   Schematic diagram of data multiplexing 

Ⅲ PARALLEL DESIGN OF INCEPTION MODULE 

3.1 ARRAY PROCESSOR STRUCTURE 

The video array processor used in this paper is a 

reconfigurable array processor independently developed by the 

project team. The processor logically divides the array into 

processing element groups (Process Elements Group, PEG), 

and each PEG is composed of 4 × 4 PE arrays. The data 

interaction between adjacent PEs is accomplished through a 

shared register using the adjacent interconnection mechanism, 

and the data interaction between non-adjacent PEs is achieved 

through access to 4 × 4 distributed random access memories 

that share a two-level switching structure. Figure 4 shows a 

schematic diagram of the structure of the PE array. The straight 

line with arrows indicates the data path for adjacent 

interconnection communication. Data exchange is performed 

through the shared registers between PEs. The reconfigurable 

function of the array and PE is realized by loading fixed 

instructions stored in the instruction RAM in advance or real-

time instructions passed by the global controller and stored in 

the RAM. At runtime, the corresponding calculation method 

can be flexibly invoked according to the calculation needs of 

different layers so that the PE array can run in the data flow 

mode, so that the circuit has excellent performance such as 

flexibility, reusable hardware resources, parallel computing, 

and low power consumption. 

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Configurati
on context

Controller

 

 
Fig4   Reconfigurable PE array structure diagram 

3.2 PARALLEL RECONFIGURATION DESIGN 
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3.2.1 PARALLEL RECONSTRUCTION DESIGN OF CONVOLUTION 

OPERATION 

During the convolution operation, since the input image is 

a two-dimensional matrix, it is difficult to directly multiplex the 

data on the hardware. According to the analysis in Section 2.3, 

without data preprocessing, each convolution needs to access 

off-chip storage, which will cause a large access delay and 

affect the calculation efficiency. Therefore, it is necessary to 

preprocess the input image and the convolution kernel. First, 

the original image is divided into blocks according to the size 

of the convolution kernel and stored in a one-dimensional array 

by column, and the convolution kernel is also stored in a one-

dimensional array by column. Taking a 3 × 3 convolution 

kernel and an input data size of 4 × 4 as an example, after 

preprocessing, the process of convolving the convolution 

kernel on the original input image is simplified as the process 

of multiplying and adding the corresponding positions of the 

two columns. At the same time, when the next convolution 

process only needs to slide the convolution kernel vector down 

by k elements, it avoids multiple accesses to the same input, 

thereby reducing the hardware access overhead.  
Figure 5 (a) shows a parallelization scheme using a 4x4 

PEG convolution operation. The calculation process in the 

algorithm is complicated, and the process of 3 × 3 convolution 

is used as an example for description. First, the preprocessed 

data is stored in DIM. PE00 loads the data from DIM and sends 

it out. Each computing PE performs parallel convolution 

calculation after receiving the data, and finally saves the result. 

The specific algorithm process is as follows. 
algorithm 2 Convolutional parallel reconstruction algorithm 

Input：Preprocessed data：𝑐𝑜𝑛𝑣_𝑥𝑙−1；Convolution kernel：𝑘  

Output：Convolution calculation result：𝑐𝑜𝑛𝑣_𝑥 𝑙 

1：PE00 loads preprocessed data from DIM: Save the original image block. 

2：while i<=n do 

3：  LOOP: 

4：  Data distribution：After PE00 loads the data, it sends the data to PE01, 

PE10, PE11, and PE12 in blocks. After sending the data, PE00 sends handshake 

signals to each PE. 

5：  Multiplication / addition calculation process：When PE00 receives the 

handshake signal, each PE starts calculation at the same time. Multiply the two 

data through the left shift and add operation to calculate the final result. 

6：   Results saving process：When all the convolution operations are 

completed, PE02, PE20, PE21, PE22 transfer the calculation results to PE33, 

and finally PE33 writes all the results to the DOM. 

7：Convolution calculation and reconstruction switching through transfer 

instructions。 

8：  end LOOP 

9：end while 

10: return Store convolution calculation results in DOM 

When performing reconstruction calculations, flag bits are 

set for different convolution kernel sizes before performing 

convolution calculations. Use the default flag to enable PEG to 

perform 3 × 3 convolution calculation. When the 3 × 3 

convolution calculation is completed, switch to 5 × 5 

convolution calculation by calling the CALL command. The 

parallel calculation process at this time is the same as the 3 × 3 

parallel process the same. After all convolution calculations are 

completed, the results are saved in the DOM, and the pooling 

operation takes out the intermediate results of the convolution 

calculations from the DOM through PE33 for calculation. 

3.2.2 PARALLEL DESIGN OF POOLING OPERATION 

After the convolution operation, the main function of the 

pooling operation is to perform dimensionality reduction 

calculation on the feature map to reduce the parameters and 

calculation amount in the network, while retaining important 

information in the feature map to prevent information loss in 

subsequent calculations. In the Inception-V1 module, the size 

of the pooling operation is 3 × 3, and the stride is 2. In the 

process of mapping, when the previous layer of convolution 

operation is completed, the controller controls the computing 

unit PE33 to load the data in the DOM and sends the pooling 

operation instruction to each computing unit through the 

instruction issuing module to complete the pooling calculation , 

As shown in Figure 5 (b). In order to maintain the accuracy of 

the feature map as much as possible, we use a 2 × 2 pooling 

kernel to perform a pooling operation with a step size of 2 on 

the feature map. This result can not only effectively maintain 

the accuracy of the feature map, but also reduce the data size, 

making the structure more conducive to hardware 

implementation. First, the convolution result will be taken from 

the DOM and delivered. After the delivery is completed, each 

PE starts to perform the maximum pooling calculation. The 

result is saved in the DOM through PE33 so that the next layer 

of convolution calculation uses the reconstruction scheme. The 

specific algorithm process is as follows: 
algorithm 3 Pooling parallel algorithm 

Input：Preprocessed data：𝑐𝑜𝑛𝑣_𝑥𝑙；pooling kernel：𝑘 = 2 × 2；Total number 

of blocks：𝑛 

Output：Pooling calculation results：𝑝𝑜𝑜𝑙_𝑥 𝑙 

1：PE33 loads the convolution result data from the DOM: and blocks the result. 

2：while i<=n do 

3：  LOOP: 

4：  Data distribution：After PE33 loads the data, it sends the data to PE11, PE12, 

PE13, and PE31 in blocks. After sending the data, PE33 sends handshake signals 

to each PE. 

5：  Pooling calculation process：PE13 loads addresses 0, 1, 27, and 28 to achieve 

the maximum pooling calculation of data through a comparison operation, and 

stores the final result in address 13 of PE13. PE31, PE11, PE12 operate in the same 

way. 

6：  Results saving process：When all pooling operations are completed, the 

calculation results of PE21, PE22, PE23, and PE32 are re-introduced into PE33, 

and finally PE33 writes all results into the DOM. 

8：  end LOOP 

9：end while 

10: return Store pooled calculation results in DOM 
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(a) Convolutional parallel operation structure 
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(b) Max Pooling parallel computing structure 

Fig5   Parallel operation structure diagram 

IV SIMULATION EXPERIMENT AND RESULT ANALYSIS 

This paper verifies the feasibility of the parallel scheme on 

the array processor. First convert the test image into a binary 

sequence that can be recognized by the array, then store it in the 

off-chip storage DIM, secondly initialize the instructions of the 

parallel scheme to the corresponding PE instruction storage, 

and finally perform simulation verification on QuestaSim, 

FPGA use Vertex-6 series XC6VLX760 devices, the operating 

frequency can reach 123MHz. Based on the 4 × 4 PEG, the 

experiment realized the parallel mapping of 5 × 5 and 3 × 3 

convolution operations of the Inception module in the 

GoogLenet network. The function evaluation data set is 

selected from Minist (28 × 28 pixel grayscale handwritten 

digital picture) and Cifar-10 (32 × 32 color image classic data 

set). The data in the Minist dataset has been pre-processed and 

turned into a grayscale image with a size of 29 × 29, and Cifar-

10 will be processed according to the original data. 

 
（a）PC-side pixel conversion and verification results 

 
（b） FPGA-side verification results 

Fig6 System verification results 

Figure 6 (a) is the result of pixel conversion of the test 

image on the PC side using Matlab software. It can be seen that 

the accuracy of the image recognition of the Minist data set by 

the network can reach 99%.Figure 6 (b) is the result of FPGA 

implementation in this method. It can be seen that the 

classification results are correct. 

A 5 × 5 convolution operation takes 425 clock cycles, 

Inception V1 generates 5 × 5 × 32 convolution results, which 

requires a total of 340,000 clock cycles; a 3 × 3 convolution is 

248 clock cycles, and Inception V1 generates. The 3 × 3 × 128 

convolution results require a total of 285696 clock cycles. Table 

1 shows the calculation time of this paper and literature [10] 

and [11]. This article and literature [10, 11] are based on FPGA. 

Inception V1 of this paper inputs 3 feature maps, 3 × 3 

convolution inputs 96 feature maps, and outputs 128 feature 

maps; 5 × 5 convolution inputs 16 Feature map, output 32 

feature maps. In literature [10], 7 feature maps are input on the 

first layer, and 64 feature maps are output, and 8 feature maps 

are input on the second layer, and 19 feature maps are output. 
Table1 Convolutional layer calculation time 

Convolutional 

layer 

[10] 

(cycles) 

[11] 

(cycles) 

This work 

(cycles) 

sum 2006000 62668800 47449088 

As shown in Table 1, the processing speed of [10] is much 

faster than the method in this paper, but the amount of data 

processed is only 60% of this paper. Reference [11] is the same 

as the network model in this paper, but the processing speed of 

this paper is 0.76 times that of it. 

Table 2 shows the results of the identification of the two 

data sets using the design of this paper. It can be seen that the 

design of this article has reached the functional requirements of 

the Inception network, and the recognition rate has reached 

about 99%. 
Table 2 Data Set 

DataSet Size 

Number of 

training 

sets 

Number of 

test sets 
Accuracy 

Minist 28×28 60000 10000 99.32% 

Cifar-10 32×32 50000 10000 98.94% 
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Table3 FPGA logic resource utilization statistics table 

Logic device 

Resource utilization 

[11] [12] This work 

Slice Registers 
144k

（16.65%） 
- 11.7k（1%） 

Slice LUTs 
199k

（45.98%） 
178k（41%） 33.6k（9%） 

LUT-FF pairs - 181k（21%） 106k（30%） 

Table 3 shows the FPGA chip resource usage in this article. 

It can be seen that compared with literature [11, 12], the method 

proposed in this paper uses fewer resources. The 

comprehensive results show that the operating power 

consumption of this method is only 6.395W. Because different 

methods use different parallel strategies and FPGA platforms, 

considering the differences in hardware and portability, 

literature [13, 14] pointed out that the use of energy efficiency 

ratio (Efficiency) and other indicators can provide an effective 

comparison, which is derived from Equation 5. 

Performance per Watt =
Operations

Time×Power
      (5) 

Wherein, Performance per Watt refers to the power per watt 

performance, Operations is the number of operations, Time and 

Power represent time and power consumption, respectively. 

Table 4 compares the energy efficiency ratio and the 

number of operations per second. [1] is the result of optimizing 

CNN code through CPU. It can be seen that compared with the 

CPU implementation of [1], the energy efficiency ratio is 4.75 

times. [13, 14] are based on FPGA implementation. Compared 

with the design in this paper, literature [13] has higher 

operations per second and power consumption, but the energy 

efficiency ratio is 2.2 times that of this paper. The number of 

operations per second is 1.5 times that of [14], and the energy 

efficiency ratio is 1.3 times.. 
Table 4 Performance comparison table 

device 
OP/s 

[GOP/s] 

Power 

[W] 

Perf.per Watt 

[GOP/s/W] 

[1]（CPU） 3.54 95 0.037 

[13]（FPGA） 14.11 17.67 0.80 

[14]（FPGA） 0.75 5.54 0.135 

This Work(FPGA) 1.13 6.395 0.176 

V SUMMARY 

In the process of convolution operation, this paper proposes a 

reconfigurable array implementation scheme that takes into 

account the high parallelism of computing and the overhead of 

on-chip resources for the memory access and power 

consumption problems faced by convolutional neural networks 

in hardware acceleration. The calculation of different 

convolution kernel sizes and pooling operations can be 

completed on the same array through reconstruction, which 

improves the utilization of on-chip resources. By converting the 

input image into a one-dimensional array for storage, the 

frequency of external storage access in the convolution 

calculation process is reduced, and a data organization scheme 

with overlapping windows is proposed, which reduces the 

number of pixels loaded in external storage by 30%. . The 

program was tested in the Minist and Cifar-10 test sets, and the 

results showed that under the operating frequency of 123MHz, 

the operating power of the FPGA was 6.395W, and the 

performance was 4.75 times that of the CPU version; compared 

to other FPGA platform implementations, the proposed 

Reconfigurable implementation has obvious advantages. This 

scheme can also be used to implement neural network 

calculations of similar computing architectures. 
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