
A Parallelization method of Inception architecture

based on array processor
Xiaoyan Xie*, Zhuolin Du*, Chuanzhan Hu*, Kun Yang*, Anqi Wang*

*Xi'an University of Posts and Telecommunications, Xi’an, China

E-mail: dzl_w_emails@126.com Tel: +86-29-15829665742

Abstract— The Inception architecture proposed to GoogLeNet has

the characteristics of few parameters, strong expression ability,

and low degree of overfitting, which makes it possible for

deployment of convolutional neural network (CNN) in mobile or

embedded terminals with limited resources. In order to support

the parallelling reconfigurable process of 28 × 28 and 32 × 32

image recognition with 1 × 1, 3 × 3, and 5 × 5 convolution kernels

on a 4 × 4 processing elements (PE) array, this paper converts the

input image into a dimensional arrays, reducing the frequency of

hardware accessed during the convolution calculating. By

analyzing the data dependency among convolution and pooling

operations in the network, an overlapping window data reuse

scheme is proposed, which reduces the number of pixels loaded by

external memory by 30%. On the array processor (DPR-CODEC)

platform developed by the project team, the proposed method was

verified with Minist and Cifar-10 functional testing data sets. The

experimental results show that, at the operating frequency of

123MHz, compared with the scheme without preprocessing, the

preprocessing hardware access overhead is reduced to 45%, the

data reuse rate of convolution calculation reaches 66.7%, and the

operating power consumption is 6.395 W, the power per watt is

0.176, and the performance is significantly improved compared to

the FPGA version.

Keywords— Convolutional neural network,Inception

module,Parallelization,Reconfigure

Ⅰ INTRODUCTION

With the widespread application of CNN in the field of

artificial intelligence, deep convolutional neural networks

(Deep Convolutional Neural Network, DCNN) have become

the development trend with the deeper layers and higher

accuracy [1]. However, with the deepening of the network layer,

a large amount of intermediate data is generated during the

training process, the probability of overfitting will also increase,

and the calculation complexity will increase [2], making the

CPU time cost and GPU power consumption cost become The

bottleneck of its application, not to mention deployment on

embedded devices with limited resources. The existing DCNN-

based smart applications are all implemented in cloud

computing. On the one hand, this design will greatly increase

the load of data communication, on the other hand, it cannot

provide effective protection for the user's data privacy. In recent

years, academia has been trying to reduce the complexity of its

network while ensuring the accuracy of DCNN calculations.

The random sparse connections used in traditional methods to

reduce the complexity of the network lead to a significant

reduction in the calculation accuracy of CNN when the

computer hardware and software are implemented. For this

reason, Christian Szegedy proposed GoogLeNet [3], This

network adds a large number of 1 × 1 convolution calculations

before performing 3 × 3 and 5 × 5 convolution operations to

reduce the dimension of the network and reduce the number of

parameters to 6.8M and instead of using the average pool of

fully connected network layer will increase the accuracy of

0.6%, bringing additional capabilities, but also makes it

possible to realize the neural network on a hardware platform

of limited resources.

Field Programmable Gate Array (FPGA) has a regular

parallel structure and can be flexibly configured, which is very

conducive to the research and development of CNN hardware

acceleration. Due to the limited hardware resources of FPGA,

it is usually difficult to map the entire CNN onto a single chip,

so most FPGA-based implementations use a layer-by-layer

mapping scheme based on serial execution between layers [1,

4-5], and by sharing the same processor cluster (Process

Element Group, PEG) to reduce area overhead. And such a

design requires an on-chip controller to switch between layers,

and adjust the iteration time and the data address. Generally,

the calculation method of the shared processor cluster cannot

be reconfigured at runtime, otherwise the design difficulty and

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

92978-988-14768-8-3/20/$31.00 ©2020 APSIPA APSIPA-ASC 2020

hardware overhead will be greatly increased [1]. To solve this

problem, [6] proposed a FPGA available resources into a

plurality of processors a method, each processor for different

size convolutional layer CNN customized, thereby improving

resource utilization. But for the Inception architecture, this

design lacks specific optimizations, such as data reuse between

branches and layers. This method often requires more

bandwidth, and because of the on-chip bandwidth, it cannot

effectively improve performance. [7] proposed a hierarchical

processing, but this approach relies on the server requires one

hand, on the other hand require more suitable communication

mechanisms and protocols, large development costs and causes

a problem of heterogeneous data. Reference [8] merges the

processing of multiple CNN layers and allows intermediate

data to be cached between adjacent layers, thereby reducing

off-chip data transmission. However, on the one hand, this

mechanism may severely limit the performance of the chip and

increase the burden on the chip buffer, on the other hand, it

lacks the optimal use of computing resources.

Because the data locality of different convolution kernels in

the Inception architecture is very different, the hierarchical

mapping usually leads to insufficient utilization of the DSP

(Digital Signal Process) and memory access bandwidth

problems in the FPGA. This paper uses the dynamic

reconfigurable array processor (DPR-CODEC) provided by the

project team to study the parallel model of the Inception

architecture, which can effectively combine the flexibility of

general-purpose processors and the efficiency of dedicated

hardware. By analyzing the potential parallelism in the network

and mining the data dependencies between operations such as

convolution and pooling, a data reuse scheme with overlapping

windows is proposed, thereby reducing the overhead of

hardware resources. Based on the 4 × 4 PE array, convolution

kernels with sizes of 1 × 1, 3 × 3, and 5 × 5 are realized

respectively, and reconstruction reconstruction of images with

sizes of 28 × 28 and 32 × 32 is supported. The results show that,

on the Virtex-6 field programmable gate array connected to the

BEE4 platform, the proposed reconfigurable scheme has

greatly improved the resource utilization rate and algorithm

operation efficiency.

Ⅱ CHARACTERISTIC ANALYSIS OF INCEPTION MODULE

ALGORITHM

2.1 INCEPTION MODULE

In multiple versions of the Inception Module,

Incepetion V1 is the main module that makes up GoogLeNet,

as shown in Figure 1. This structure draws on the ideas of

Network In Network [9], uses Inception Module as a

standardized basic network, and builds a large-scale network

after repeated stacking. Inception V1 uses fewer parameters

to achieve the effect of a deeper number and stronger

expression in the traditional model. By using the global

average pooling layer to replace the fully connected layer,

the amount of intermediate calculation parameters is greatly

reduced (in the traditional CNN network, the amount of fully

connected layer parameters accounts for almost 90%),

making model training faster and reducing overfitting. In

addition, the Inception Module designed in Inception V1

improves the efficiency of parameter utilization. On the one

hand, 1 × 1 convolution is used to achieve dimensionality

reduction. On the other hand, convolution and aggregation

can be performed simultaneously on multiple sizes. By

constructing a dense block structure to approximate the

optimal sparse structure, the purpose of improving

performance without significantly increasing the amount of

calculation is achieved.

1×1 CONV

5×5 CONV

1×1 CONV 3×3 MAX POOL1×1 CONV

3×3 CONV 1×1 CONV

C=256

OF maps

C=192

C=128

C=256

C=16

C=64
C=32

C=32

C=96

IF maps

Fig 1 Inception Module

In the convolution layer, the convolution operation

highly abstracts the input image to extract image features,

that is, feature maps. The low-level feature map can obtain

the detailed information of the input image (such as edges,

colors, etc.), and the high-level feature map gradually

obtains the overall characteristics of the input image (such

as shape, contour, etc.). The sub-layered features used in

convolution make it possible to achieve good recognition

results. The convolutional layer receives n feature maps as

input and generates m output feature maps. Each input image

is convolved by multiple k × k shift windows, then each

convolution result is added to the offset value, and the pixel

value is limited to a reasonable range using a suitable

nonlinear activation function. Commonly used activation

functions include tanh, sigmoid and ReLU. Each element of

the output image is calculated by Equation 1.
𝑥𝑗

𝑙 = 𝑓(∑ 𝑥𝑖
𝑙−1 ∗ 𝑘𝑖𝑗

𝑙 + 𝑏𝑗
𝑙

𝑖∈𝑀𝑗
) (1)

Where f(x) is the activation function, 𝑥𝑗
𝑙 is the jth

feature map of the lth layer, 𝑀𝑗 represents all input feature

maps, 𝑘𝑖𝑗
𝑙 and𝑏𝑗

𝑙 represent the convolution kernel and offset

terms in the lth layer .

The pooling layer controls overfitting through the

second extraction of features, so that the model has higher

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

93

fault tolerance, but does not change the number of feature

maps. The pooling layer in CNN is generally implemented

in the same convolution manner, that is, the filter slides on

the input feature map, and each element of the output image

is calculated by Equation 2. There are also different types of

pooling operations, such as Mean-pooling and Max-pooling.
𝑥𝑗

𝑙 = 𝑓(𝛽𝑗
𝑙𝑑𝑜𝑤𝑛(𝑥𝑗

𝑙−1) + 𝑏𝑗
𝑙) (2)

Where f(x) is the activation function, down means pooling

operation, 𝑥𝑗
𝑙−1 is the jth feature map of layer l-1, and 𝛽𝑗

𝑙、𝑏𝑗
𝑙

represent the bias item. By calculating the pixels of the n × n

local area, a value of the output map is obtained, which is used

to reduce the amount of data that needs to be stored in the

memory, and only forward the features related to the

classification.

In the fully connected layer, all nodes in the input layer

and the output layer are completely connected to each other.

The weight matrix reflects the strength of each node.

Mathematically, the output vector in the fully connected layer

is shown in Equations 3 and 4.
𝑢𝑙 = 𝑤𝑙𝑥𝑙−1 + 𝑏𝑙 (3)

𝑥𝑙 = 𝑓(𝑢𝑙) (4)

Wherein, 𝑤𝑙 is the weight matrix of l th layer, 𝑢𝑙

represents the fully connected operation of l th layer, 𝑓(𝑢𝑙)

represents the activation of the fully connected operation of

layer l, 𝑏𝑙 represents the layer l bias item.

2.2 PARALLELISM OF CONVOLUTION CALCULATION

The basic calculation mode of the convolutional layer is

the image-kernel convolution. According to Equation 1, the

operation process of the convolution layer is shown in

Algorithm 1, which contains four cycles. For each layer of the

four-layer loop, it can be expanded in parallel according to its

data correlation to improve the parallelism of its execution.
algorithm 1 Convolution algorithm

Input：Initial data：𝑥 𝑙−1；Convolution kernel：𝑘𝑖𝑗
𝑙 ；Weight matrix：𝑤𝑙；

Bias item: 𝑏𝑙；Activation function: 𝑓(𝑢𝑙)；Total number of input feature

maps：n；Total number of output feature maps：m；counter：i。

Output：After the convolution calculation of network layer l：𝑥 𝑙

1：Perform the convolution calculation according to the procedure in section

2.1

2：while i<=n do

2：LOOP1：Traverse m output feature maps；

3： LOOP2：Traverse n input feature maps；

4： LOOP3：The convolution window slides in the input feature map of

XI * YI size；

5： LOOP4：k × k multiply-accumulate operations in a convolution

window；

7：end while

10: return 𝑥 𝑙

During the convolution operation of the upper layer

feature map and the convolution kernel of size k × k connected

to the neuron, since multiple convolution kernels without data

correlation can perform convolution operations on the same

feature map, Multiple convolutional output channels are

generated, so the parallel calculation method of the array in the

output channels can perform parallel processing on the k × k

multiply-accumulate operations. Figure 2 (a) shows the

expansion of the innermost loop LOOP4 to achieve parallelism

within the convolution window. In the figure, Knm-Wxy is

expressed as the weight value of the xth row and y column in

the n × m th convolution kernel.

(a) Internal parallelization of the convolution window

(b) Input feature map internal parallel

(c) Parallel input feature map

(d) Parallel output feature map

Fig2 Computational parallel diagram

On the same input feature map, there is no data correlation

between different neurons. According to this characteristic, it

can be known that the convolution operation of the convolution

window at each position can be performed in parallel in the

array. Figure 2 (b) shows the expansion of LOOP3 to achieve

the internal parallelization of the input feature map convolution

window. In the figure, Knm-Wxy is expressed as the weight

value of the xth row and yth column in the n × m th convolution

kernel.

For different input feature maps, there are N multiply-add

convolution windows corresponding to each output neuron (N

is the number of input feature maps), that is, each output value

needs to be N × k × k Multiply-add operations. For different

*K11-W11

*K11-W12

*K11-W13

*K11-W14

*K11-W15

*K11-W11

*K11-W11

*K11-W11

*K11-W11

*K11-W11

*K11-W11

*K12-W11

*K13-W11

*K11-W11

*K21-W11

*K31-W11

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

94

feature maps, the same convolution window can use the

distribution mode in the array to perform parallel operations.
Figure 2 (c) shows the expansion of LOOP2 to achieve parallel

processing between input feature maps.

When processing multiple input feature maps, the same

convolution kernel and multiple feature maps are used for

convolution calculation, and the convolution kernel is shared

on multiple feature maps. Therefore, for different output feature

maps, the neurons at the same position connected to the

convolution kernel of the previous layer are the same. To

calculate the same position on the M output feature maps, N ×

M × k × k multiplication and addition operating. The same

effect can be achieved by using multiple parallel techniques in

the array to perform convolution operations on different input

feature maps at the same scale. Figure 2 (d) shows the

expansion of LOOP1 to achieve parallelism between output

feature maps.

These four types of parallel computing can further utilize

the reconstruction mechanism to improve resource utilization.
According to the characteristics of convolutional parallel

computing, because there is no data correlation between each

feature map, during the calculation process, the convolution

kernels of 3 × 3 and 5 × 5 sizes are initialized on different

reconfigurable arrays. In the configuration storage, by calling

different configurations in the same processor cluster (Process

Element Group, PEG), the algorithm switches for convolution

kernels of different sizes.

2.3 DATA REUSE OF CONVOLUTION KERNEL

In the calculation process of the convolution kernel, since

the convolution kernel moves in the vertical or horizontal order,

a region where the height of the convolution kernel and the

pixel of the input image coincide will be called a pixel window.
Taking the 3 × 3 convolution kernel as an example, during the

horizontal movement of the pixel window with a step size of S

= 1, the overlapping area marked by the black frame has a total

of two columns. There is a 2/3 overlap area in the pixel window

corresponding to the sub-convolution operation, which means

that the data multiplexing rate in each convolution calculation

process exceeds 65%, as shown in Figure 3(a). When the

convolution kernel is 5 × 5 operation and the step size is S = 1,

there are four columns in the overlap area, each column

contains 5 pixels, which will cause 4/5 overlap in the pixel

window corresponding to the two convolution operations The

area, that is, the data multiplexing rate of two convolution

operations is as high as 80%, as shown in Figure 3 (b). Due to

the limitation of on-chip storage resources, the data of these

overlapping parts needs to be repeatedly loaded from external

storage, which will occupy a large amount of storage bandwidth,

bring great access delay, and affect the calculation efficiency.
Therefore, this paper proposes a convolution algorithm that can

fully reuse the data, so that the convolution operation can be

efficiently calculated while reducing the number of accesses to

external storage. For details, see section 3.2.

复用窗口

第一次卷积
窗口

第二次卷积
窗口

（a）3x3 multiplexing window（b）5x5 multiplexing window

Fig3 Schematic diagram of data multiplexing

Ⅲ PARALLEL DESIGN OF INCEPTION MODULE

3.1 ARRAY PROCESSOR STRUCTURE

The video array processor used in this paper is a

reconfigurable array processor independently developed by the

project team. The processor logically divides the array into

processing element groups (Process Elements Group, PEG),

and each PEG is composed of 4 × 4 PE arrays. The data

interaction between adjacent PEs is accomplished through a

shared register using the adjacent interconnection mechanism,

and the data interaction between non-adjacent PEs is achieved

through access to 4 × 4 distributed random access memories

that share a two-level switching structure. Figure 4 shows a

schematic diagram of the structure of the PE array. The straight

line with arrows indicates the data path for adjacent

interconnection communication. Data exchange is performed

through the shared registers between PEs. The reconfigurable

function of the array and PE is realized by loading fixed

instructions stored in the instruction RAM in advance or real-

time instructions passed by the global controller and stored in

the RAM. At runtime, the corresponding calculation method

can be flexibly invoked according to the calculation needs of

different layers so that the PE array can run in the data flow

mode, so that the circuit has excellent performance such as

flexibility, reusable hardware resources, parallel computing,

and low power consumption.

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Configurati
on context

Controller

Fig4 Reconfigurable PE array structure diagram

3.2 PARALLEL RECONFIGURATION DESIGN

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

95

3.2.1 PARALLEL RECONSTRUCTION DESIGN OF CONVOLUTION

OPERATION

During the convolution operation, since the input image is

a two-dimensional matrix, it is difficult to directly multiplex the

data on the hardware. According to the analysis in Section 2.3,

without data preprocessing, each convolution needs to access

off-chip storage, which will cause a large access delay and

affect the calculation efficiency. Therefore, it is necessary to

preprocess the input image and the convolution kernel. First,

the original image is divided into blocks according to the size

of the convolution kernel and stored in a one-dimensional array

by column, and the convolution kernel is also stored in a one-

dimensional array by column. Taking a 3 × 3 convolution

kernel and an input data size of 4 × 4 as an example, after

preprocessing, the process of convolving the convolution

kernel on the original input image is simplified as the process

of multiplying and adding the corresponding positions of the

two columns. At the same time, when the next convolution

process only needs to slide the convolution kernel vector down

by k elements, it avoids multiple accesses to the same input,

thereby reducing the hardware access overhead.
Figure 5 (a) shows a parallelization scheme using a 4x4

PEG convolution operation. The calculation process in the

algorithm is complicated, and the process of 3 × 3 convolution

is used as an example for description. First, the preprocessed

data is stored in DIM. PE00 loads the data from DIM and sends

it out. Each computing PE performs parallel convolution

calculation after receiving the data, and finally saves the result.

The specific algorithm process is as follows.
algorithm 2 Convolutional parallel reconstruction algorithm

Input：Preprocessed data：𝑐𝑜𝑛𝑣_𝑥𝑙−1；Convolution kernel：𝑘

Output：Convolution calculation result：𝑐𝑜𝑛𝑣_𝑥 𝑙

1：PE00 loads preprocessed data from DIM: Save the original image block.

2：while i<=n do

3： LOOP:

4： Data distribution：After PE00 loads the data, it sends the data to PE01,

PE10, PE11, and PE12 in blocks. After sending the data, PE00 sends handshake

signals to each PE.

5： Multiplication / addition calculation process：When PE00 receives the

handshake signal, each PE starts calculation at the same time. Multiply the two

data through the left shift and add operation to calculate the final result.

6： Results saving process：When all the convolution operations are

completed, PE02, PE20, PE21, PE22 transfer the calculation results to PE33,

and finally PE33 writes all the results to the DOM.

7：Convolution calculation and reconstruction switching through transfer

instructions。

8： end LOOP

9：end while

10: return Store convolution calculation results in DOM

When performing reconstruction calculations, flag bits are

set for different convolution kernel sizes before performing

convolution calculations. Use the default flag to enable PEG to

perform 3 × 3 convolution calculation. When the 3 × 3

convolution calculation is completed, switch to 5 × 5

convolution calculation by calling the CALL command. The

parallel calculation process at this time is the same as the 3 × 3

parallel process the same. After all convolution calculations are

completed, the results are saved in the DOM, and the pooling

operation takes out the intermediate results of the convolution

calculations from the DOM through PE33 for calculation.

3.2.2 PARALLEL DESIGN OF POOLING OPERATION

After the convolution operation, the main function of the

pooling operation is to perform dimensionality reduction

calculation on the feature map to reduce the parameters and

calculation amount in the network, while retaining important

information in the feature map to prevent information loss in

subsequent calculations. In the Inception-V1 module, the size

of the pooling operation is 3 × 3, and the stride is 2. In the

process of mapping, when the previous layer of convolution

operation is completed, the controller controls the computing

unit PE33 to load the data in the DOM and sends the pooling

operation instruction to each computing unit through the

instruction issuing module to complete the pooling calculation ,

As shown in Figure 5 (b). In order to maintain the accuracy of

the feature map as much as possible, we use a 2 × 2 pooling

kernel to perform a pooling operation with a step size of 2 on

the feature map. This result can not only effectively maintain

the accuracy of the feature map, but also reduce the data size,

making the structure more conducive to hardware

implementation. First, the convolution result will be taken from

the DOM and delivered. After the delivery is completed, each

PE starts to perform the maximum pooling calculation. The

result is saved in the DOM through PE33 so that the next layer

of convolution calculation uses the reconstruction scheme. The

specific algorithm process is as follows:
algorithm 3 Pooling parallel algorithm

Input：Preprocessed data：𝑐𝑜𝑛𝑣_𝑥𝑙；pooling kernel：𝑘 = 2 × 2；Total number

of blocks：𝑛

Output：Pooling calculation results：𝑝𝑜𝑜𝑙_𝑥 𝑙

1：PE33 loads the convolution result data from the DOM: and blocks the result.

2：while i<=n do

3： LOOP:

4： Data distribution：After PE33 loads the data, it sends the data to PE11, PE12,

PE13, and PE31 in blocks. After sending the data, PE33 sends handshake signals

to each PE.

5： Pooling calculation process：PE13 loads addresses 0, 1, 27, and 28 to achieve

the maximum pooling calculation of data through a comparison operation, and

stores the final result in address 13 of PE13. PE31, PE11, PE12 operate in the same

way.

6： Results saving process：When all pooling operations are completed, the

calculation results of PE21, PE22, PE23, and PE32 are re-introduced into PE33,

and finally PE33 writes all results into the DOM.

8： end LOOP

9：end while

10: return Store pooled calculation results in DOM

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

96

Fetch and send

PE00

The first pixel

point convolution

calculation

PE01

Store convolution

results

PE02

The Second pixel

point convolution

calculation

PE10

The third pixel

point convolution

calculation

PE11

The forth pixel

point convolution

calculation

PE12

NOP

PE13

Store convolution

results

PE20

Store convolution

results

PE21

Store convolution

results

PE22

NOP

PE23

Perform

maximum pooling

calculation and

pass the result to

PE33
PE30

Perform

maximum pooling

calculation and

pass the result to

PE33
PE31

Perform

maximum pooling

calculation and

pass the result to

PE33
PE32

Perform maximum

pooling calculation

and pass the result

to PE33

Store and forward

PE33

PE03

External DOM
convolution/

pooling processing
data

External DIM raw
image data

(a) Convolutional parallel operation structure

NOP

PE00

NOP

PE01

NOP

PE02

Storage pooling

results

PE10

Perform

maximum pooling

calculation and

pass the result to

PE10

PE11

Perform

maximum pooling

calculation and

pass the result to

PE10

PE12

Perform

maximum pooling

calculation and

pass the result to

PE10

PE13

Storage pooling

results

PE20

Pooling

PE21

Pooling

PE22

Pooling

PE23

Pass the

maximum pooling

result to PE33

PE30

Storage pooling

results

PE31

Pooling

PE32

NOP

Take the number

and send it to a

computing unit for

maximum pooling

calculation PE33

PE33

PE03

External DOM
convolution/

pooling processing
data

DIM

(b) Max Pooling parallel computing structure

Fig5 Parallel operation structure diagram

IV SIMULATION EXPERIMENT AND RESULT ANALYSIS

This paper verifies the feasibility of the parallel scheme on

the array processor. First convert the test image into a binary

sequence that can be recognized by the array, then store it in the

off-chip storage DIM, secondly initialize the instructions of the

parallel scheme to the corresponding PE instruction storage,

and finally perform simulation verification on QuestaSim,

FPGA use Vertex-6 series XC6VLX760 devices, the operating

frequency can reach 123MHz. Based on the 4 × 4 PEG, the

experiment realized the parallel mapping of 5 × 5 and 3 × 3

convolution operations of the Inception module in the

GoogLenet network. The function evaluation data set is

selected from Minist (28 × 28 pixel grayscale handwritten

digital picture) and Cifar-10 (32 × 32 color image classic data

set). The data in the Minist dataset has been pre-processed and

turned into a grayscale image with a size of 29 × 29, and Cifar-

10 will be processed according to the original data.

（a）PC-side pixel conversion and verification results

（b） FPGA-side verification results

Fig6 System verification results

Figure 6 (a) is the result of pixel conversion of the test

image on the PC side using Matlab software. It can be seen that

the accuracy of the image recognition of the Minist data set by

the network can reach 99%.Figure 6 (b) is the result of FPGA

implementation in this method. It can be seen that the

classification results are correct.

A 5 × 5 convolution operation takes 425 clock cycles,

Inception V1 generates 5 × 5 × 32 convolution results, which

requires a total of 340,000 clock cycles; a 3 × 3 convolution is

248 clock cycles, and Inception V1 generates. The 3 × 3 × 128

convolution results require a total of 285696 clock cycles. Table

1 shows the calculation time of this paper and literature [10]

and [11]. This article and literature [10, 11] are based on FPGA.

Inception V1 of this paper inputs 3 feature maps, 3 × 3

convolution inputs 96 feature maps, and outputs 128 feature

maps; 5 × 5 convolution inputs 16 Feature map, output 32

feature maps. In literature [10], 7 feature maps are input on the

first layer, and 64 feature maps are output, and 8 feature maps

are input on the second layer, and 19 feature maps are output.
Table1 Convolutional layer calculation time

Convolutional

layer

[10]

(cycles)

[11]

(cycles)

This work

(cycles)

sum 2006000 62668800 47449088

As shown in Table 1, the processing speed of [10] is much

faster than the method in this paper, but the amount of data

processed is only 60% of this paper. Reference [11] is the same

as the network model in this paper, but the processing speed of

this paper is 0.76 times that of it.

Table 2 shows the results of the identification of the two

data sets using the design of this paper. It can be seen that the

design of this article has reached the functional requirements of

the Inception network, and the recognition rate has reached

about 99%.
Table 2 Data Set

DataSet Size

Number of

training

sets

Number of

test sets
Accuracy

Minist 28×28 60000 10000 99.32%

Cifar-10 32×32 50000 10000 98.94%

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

97

Table3 FPGA logic resource utilization statistics table

Logic device

Resource utilization

[11] [12] This work

Slice Registers
144k

（16.65%）
- 11.7k（1%）

Slice LUTs
199k

（45.98%）
178k（41%） 33.6k（9%）

LUT-FF pairs - 181k（21%） 106k（30%）

Table 3 shows the FPGA chip resource usage in this article.

It can be seen that compared with literature [11, 12], the method

proposed in this paper uses fewer resources. The

comprehensive results show that the operating power

consumption of this method is only 6.395W. Because different

methods use different parallel strategies and FPGA platforms,

considering the differences in hardware and portability,

literature [13, 14] pointed out that the use of energy efficiency

ratio (Efficiency) and other indicators can provide an effective

comparison, which is derived from Equation 5.

Performance per Watt =
Operations

Time×Power
 (5)

Wherein, Performance per Watt refers to the power per watt

performance, Operations is the number of operations, Time and

Power represent time and power consumption, respectively.

Table 4 compares the energy efficiency ratio and the

number of operations per second. [1] is the result of optimizing

CNN code through CPU. It can be seen that compared with the

CPU implementation of [1], the energy efficiency ratio is 4.75

times. [13, 14] are based on FPGA implementation. Compared

with the design in this paper, literature [13] has higher

operations per second and power consumption, but the energy

efficiency ratio is 2.2 times that of this paper. The number of

operations per second is 1.5 times that of [14], and the energy

efficiency ratio is 1.3 times..
Table 4 Performance comparison table

device
OP/s

[GOP/s]

Power

[W]

Perf.per Watt

[GOP/s/W]

[1]（CPU） 3.54 95 0.037

[13]（FPGA） 14.11 17.67 0.80

[14]（FPGA） 0.75 5.54 0.135

This Work(FPGA) 1.13 6.395 0.176

V SUMMARY

In the process of convolution operation, this paper proposes a

reconfigurable array implementation scheme that takes into

account the high parallelism of computing and the overhead of

on-chip resources for the memory access and power

consumption problems faced by convolutional neural networks

in hardware acceleration. The calculation of different

convolution kernel sizes and pooling operations can be

completed on the same array through reconstruction, which

improves the utilization of on-chip resources. By converting the

input image into a one-dimensional array for storage, the

frequency of external storage access in the convolution

calculation process is reduced, and a data organization scheme

with overlapping windows is proposed, which reduces the

number of pixels loaded in external storage by 30%. . The

program was tested in the Minist and Cifar-10 test sets, and the

results showed that under the operating frequency of 123MHz,

the operating power of the FPGA was 6.395W, and the

performance was 4.75 times that of the CPU version; compared

to other FPGA platform implementations, the proposed

Reconfigurable implementation has obvious advantages. This

scheme can also be used to implement neural network

calculations of similar computing architectures.

ACKNOWLEDGMENT

This paper is supported the National Natural Science

Foundation of China under Grant

61834005,61772417,61802304,61602377,61634004, the Key

R & D programs in Shaanxi 2017GY-060, and Shaanxi

International Science and Technology Cooperation Program

No.2018KW-006.

REFERENCES

[1] Chang J, Kang S. Optimizing FPGA-based convolutional neural

networks accelerator for image super-resolution[C]. asia and

south pacific design automation conference, 2018: 343-348.

[2] Liu Z, Dou Y, Jiang J, et al. Throughput-Optimized FPGA

Accelerator for Deep Convolutional Neural Networks[J]. ACM

Transactions on Reconfigurable Technology and Systems, 2017,

10(3).

[3] Szegedy C, Liu W, Jia Y, et al. Going deeper with

convolutions[C].computer vision and pattern recognition,

2015: 1-9.

[4] Zhang C, Fang Z, Zhou P, et al. Caffeine: towards uniformed

representation and acceleration for deep convolutional neural

networks[C]. international conference on computer aided design,

2016.

[5] Rahman A, Lee J, Choi K, et al. Efficient FPGA acceleration of

Convolutional Neural Networks using logical-3D compute

array[C]. design, automation, and test in europe, 2016: 1393-

1398.

[6] Shen Y, Ferdman M, Milder P, et al. Maximizing CNN Accelerator

Efficiency Through Resource Partitioning[C]. international

symposium on computer architecture, 2017, 45(2): 535-547.

[7] CAO Qu-cheng, CHEN Qing-kui. Deep Neural Network Layering

Strategy for Embedded Devices [J] Journal of Chinese Computer

Systems 2019,40(07):1455-1461.

[8] M. Alwani, H. Chen, M. Ferdman and P. Milder, "Fused-layer

CNN accelerators," 2016 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), Taipei, 2016, pp. 1-

12.

[9] Lin M, Chen Q, Yan S, et al. Network In Network[C].

international conference on learning representations, 2014.

[10] Shen Y, Ferdman M, Milder P, et al. Overcoming resource

underutilization in spatial CNN accelerators[C]. field

programmable logic and applications, 2016: 1-4.

[11] Korol G, Moraes F G. A FPGA parameterizable multi-layer

architecture for CNNs[C]//2019 32nd Symposium on Integrated

Circuits and Systems Design (SBCCI). IEEE, 2019: 1-6.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

98

[12] Shen Y, Ferdman M, Milder P. Escher: A CNN accelerator with

flexible buffering to minimize off-chip transfer[C]//2017 IEEE

25th Annual International Symposium on Field-Programmable

Custom Computing Machines (FCCM). IEEE, 2017: 93-100.

[13] Bettoni M, Urgese G, Kobayashi Y, et al. A Convolutional

Neural Network Fully Implemented on FPGA for Embedded

Platforms[C]// 2017 New Generation of CAS (NGCAS). IEEE,

2017.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

99

