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Abstract—This work proposes an acoustic echo cancellation 

method using deep-learning-based speech separation techniques. 

Traditionally, acoustic echo cancellation (AEC) used a linear 

adaptive filter to identify the acoustic impulse response between 

the microphone and the loudspeaker. However, when 

conventional methods encounter nonlinear conditions, the results 

of the processing are not good enough. Our practice utilizes the 

advantages of deep-learning techniques, which are beneficial for 

nonlinear processings. In the adopted recurrent neural network 

system, we add single-talk features and assign specific weighting 

for each element in different from the traditional speech 

separation. The experimental results show that our method 

improves the Perceptual evaluation of speech quality (PESQ) of 

simulated audio, and the Echo return loss enhancement (ERLE) 

of recorded audio as well. 

Keywords—Deep Learning, Acoustic Echo Cancellation, 

Speech Separation, Recurrent Neural Network  

I. INTRODUCTION 

The conventional acoustic echo cancellation method uses a 

linear adaptive filter to identify the acoustic impulse response 

between the microphone and the loudspeaker. Fig.1 shows the 

block diagram of our echo cancellation system, where 𝑥(𝑛), 
ℎ(𝑛) , 𝑑(𝑛) , 𝑠(𝑛) , 𝑣(𝑛) , 𝑦(𝑛) , �̂�(𝑛) , respectively far-end 

signal, acoustic echo path, echo signal, near-end signal, 

background noise, microphone signal, resynthesize signal.  

Fig.2 shows the internal structure diagram of the AEC, which 

is an acoustic echo cancellation method using a linear adaptive 

filter. The estimated near-end signal is obtained by subtracting 

the estimated far-end echo signal from the microphone signal.  

II. RELATED BACKGROUND 

In 1990, J.-S. Soo et al. proposed a multi-delay block 

frequency domain adaptive filter (MDF) [1] based on a 

normalized least mean square (NLMS) algorithm. NLMS 

algorithm calculated the input signal in the time domain and 

updated the weights frame by frame, which cost a large amount 

of time consumption. The MDF algorithm performed 

calculation in the frequency domain, batch-processed input 

signals, and uniformly performed weight updating. An 

implementation of the MDF algorithm is available in Speex [2], 

which is an open-source algorithm and compared in our 

experiments. In 2017, D. Yu et al. proposed a permutation-

invariant training (PIT) speech separation method [3]. Their 

approach trained the neural network by minimizing the 

estimation error between the original speech and the estimated 

speech. In 2018, Zhang, H et al. proposed a deep learning 

method for acoustic echo cancellation [4], which also used 

speech separation techniques for acoustic echo cancellation by 

mixed-signal and features of far-end echo signals. Our 

proposed method jointly references the features of the near-end 

signal and the far-end echo signal at the same time and adjusts 

the weights of different features. The experimental results 

show that the ERLE and the PESQ are improved. We train our 

model through a bidirectional gated recurrent unit (BGRU) [5] 

[6] to build the neural networks. 

The proposed methods will be described in section III. 

Section IV and V will specify the evaluation criterion and 

discuss the experiments, respectively. Finally, section VI 

concludes this paper. 

 

 

Fig. 1   Block diagram of our echo cancellation system 

 

Fig. 2   Internal structure diagram of the AEC 

III. PROPOSED METHOD 

In this section, we will introduce our proposed method which 

is based on recurrent neural networks [7]. Section A will 

present the pre-processing of the dataset, and Section B 

illustrates the training stage; finally, Section C will describe the 

testing stage. Fig.3 shows the architecture diagram of the 

proposed method. 
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Fig. 3   Architecture diagram of the proposed method 

A. Pre-processing  

In this work, we extract the features of speech data by a 256 

points short-time Fourier transform (STFT) with 129frequency 

bins. The sampling rate is 16kHz, and the frame size is 16ms. 

Fig.4 illustrates the flow chart of STFT. 

 

 

Fig.4   Flow chart for short-time Fourier transform 

 

B. Training Stage 

We adopt a recurrent neural network structured by BGRU in 

the proposed method. In different from the bidirectional long 

short-term memory (BLSTM) network [6][8], the proposed 

method is less complicated. By adding the single-talk features 

(near-end signal and far-end echo signal) and adjusting the 

weights of each element, the results show good performance in 

our experiments. We use the ideal ratio mask [9] as the speech 

separation target. Eq (1) and (2) express the mathematical 

calculation of the masks. 

𝐼𝑅𝑀1(𝑡, 𝑓) = √
𝑋1

2(𝑡,𝑓)

𝑌2(𝑡,𝑓)
 

𝐼𝑅𝑀2(𝑡, 𝑓) = √
𝑋2

2(𝑡,𝑓)

𝑌2(𝑡,𝑓)
 

where 𝑋1 , 𝑋2  and 𝑌 are the target near-end signal, the target 

far-end echo signal, and the microphone signal. The ideal ratio 

mask is the ratio of the target signal in the mixed-signal, which 

is defined as our training target. The ideal ratio mask value is 

between 0 and 1, so we use ReLU as the activation function to 

limit it within this range. Both the input layer and the output 

layer of the BGRU are with129 neurons. There are three hidden 

layers with 496 neurons for each. The learning rate is 0.0005, 

and the number of iterations is 60. The loss function used in 

BGRU is the mean square error (MSE), as expressed in Eq (3). 

𝐽𝑥 =
1

𝑇×𝐹×𝑆
∑ ∑ ∑ ‖�̂�𝑠(𝑡, 𝑓) − 𝑋𝑠(𝑡, 𝑓)‖

2𝑆
𝑠=1

𝐹
𝑓=1

𝑇
𝑡=1  

 

where 𝑇  is the number of time frames, 𝐹  is the number of 

frequency bins, �̂�𝑠 is the estimated speaker's signal, 𝑋𝑠 is the 

target speaker's signal, 𝑆 is the number of speakers. 

C. Testing Stage 

 In the testing stage, the features of the mixed-signal for 

testing are sent into BGRU to obtain the estimated signal by 

pointwise multiplying the features with the estimated mask. 

IV. EVALUATION 

To reduce the time consumption of the training stage, we use 

GPU to execute the program for acceleration. We use the RTX 

2080 GPU to run our Python program, where we use tensorflow 

and librosa as tools in our neural network and feature extraction, 

respectively. In this section, we will introduce the performance 

metrics in Section A and the experimental setup in Section B. 

A. Performance Metrics 

We use two performance metrics to evaluate the results of 

our experiments. In the single-talk scenario, we use ERLE to 

assess the extent of attenuation to our far-end echo. The higher 

value indicates the better ability of the system to eliminate echo. 

In the double- talk scenario, we use PESQ [10] to evaluate the 

correlation between the estimated signal and the original signal. 

When the calculated value is high, it means the correlation is 

high, and therefore it can maintain a certain degree of speech 

quality. The ERLE mathematical calculation can be expressed 

in (4), where 𝑦(𝑛)  is the microphone signal, �̂�(𝑛)  is the 

resynthesize signal. 

𝐸𝑅𝐿𝐸 = 10𝑙𝑜𝑔10 {
𝜀[𝑦2(𝑛)]

𝜀[�̂�2(𝑛)]
} 

B. Experiment Setup 

We adopted the TIMIT dataset [11] in our experiments. The 

TIMIT dataset has 630 speakers. Each speaker speaks 10 

sentences. There is a total of 6,300 sentences. Each sentence is 

sampled at 16 kHz. First, we will make these sentences form 

the near-end signal and the far-end signal. We will randomly 

select three sentences from a random speaker and connect them 

to form a far-end signal. We will randomly select another 

speaker's sentence and pad zeros at the front and the back to the 

same length as the far-end signal to form a near-end signal. In 

the far-end signal part, the number of speakers used in the 

training stage is 30 speakers, the number of speakers used in 

the test stage is six speakers, and the remaining speakers as the 

near-end signal. We generate mixed speech in two cases, 

simulation and live recording. In the case of simulation, we use 

the image method [12] to generate a room impulse response to 

convolve with the far-end signal to derive the far-end echo 

signal. The simulation room size is (4, 4, 4) meters, the 

microphone is placed at the center of the room (2, 2, 2) meters, 

and the loudspeakers are placed at random places. We use the 

gaussian noise to generate signal-to-noise ratios (SNR) 

(1) 

(2) 

(3) 

(4) 
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between 0 dB and 5 dB in the case of simulation. In the case of 

recording, we record live in the conference room where the 

doors and windows are closed. Besides that, we can calculate 

the relationship between the near-end signal and the far-end 

echo signal by signal-to-echo ratios (SER). We chose SER for 

10 dB, 0 dB, and -10 dB in experiment, respectively. The SNR 

and SER can be expressed in (5) and (6), 

 

𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 {
𝜀[𝑠2(𝑛)]

𝜀[𝑣2(𝑛)]
} 

𝑆𝐸𝑅 = 10𝑙𝑜𝑔10 {
𝜀[𝑠2(𝑛)]

𝜀[𝑑2(𝑛)]
} 

where 𝑠(𝑛)  is the near-end signal, 𝑣(𝑛)  is the background 

noise, 𝑑(𝑛) is the far-end echo signal. In the case of simulation, 

the far-end signal convolves with a room impulse response to 

derive the far-end echo signal. The far-end echo signal 

mathematical calculation can be expressed in (7), 

𝑑(𝑛) = 𝑥(𝑛) ∗ ℎ(𝑛) 
where 𝑑(𝑛)  is the far-end echo signal, 𝑥(𝑛)  is the far-end 

signal, ℎ(𝑛)  is the room impulse response. The microphone 

signal mathematical calculation can be expressed in (8), 

𝑦(𝑛) = 𝑑(𝑛) + 𝑠(𝑛) + 𝑣(𝑛) 
where 𝑑(𝑛)  is the far-end echo signal, 𝑠(𝑛)  is the near-end 

signal, 𝑣(𝑛) is the background noise. 

V. EXPERIMENT RESULTS 

The proposed method will be compared with the MDF 

algorithm and the PIT speech separation method. The 

experiments conduct with three different cases, high SER, 

medium SER, and low SER, in both of the simulation and 

recording data for comparisons.  

The results of ERLE and PESQ in high SER situations are 

listed in Table 1 and Table 2. In the case of simulation, the 

ERLE is the highest in BLSTM, but in the case of recording, 

the training model of the neural networks with the near-end 

signal feature obtains the most top result of all methods. In the 

case of simulation, the obtained PESQ is the highest when we 

add the near-end signal feature and adjust the weights of the 

features for training. The experimental results show that the 

ERLE and PESQ can be conditionally improved by our 

proposed method. 

Table 1   High SER (10 dB) of ERLE 

Performance Metrics: ERLE (dB) Simulation Recording 

Speex [2] 19.84 9.68 

BLSTM [3] 

(mixed speech feature) 
42.29 37.98 

Proposed BGRU 

(mixed speech feature) 
38.16 38.82 

Proposed BGRU 

(mixed + near-end feature) 
38.79 43.52 

Proposed BGRU 

(mixed*10% + near*90% feature) 
32.04 21.06 

Proposed BGRU 

(mixed*90% + near*10% feature) 
36.67 20.57 

 

Table 2   High SER (10 dB) of PESQ 

Performance Metrics: PESQ Simulation Recording 

Speex [2] 3.35 2.95 

BLSTM [3] 

(mixed speech feature) 
2.37 2.15 

Proposed BGRU 

(mixed speech feature) 
2.47 2.21 

Proposed BGRU 

(mixed + near-end feature) 
2.5 1.48 

Proposed BGRU 

(mixed*10% + near*90% feature) 
2.44 2.03 

Proposed BGRU 

(mixed*90% + near*10% feature) 
2.65 1.88 

 

Table 3 and Table 4 list the results of ERLE and PESQ in a 

medium SER situation. The overall results are not as high as in 

the High SER situation. Similarly, the ERLE in the case of 

simulation in BLSTM is the highest, while our method 

performs the best in the case of the recording. Similar results 

as in the High SER situation can be found in the case of 

simulation. 

Table 3   Medium SER (0 dB) of ERLE 

Performance Metrics: ERLE (dB) Simulation Recording 

Speex [2] 19.48 9.84 

BLSTM [3] 

(mixed speech feature) 
36.47 40.03 

Proposed BGRU 

(mixed speech feature) 
32.02 36.98 

Proposed BGRU 

(mixed + near-end feature) 
32.56 44.83 

Proposed BGRU 

(mixed*10% + near*90% feature) 
18.41 17.48 

Proposed BGRU 

(mixed*90% + near*10% feature) 
29.91 11.41 

Table 4   Medium SER (10 dB) of PESQ 

Performance Metrics: PESQ Simulation Recording 

Speex [2] 3.14 2.4 

BLSTM [3] 

(mixed speech feature 
1.97 0.87 

Proposed BGRU 

(mixed speech feature) 
1.97 0.98 

Proposed BGRU 

(mixed + near-end feature) 
2 0.85 

Proposed BGRU 

(mixed*10% + near*90% feature) 
2.03 0.98 

Proposed BGRU 

(mixed*90% + near*10% feature) 
2.22 0.92 

 

Finally, it can be seen in Table 5 and Table6, even in the Low 

SER situation, our method can improve the performance in 

certain conditions. 

Traditional speech separation uses only mixed-signal 

features, while our proposed method adds a single-talk feature 

and adjusts the weight of each element. The experimental 

results show that in the case of recording, after adding the 

single-talk features, the ERLE reaches the highest of all 

methods. In the case of simulation, after adding the single-talk 

features and adjusting the weights of elements, the PESQ also 

achieves the highest in the deep learning methods. 

(5) 

(6) 

(7) 

(8) 
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Table 5   Low SER (-10 dB) of ERLE 

Performance Metrics: ERLE (dB) Simulation Recording 

Speex [2] 18.77 12.48 

BLSTM [3] 

(mixed speech feature) 
33.51 35.15 

Proposed BGRU 

(mixed speech feature) 
28.63 29.19 

Proposed BGRU 

(mixed + near-end feature) 
28.43 35.98 

Proposed BGRU 

(mixed*10% + near*90% feature) 
13.49 13.63 

Proposed BGRU 

(mixed*90% + near*10% feature) 
22.9 21.98 

Table 6   Low SER (-10 dB) of PESQ 

Performance Metrics: PESQ Simulation Recording 

Speex [2] 2.87 2.08 

BLSTM [3] 

(mixed speech feature) 
1.46 0.86 

Proposed BGRU 

(mixed speech feature) 
1.41 0.78 

Proposed BGRU 

(mixed + near-end feature) 
1.43 0.92 

Proposed BGRU 

(mixed*10% + near*90% feature) 
1.66 0.76 

Proposed BGRU 

(mixed*90% + near*10% feature) 
1.71 0.78 

 

VI. CONCLUSIONS 

This work proposes a bidirectional gated recurrent unit 

(BGRU) based acoustic echo cancellation, which adds near-

end features. The experimental results show that the 

performance can be improved by adding single-talk features 

and adjusting the weights of elements. In the case of simulation, 

our proposed method is 0.2-0.3 better than BLSTM [3]. In the 

case of recording, the proposed method is 20-30 dB better than 

Speex [2]. The proposed method could offer improved PESQ 

in the simulation cases while the performance on ERLE 

decreases lightly. In the future, we will add various recording 

data in the training stage to enhance the system model for 

different environments.  
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