

Abstract—Deep reinforcement learning is a technique that allows
the agent to have evolving learning capability for unknown
environments and thus has the potential to surpass human
expertise. The hardware architecture for DRL supporting on-line
Q-learning and on-line training is presented in this paper. Two
processing element (PE) arrays are used for handling evaluation
network and target network respectively. Through configuration
of two modes for PE operations, all required forward and
backward computations can be accomplished and the number of
processing cycles can be derived. Due to the precision required for
on-line Q-learning and training, we propose flexible block
floating-point (FBFP) to reduce the overhead of floating-point
adders. The FBFP exploits different signal statistics during the
learning process. Furthermore, the respective block exponents of
gradients are adjusted following the variation of temporal-
difference (TD) error to reserve resolution. From the simulation
results, the FBFP multiplier-and-accumulator (MAC) can reduce
15.8% of complexity compared to FP MAC while good learning
performance can be maintained.

Index Terms—Block floating-point, deep Q network,
reinforcement learning, architecture design.

I. INTRODUCTION

Due to the successful experience of AlphaGo Zero, which
learns the game of Go from scratch without human knowledge
based on the deep reinforcement learning (DRL) algorithm [1],
researchers tend to employ DRL in various application domains
to exploit the possibilities that it brings. Studies on DRL in
mobile robot navigation are popular in order to combat the
dynamically changing environments [2][3]. In addition, DRL
can also aid in deployment of internet of things (IoT) that needs
decision process for resource allocation or scheduling [4][5].
Thus, DRL has been shown a potential technique to incorporate
evolving learning capability for signal processing and system
design.

Although the rapid growth of massive computations enabled
by parallel processing of GPU benefits the development of DRL,
implementation and realization of DRL in mobile or edge
devices must take performance and power consumption into
consideration. Some dedicated hardware accelerators have been
presented in the literature. A Q-learning processor is designed
on FPGA in [6], which uses fixed point for a 8×4 Q-matrix. An
AI processor in 65nm CMOS technology with processing
elements for tree search and reinforcement learning is reported
in [7] for mobile robot navigation, which consumes 1.1mW at
0.55V. A planetary navigation robot is implemented on FPGA
in [8], and the Q-learning algorithm with multi-layer perceptron
containing 11 neurons for simple environments and 25 neurons
for complex environments is adopted. Both fixed point and

floating point (FP) are considered for datapath. In [9], a general
framework for DRL utilizing stochastic computing is described,
which includes off-line DNN construction and on-line deep Q-
learning, providing the hardware synthesis results in CMOS
technology. In [10], a neuromorphic accelerator using
stochastic neural network plus Q learning with 6-bit multiplier-
and-accumulator (MAC) units is fabricated in 55nm CMOS
technology. We can see that the hardware accelerators have
different coverages, from reinforcement Q learning to DRL and
from off-line training to on-line training. Consequently, the
hardware costs and performances are quite different.

Datapath quantization is an important task to tradeoff
performance and complexity in hardware implementation and
has been investigated widely in the designs of deep neural
network for supervised learning. For inference applications,
fixed-point representation is frequently used to save power and
complexity with slightly sacrificed accuracy [11]. On the other
hand, when both training and inference are taken into
consideration, 32-bit floating point and customized 16-bit
floating point are used in [12]. As mentioned in [13], the
dynamic range provided by fixed point is usually insufficient
for deep neural network training convergence and they propose
hybrid block floating point for hardware supporting training for
general applications. All dot products are performed in block
floating-point and the remaining blocks are operated in floating
point format so as to gain some advantage of the fixed-point
arithmetic design for dot product.

 In this paper, architecture is first developed to support both
on-line DRL training and Q-learning. In order to save the
complexity for arithmetic units of a general DRL accelerator
and to ensure the training convergence for various applications,
we exploit the data statistics and propose to use FBFP in the
PEs that deal with both weight update and Q-value computation.
The simulation results from the cycle-accurate bit-true model
show that the FBFP datapath works well and the agent still
achieves good performance compared to the floating-point
design. In addition, from the synthesis results, the 15.8% area
complexity can be saved if the FBFP adders are adopted in the
MAC of the PE compared to the FP MAC at 400MHz operating
frequency in 40nm CMOS technology.

In the following, deep reinforcement learning with
prioritized experience replay is introduced in Sec. II. Sec. III
describes the architecture and scheduling for on-line training
and Q-learning. Sec. IV discusses the performance and
complexity comparison of FBFP and FP. Conclusion is given
in Sec. V.

Processing Element Architecture Design for
Deep Reinforcement Learning with

Flexible Block Floating Point Exploiting Signal Statistics
Juyn-Da Su and Pei-Yun Tsai

Department of Electrical Engineering,
National Central University, Taiwan

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

82978-988-14768-8-3/20/$31.00 ©2020 APSIPA APSIPA-ASC 2020

II. DEEP Q NETWORK WITH PRIORITIZED EXPERIENCE

REPLAY

Fig. 1 Flow of DQN.

Reinforcement learning, one of the machine learning
techniques, considers the task of an agent interacting with the
environment. Usually, it is modelled by the Markov decision
process described by state ܵ௧, action ܣ௧, and reward ܴ௧ at each
step ݐ. The agent aims to find a policy ߨ to optimize the long-
term return defined by Qగ(ݏ, ܽ) = ௧|ܵ௧ܩሼܧ = ,ݏ ௧ܣ = ܽሽ, (1)
where ܩ௧ = ܴ௧ାଵ + ௧ାଶܴߛ + ⋯ = ∑ ௞ܴ௧ା௞ାଵ.ஶ௞ୀ଴ߛ (2)
with the discount factor 0 ≤ ߛ ≤ 1.

Deep reinforcement learning, which uses high dimensional
sensor data and neural network to learn the control policy, was
presented in [14]. Two networks are employed to approximate
the action-value function, ܳ(ݏ, (ߠ|ܽ from the evaluation
network and ܳ(ݏ′, from the target network as shown in (ିߠ|ܽ
Fig. 1, where ݏ is the current state and ݏ′ is the next state. For
each state ݏ, the agent determines the action	ܽ derived from ܳ(ݏ, (ߠ|ܽ , ∀ܽ , and the ε -greedy strategy. The agent then
observes the reward ܴ௦௔ fedback by the environment. The
transition information (ݏ, ܽ, ܴ௦௔, is saved in the experience (′ݏ
replay buffer. Given mini-batch size ܤ ܤ , transitions are
sampled from the replay buffer according to their priority [15].
Define ݕ௦௔ = ቊܴ௦௔																																						ܴ௦௔ + max௔ᇱߛ ,′ݏ)ܳ (ିߠ|ܽ ݊݋݊′ݏ	݈ܽ݊݅݉ݎ݁ݐ − (3) .	′ݏ	݈ܽ݊݅݉ݎ݁ݐ

The temporal difference (TD) error is computed by ߜ = ௦௔ݕ − ,ݏ)ܳ (4) .(ߠ|ܽ
The loss function is defined as, ℒ(ߠ) = ଵଶ ଶ. (5)ߜ

The weights ߠ of the evaluation network are updated by the
gradient descent to minimize the loss. The weight ିߠ of the
target network is set to the same weight as the evaluation
network every ܥ steps. These steps of on-line training and Q-
learning repeat until the state ݏ′ is a terminal to end an episode.

III. PROCESSING ELEMENT ARCHITECTURE FOR DEEP Q

NETWORK

We design a generalized hardware accelerator to support the
deep Q network operations with on-line training and Q-learning.

Fig. 2 Neural network for DQN

The neural network for DQN is described in Fig. 2, where ௟ܰ
denotes the number of neurons in the lth layer. To support on-
line Q-learning and training, the accelerator must be capable of
performing the following operations.

 On-line Q-learning

Forward propagation in neural network is required for on-

line Q-learning that uses ܳ(ݏ, (ߠ|ܽ and ܳ(ݏᇱ, (ିߠ|ܽ as
described in (1), which takes the form of ݕ௟,௡ = ∑ ෤௟ିଵ,௠ே೗షభ௠ୀଵݕ௟,௠,௡ݓ + ܾ௟,௡, (6)

and ݕ෤௟,௡ = (7) (௟,௡ݕ)߶

where ݈ is the layer index,	߶(∙) is the activation function, and ݕ෤଴,௠ = ௠ݔ . Then, ܳ(ݏ, (ߠ|ܽ = max௡ ෤ଶ,௡ݕ given state ݏ ଵݔ	଴ݔ]= .[ேబݔ	…
 On-line training

Backward propagation in neural network is also needed for
on-line training. The update equation can be derived by ߠᇱ = ߠ + ௦௔ݕ)ߙ − ,ݏ)ܳ ,ݏ)ఏܳ∇((ߠ|ܽ = (ߠ|ܽ ߠ + ߠ∆ߙ = ߠ + ,ݏ)ఏܳ∇ߜߙ (8) ,(ߠ|ܽ

where ߙ is the learning rate. If the output layer has no activation
function,

 ∆ܾଶ,௡ = డℒ(ఏ)డ௕మ,೙ = ଶ,௠,௡ݓ∆ (9) ,ߜ = డℒ(ఏ)డ௪మ,೘,೙ = ෤ଵ,௠ݕߜ = ∆ܾଶ,௡ݕ෤ଵ,௠. (10)

For the hidden layer,

 ∆ܾଵ,௠ = డℒ(ఏ)డ௕భ,೘ = ଶ,௠,௡߶ሶݓߜ = (ଵ,௠ݕ) ߶ሶ ଵ,௞,௠ݓ∆ ଶ,௠,௡, (11)ݓଶ,௡ܾ∆(ଵ,௠ݕ) = డℒ(ఏ)డ௪భ,ೖ,೘ = ∆ܾଵ,௠ݔ௞, (12)

where ߶ሶ (∙) is the first derivative of the activation function.
Note that TD error ߜ exists in ∆ܾ௟,௡ and ∆ݓ௟,௠,௡ in Eqs. (9)-(12),
the gradient of the loss function with respect to ܾ௟,௡ and ݓ௟,௠,௡
for ݈ = 1,2 . It means that the magnitude of the TD error
influences the magnitude of the gradient for parameter update.

On-line Q-learning needs the results of ܳ(ݏ, ,′ݏ)ܳ and (ߠ|ܽ Thus, two sets of processing element (PE) arrays .(ିߠ|ܽ
are used, one for ܳ(ݏ, ,′ݏ)ܳ and the other for (ߠ|ܽ For .(ିߠ|ܽ

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

83

Fig. 3 Architecture of PE Array

each PE array, ܭ PEs are employed each having four
multipliers and accumulators, as shown in Fig. 3. The input
reuse architecture is adopted for input A. In order to provide
configurability, multiplexers are inserted to change the signal
flows. For the forward propagation (FP) of on-line Q learning,
initially, the PE is configured in Mode 0. Variable ݕ෤௟ିଵ,௠ and ܾ௟,௡ are fed from input A and input B, respectively. Input C
then sends the weight ݓ௟,௠,௡ . Next, the PE is switched into
Mode 1, which computes the partial sum of Eq. (6) in each clock
cycle ݐ. Λ௠,௡(௧ାଵ) = ෤௟ିଵ,௠ݕ௟,௠,௡ݓ + Λ௠,௡(௧) . (13)
with ݕ෤௟ିଵ,௠ from input A and ݓ௟,௠,௡ from input B. It takes ௟ܰିଵ ௟ܰ/(4ܭ) clock cycles to complete the partial sum
calculation. Note that ݕଵ,௡ will pass through the activation
function and the derivative of activation function. Both outputs
are stored in the local buffer for subsequent use. In addition, the
partial sums must be added together to generate the final Q
value, ܳ(ݏ, ,′ݏ)ܳ or (ߠ|ܽ The PE is then set to Mode 1 .(ିߠ|ܽ
again but performs tree addition with input A equal to 1. It takes ݃݋݈ڿଶ(ܵ)ۀ clock cycles if there are ܵ partial sums.

To support the back propagation (BP) for computing the
gradient ∆ݓଶ,௠,௡ described in Eq. (10), the PEs can be
configured to Mode 0, which performs multiplication only with
input B equal to zero. There are ଵܰ multiplications. If two PE
arrays are utilized concurrently, ڿ ଵܰ/(8ܭ)ۀ clock cycles are
required. As to Eq. (11) about the gradient ∆ܾଵ,௠, Mode 0 is
still used for multiplication of ∆ܾଶ,௡ and ݓଶ,௠,௡ to generate the
intermediate result Λ௠. To complete the calculation of ∆ܾଵ,௠ in
Eq. (11), ߶ሶ is fetched from local buffer and the (ଵ,௠ݕ)
multiplication of Λ௠ and ߶ሶ is performed. Note that each (ଵ,௠ݕ)
PE supports only vector multiplication by a scalar.
Consequently, only one among four outputs is valid and it takes

Table I Input settings and processing cycles of the respective
step.

 Input A Input B Input C Clock Cycles

FP Initialization
(Mode 0)

ڿ ௟,௠,௡ݓ ෤௟ିଵ,௠ ܾ௟,௡ݕ ௟ܰ/(4ܭ)ۀ
FP Partial Sum

(Mode 1)
௟,௠,௡ ௟ܰିଵݓ - ෤௟ିଵ,௠ݕ ௟ܰ/(4ܭ)

Tree Addition
(Mode 1)

1 Λ௠భ,௡భ(௧) Λ௠మ,௡మ(௧) ۀ(ܵ)ଶ݃݋݈ڿ
BP Mul. (10)

(Mode 0)
∆ܾଶ,௡ 0 ݕ෤ଵ,௠ ڿ ଵܰ/(8ܭ)ۀ

BP Mul. (11)
(Mode 0)

∆ܾଶ,௡ 0 ݓଶ,௠,௡ ڿ ଵܰ/(8ܭ)ۀ
BP Mul. (11)

(Mode 0) Λ௠ 0 ߶ሶ (ଵ,௠ݕ) 4ڿ ଵܰ/(8ܭ)ۀ
BP Mul. (12)

(Mode 0)
଴,௞ 0 ∆ܾଵ,௠ ଴ܰݔ ଵܰ/(8ܭ)

L1 Parameter
Update

(Mode 0)
଴ܰ ߠ∆ ߠ ߙ ଵܰ/(8ܭ), ڿ ଵܰ/(8ܭ)ۀ

L2 Parameter
Update

(Mode 0)
4ڿ ۀ(ܭ8)/1ڿ ,(ܭ8)/ଵܰ ߠ∆ ߠ ߙ ଵܰ/(8ܭ)ۀ clock cycles. The gradient ∆ݓଵ,௞,௠ can be

obtained by multiplication of ∆ܾଵ,௠ and ݔ௞. Therefore, we can
use Mode 0 with ݔ௞ from input A and ଴ܰ ଵܰ/(8ܭ) clock cycles
are required. The parameter update needs ଵܰ ଶܰ/(8ܭ) clock
cycles for weights and ڿ ଵܰ/(8ܭ)ۀ clock cycles for bias in layer
1. The PEs remain in Mode 0. The learning rate ߙ is assigned
to input A, the parameter ߠ is sent from input B. The controls
and settings for each step are summarized in Table I.

IV. DATAPATH WITH FLEXIBLE BLOCK FLOATING POINT

To verify the datapath precision requirements of on-line Q-
learning and training, a maze problem of size 12× 12 is
employed for testing. If the robot arrives at the destination,

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

84

reward of +1 will be obtained. On the other hand, if the robot
falls in a trap, reward of -1 will be received. Both the destination
and the trap are terminal states which end the episode. An
example is given in Fig. 4. The black area denotes the blockage.
The numbers of neurons, ଴ܰ, ଵܰ, and ଶܰ in each layer, are set
to 144, 72, and 4, respectively. Define win rate ࣞ௜ of the ݅th
epoch as ࣞ୧ = ଵா ∑ ܵ(݅ − ݆)ாିଵ௝ୀ଴ , (14)

where ܧ	 = 200 and ܵ(݅) = 1 if the robot can arrive at the
destination in the ݅th episode successfully. Otherwise ܵ(݅) = 0.
Fig. 5 shows the simulation results of the epoch win rate versus
mantissa wordlength (WL) of the multipliers and the adders in
PE arrays given the cycle-accurate model described in Fig. 3. It
is clear that if the mantissa wordlength is not sufficient, the
DRL accelerator may not converge. The IEEE-754 floating-
point (FP) representation uses 23 bits for mantissa and thus
almost floating-point precision is required for the datapath of
the DRL accelerator.

Fig. 4 Maze of size 12×12.

Fig. 5 Datapath precision requirement.

The floating-point representation incurs higher complexity of
the adders and multipliers compared to the fixed-point
representation. In order to further reduce the complexity of the
processing elements, the variations of the dynamic ranges of
different variables are observed. Fig. 6 shows the distributions
of the exponents of the gradient ∆ܾଶ,௡ and ∆ݓଵ,௞,௠ at the early
and late stages during the learning process. The wider dynamic
range is required at the early stage than at the late stage. In
addition, when the network gets converged, the TD error
becomes small and so do gradients. If the maximal exponent of
the TD error is denoted as ℰஔ,୫ୟ୶, then from (9) and (10), the
maximal exponent of ∆ܾଶ,௡ and ∆ݓଶ,௠,௡ can be expressed as

Fig. 6 Distribution of exponents from gradient at early and late
stages.

Fig. 7 Distribution of exponents from the hidden layer and Q
values at early and late stages. ℰ୼ୠమ,୫ୟ୶ = ℰஔ,୫ୟ୶ (15) ℰ୼୵మ,୫ୟ୶ = ℰஔ,୫ୟ୶ + ℰ௬෤భ,୫ୟ୶ −	ℰ୭୤୤ୱୣ୲ (16)

where ℰ௬෤భ,୫ୟ୶ is the maximal exponent of layer 1 output ݕ෤ଵ,௠
and ℰ୭୤୤ୱୣ୲ = 127. From (11) and (12), the maximal exponent
of ∆ܾଵ,௠ then becomes ℰ୼ୠభ,୫ୟ୶ ≤ ℰஔ,୫ୟ୶ + ℰ୵మ,୫ୟ୶ + ℰமሶ ,୫ୟ୶ −	ℰ୭୤୤ୱୣ୲ (17)
Note that ℰமሶ ,୫ୟ୶ = −2 for sigmoid function and ℰமሶ ,୫ୟ୶ = 0
for Relu function and hyperbolic tangent. Besides, ℰ୼୵భ,୫ୟ୶ = ℰ୼ୠభ,୫ୟ୶ + ℰ୶బ,୫ୟ୶ − 	ℰ୭୤୤ୱୣ୲. (18)
Therefore, the maximal exponent of these gradients can be
estimated according to ℰஔ,୫ୟ୶. Fig. 7 shows that the distribution
of exponents from hidden layer outputs and Q values. It is
interesting that the dynamic ranges of these variables do not
vary too much at the early and late stages.

The exponents of the augend and addend must be aligned to
the maximum of them for the floating-point addition.
Consequently, for those calculations that use Mode-1
accumulation of the PE in Table I, the precise floating-point

E
po

ch
 W

in
 R

at
e

D
i

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

85

Fig. 8 Performance comparison for different settings about
BFP and FP.

addition causes repeatedly realignments during the
accumulation. Drumond et al. mentioned about this
phenomenon in [13] and hybrid block floating-point instead of
block floating-point (BFP) is used for the deep neural network
training. Only the dot operations are handled by the block
floating-point and the remaining operations are still performed
in floating-point calculation. FP-to-BFP conversion is required
and inserted in the interface of dot-operations.

Here, we propose to use flexible block floating-point design
for the DRL accelerator, which needs not only on-line training
but also on-line Q-learning. Note that the alignment of
exponents of augend and addend and readjustment the exponent
of the sum result in a large overhead of a floating-point adder
compared to a fixed-point adder. From the scheduling of PE
operations discussed in Sec. III, flexible block floating-point is
applied to the data processing utilizing Mode-1 accumulation
according to the respective data statistics without the FP to BPF
conversion. Therefore, eight D flip-flops are adopted to record
the block exponents used for the accumulations of the
respective results: hidden layer outputs, FP partial sum, FP tree
addition, layer-1 weights, layer-1 bias, layer-2 weights, layer-2
bias, and gradients. These values except the last one can be
obtained from the observations of the early learning process.
For example, given offset of 127, the block exponent of hidden
layer outputs is set to 125 from Fig. 7.

Since TD error is gradually decreased and influenced the
magnitude of gradients, thus we use floating-point to calculate
TD error in Eq. (4) and obtain its true exponent. PE1, marked
as red block with a floating-point adder, is reserved for TD error
calculation. After the true exponent of TD error is derived, the
maximum exponent of TD errors in 50 episodes is employed as
the shared block exponent of gradients so as to reserve precision
for gradients.

For FBFP datapath, the fixed-point adder without post
alignment can be used, the same as the BFP datapath. However,
BFP needs a maximum searcher for a block of data. The
maximal exponent is predefined for different variable groups
with FBFP. In addition, the adjustment of the block exponent
of gradient variables is not derived from the variables
themselves, but derived from the TD errors, which is usually

Fig. 9 Block floating-point adder.

Table II: Complexity Comparison.

Area (μm2) 200MHz 400MHz

FP MAC
[8]

Adder 1244 1610
Multiplier 2118 3254

MAC 3946 5441

FBFP
MAC

Adder 703 963
Multiplier 2331 3001

MAC 3651 4582

Adder Improvement 43.4% 40.2%

MAC Improvement 7.47% 15.79%

decreasing gradually during the learning process. Thus, FBFP
saves the complexity and latency for searching the maximal
exponent of a data block.

To verify the feasibility of the flexible block floating-point,
a cycle-accurate bit-true model is constructed and several
settings are compared, including FP, FBFP, BFP with one
shared exponent (BFP case 1) which is equivalent to fixed point,
and 8 separate BFP with fixed exponent for gradients (BFP case
2). According to the operation configuration defined in Table I,
the corresponding exponent will be used during the PE
processing. Namely, the variation of TD error does not change
the respective block exponents of gradients. The simulation
result is given in Fig. 8. The accelerator using BFP with only
one shared exponent for accumulation can not achieve
converged learning performance. The learning performance of
the accelerator using FBFP is better than that using BFP case 2
because the precision of gradients becomes worse at the late
stage during the learning process in BFP case 2. Hence, it is also
clear that compared to FP, FBFP can attain hardware reduction
with slight performance degradation.

The complexity saving is then investigated. Implementation
of DRL with FP is described in [8]. The FP and FBPF MACs
are designed respectively in 40nm CMOS technology with 23-
bit mantissa at the same timing constraint of 200MHz and
400Mz operating frequency. The FBFP adder is shown in Fig.
9. No post-alignment is required after the adder. The
complexity comparison in 40nm CMOS technology is given in
Table II. The area of a FBPF adder is only about 60% of an FP
adder. The area reduction of the FBFP MAC is about 15.8%
compared to the FP MAC at the timing constraint of 2.5ns.

V. CONCLUSION

In this paper, the PE architecture and scheduling for DRL are
designed. Two PE arrays are constructed, one for evaluation
network calculation and the other for target network calculation
during forward propagation. During backward propagation, two

0 500 1000 1500 2000 2500 3000 3500 4000
Epoch i

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
FP
FBFP
BFP case 1
BFP case 2

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

86

PE arrays are adopted for gradient calculation and parameter
update. The PE can be configured in two modes that can support
all the required operations. Because of on-line Q-learning and
on-line training, the datapath requires high precision. In order
to save hardware complexity, FBFP is proposed which exploits
the signal statistics and the block exponent of gradients can be
adjusted according to the variation of TD errors. Simulation
results show the feasibility of using FBFP and the small
performance degradation compared to the one using FP.
However, the FBPF can achieve 15.8% hardware saving for the
complexity at high operating frequency. Consequently,
feasibility of the DRL accelerator with FBFP supporting on-line
Q-learning and training is demonstrated.

REFERENCES

[1] D. Silver et al. “Mastering the game of Go without human

knowledge,” Nature, 50(7676):354-359, Oct. 2017.

[2] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A.
Bharath, “Deep reinforcement learning: A brief survey,” IEEE
Signal Processing Magazine, vol. 34, pp. 26–38, 2017.

[3] G. Kahn, A. Villaflor, B. Ding, P. Abbeel, S. Levine, “Self
supervised deep reinforcement learning with generalized
computation graphs for robot navigation,” 2018 IEEE
International Conference on Robotics and Automation (ICRA),
2018.

[4] J. Zhu, Y. Song, D. Jian, H. Song, “A New Deep-Q-Learning-
Based Transmission Scheduling Mechanism for the Cognitive
Internet of Things,” IEEE Internet of Things Journal, Vol. 5,
No. 4, pp. 2375-2385, Aug. 2018.

[5] Y. Wei, F. R. Yu, M. Song, Z. Han, “Joint Optimization of
Caching, Computing, and Radio Resources for Fog-Enabled
IoT Using Natural Actor–Critic Deep Reinforcement
Learning,” IEEE Internet of Things Journal, vol. 6, No. 2, pp.
2061-2073, Apr. 2019.

[6] S. Spano et al. “An Efficient Hardware Implementation of
Reinforcement Learning: The Q-Learning Algorithm,” IEEE
Access, vol. 7, pp. 186340-186351, Dec. 2019.

[7] Y. Kim et al., “A 0.55 V 1.1 mW Artificial Intelligence
Processor with On-Chip PVT Compensation for Autonomous
Mobile Robots,” IEEE Trans. Circuits Syst. I. Reg. Papers, pp.
567-580, Aug. 2017.

[8] P. R. Gankidi et al, “FPGA Architecture for Deep Learning and
its application to Planetary Robotics,” in Proc. 2017 IEEE
Aerospace Conf., pp. 1-9.

[9] H. Li, T. Wei, A. Ren, Q. Zhu, and Y. Wang, “Deep
reinforcement learning: framework, applications, and
embedded implementations,” 2017 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2017, pp.
847-854.

[10] A. Amravati, S. B. Nasir, S. Thangadurai, I. Yoon, A.
Raychowdury, “A 55nm Time-domain mixed-signal
neuromorphic accelerator with stochastic synapses and
embedded reinforcement learning for autonomous micro-
robots,” 2018 IEEE International Solid - State Circuits
Conference - (ISSCC), pp. 124-126.

[11] C. Sakr and N. Shanbhag, “An analytical method to determine
minimum per-layer precision of deep neural networks,” in Proc.
IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), Apr. 2018, pp. 1090-1094.

[12] S. Shukla et al., “A Scalable Multi-TeraOPS Core for AI
Training and Inference” IEEE Solid-State Circuits Letters,
Early Access, 2019.

[13] M. Drumond, T. Lin, M. Jaggi, and E. Falsafi, “Training DNNs
with hybrid block floating point,” arXiv:1804.01526v3
[cs.LG], 2018.

[14] V. Mnih, et al. “Human level control through deep
reinforcement learning.” Nature, 518 (7540):529–533, 2015.

[15] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized
experience replay,” in International Conference on Learning
Representations, Nov 2016.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

87

