
 
 

 

Abstract—Deep reinforcement learning is a technique that allows 
the agent to have evolving learning capability for unknown 
environments and thus has the potential to surpass human 
expertise. The hardware architecture for DRL supporting on-line 
Q-learning and on-line training is presented in this paper. Two 
processing element (PE) arrays are used for handling evaluation 
network and target network respectively. Through configuration 
of two modes for PE operations, all required forward and 
backward computations can be accomplished and the number of 
processing cycles can be derived. Due to the precision required for 
on-line Q-learning and training, we propose flexible block 
floating-point (FBFP) to reduce the overhead of floating-point 
adders. The FBFP exploits different signal statistics during the 
learning process. Furthermore, the respective block exponents of 
gradients are adjusted following the variation of temporal-
difference (TD) error to reserve resolution. From the simulation 
results, the FBFP multiplier-and-accumulator (MAC) can reduce 
15.8% of complexity compared to FP MAC while good learning 
performance can be maintained. 

Index Terms—Block floating-point, deep Q network, 
reinforcement learning, architecture design. 

I. INTRODUCTION 

Due to the successful experience of AlphaGo Zero, which 
learns the game of Go from scratch without human knowledge 
based on the deep reinforcement learning (DRL) algorithm [1], 
researchers tend to employ DRL in various application domains 
to exploit the possibilities that it brings. Studies on DRL in 
mobile robot navigation are popular in order to combat the 
dynamically changing environments [2][3]. In addition, DRL 
can also aid in deployment of internet of things (IoT) that needs 
decision process for resource allocation or scheduling [4][5]. 
Thus, DRL has been shown a potential technique to incorporate 
evolving learning capability for signal processing and system 
design. 

Although the rapid growth of massive computations enabled 
by parallel processing of GPU benefits the development of DRL, 
implementation and realization of DRL in mobile or edge 
devices must take performance and power consumption into 
consideration. Some dedicated hardware accelerators have been 
presented in the literature. A Q-learning processor is designed 
on FPGA in [6], which uses fixed point for a 8×4 Q-matrix. An 
AI processor in 65nm CMOS technology with processing 
elements for tree search and reinforcement learning is reported 
in [7] for mobile robot navigation, which consumes 1.1mW at 
0.55V. A planetary navigation robot is implemented on FPGA 
in [8], and the Q-learning algorithm with multi-layer perceptron 
containing 11 neurons for simple environments and 25 neurons 
for complex environments is adopted. Both fixed point and 

floating point (FP) are considered for datapath. In [9], a general 
framework for DRL utilizing stochastic computing is described, 
which includes off-line DNN construction and on-line deep Q-
learning, providing the hardware synthesis results in CMOS 
technology. In [10], a neuromorphic accelerator using 
stochastic neural network plus Q learning with 6-bit multiplier-
and-accumulator (MAC) units is fabricated in 55nm CMOS 
technology. We can see that the hardware accelerators have 
different coverages, from reinforcement Q learning to DRL and 
from off-line training to on-line training. Consequently, the 
hardware costs and performances are quite different. 

Datapath quantization is an important task to tradeoff 
performance and complexity in hardware implementation and 
has been investigated widely in the designs of deep neural 
network for supervised learning. For inference applications, 
fixed-point representation is frequently used to save power and 
complexity with slightly sacrificed accuracy [11]. On the other 
hand, when both training and inference are taken into 
consideration, 32-bit floating point and customized 16-bit 
floating point are used in [12]. As mentioned in [13], the 
dynamic range provided by fixed point is usually insufficient 
for deep neural network training convergence and they propose 
hybrid block floating point for hardware supporting training for 
general applications. All dot products are performed in block 
floating-point and the remaining blocks are operated in floating 
point format so as to gain some advantage of the fixed-point 
arithmetic design for dot product. 

 In this paper, architecture is first developed to support both 
on-line DRL training and Q-learning. In order to save the 
complexity for arithmetic units of a general DRL accelerator 
and to ensure the training convergence for various applications, 
we exploit the data statistics and propose to use FBFP in the 
PEs that deal with both weight update and Q-value computation. 
The simulation results from the cycle-accurate bit-true model 
show that the FBFP datapath works well and the agent still 
achieves good performance compared to the floating-point 
design. In addition, from the synthesis results, the 15.8% area 
complexity can be saved if the FBFP adders are adopted in the 
MAC of the PE compared to the FP MAC at 400MHz operating 
frequency in 40nm CMOS technology. 

In the following, deep reinforcement learning with 
prioritized experience replay is introduced in Sec. II. Sec. III 
describes the architecture and scheduling for on-line training 
and Q-learning. Sec. IV discusses the performance and 
complexity comparison of FBFP and FP. Conclusion is given 
in Sec. V. 
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II. DEEP Q NETWORK WITH PRIORITIZED EXPERIENCE 

REPLAY 

 

Fig. 1 Flow of DQN. 

Reinforcement learning, one of the machine learning 
techniques, considers the task of an agent interacting with the 
environment. Usually, it is modelled by the Markov decision 
process described by state ܵ௧, action ܣ௧, and reward ܴ௧ at each 
step ݐ. The agent aims to find a policy ߨ to optimize the long-
term return defined by  Qగ(ݏ, ܽ) = ௧|ܵ௧ܩሼܧ = ,ݏ ௧ܣ = ܽሽ,                (1) 
where ܩ௧ = ܴ௧ାଵ + ௧ାଶܴߛ + ⋯ = ∑ ௞ܴ௧ା௞ାଵ.ஶ௞ୀ଴ߛ          (2) 
with the discount factor 0 ≤ ߛ ≤ 1.  

Deep reinforcement learning, which uses high dimensional 
sensor data and neural network to learn the control policy, was 
presented in [14]. Two networks are employed to approximate 
the action-value function, ܳ(ݏ, (ߠ|ܽ  from the evaluation 
network and ܳ(ݏ′,  from the target network as shown in (ିߠ|ܽ
Fig. 1, where ݏ is the current state and ݏ′ is the next state. For 
each state ݏ, the agent determines the action	ܽ derived from ܳ(ݏ, (ߠ|ܽ , ∀ܽ , and the ε -greedy strategy. The agent then 
observes the reward ܴ௦௔  fedback by the environment. The 
transition information (ݏ, ܽ, ܴ௦௔,  is saved in the experience (′ݏ
replay buffer. Given mini-batch size ܤ ܤ ,  transitions are 
sampled from the replay buffer according to their priority [15]. 
Define ݕ௦௔ = ቊܴ௦௔																																						ܴ௦௔ + max௔ᇱߛ ,′ݏ)ܳ (ିߠ|ܽ ݊݋݊′ݏ	݈ܽ݊݅݉ݎ݁ݐ −  (3)      .	′ݏ	݈ܽ݊݅݉ݎ݁ݐ

The temporal difference (TD) error is computed by ߜ = ௦௔ݕ − ,ݏ)ܳ  (4)                             .(ߠ|ܽ
The loss function is defined as,  ℒ(ߠ) = ଵଶ  ଶ.                                   (5)ߜ

The weights ߠ  of the evaluation network are updated by the 
gradient descent to minimize the loss. The weight ିߠ  of the 
target network is set to the same weight as the evaluation 
network every ܥ steps. These steps of on-line training and Q-
learning repeat until the state ݏ′ is a terminal to end an episode. 

III. PROCESSING ELEMENT ARCHITECTURE FOR DEEP Q 

NETWORK 

We design a generalized hardware accelerator to support the 
deep Q network operations with on-line training and Q-learning. 
 

 

 
Fig. 2 Neural network for DQN 

The neural network for DQN is described in Fig. 2, where ௟ܰ 
denotes the number of neurons in the lth layer. To support on-
line Q-learning and training, the accelerator must be capable of 
performing the following operations. 

 On-line Q-learning 

Forward propagation in neural network is required for on- 

line Q-learning that uses ܳ(ݏ, (ߠ|ܽ  and ܳ(ݏᇱ, (ିߠ|ܽ  as 
described in (1), which takes the form of ݕ௟,௡ = ∑ ෤௟ିଵ,௠ே೗షభ௠ୀଵݕ௟,௠,௡ݓ + ܾ௟,௡,                     (6) 

and ݕ෤௟,௡ =  (7)                                (௟,௡ݕ)߶

where ݈ is the layer index,	߶(∙) is the activation function, and ݕ෤଴,௠ = ௠ݔ . Then, ܳ(ݏ, (ߠ|ܽ = max௡ ෤ଶ,௡ݕ  given state ݏ ଵݔ	଴ݔ]=  .[ேబݔ	…
 On-line training 

Backward propagation in neural network is also needed for 
on-line training. The update equation can be derived by ߠᇱ = ߠ + ௦௔ݕ)ߙ − ,ݏ)ܳ ,ݏ)ఏܳ∇((ߠ|ܽ = (ߠ|ܽ ߠ + ߠ∆ߙ = ߠ + ,ݏ)ఏܳ∇ߜߙ  (8)                  ,(ߠ|ܽ

where ߙ is the learning rate. If the output layer has no activation 
function,  

    ∆ܾଶ,௡ = డℒ(ఏ)డ௕మ,೙ = ଶ,௠,௡ݓ∆ (9)                                               ,ߜ = డℒ(ఏ)డ௪మ,೘,೙ = ෤ଵ,௠ݕߜ = ∆ܾଶ,௡ݕ෤ଵ,௠.          (10) 

For the hidden layer,  

  ∆ܾଵ,௠ = డℒ(ఏ)డ௕భ,೘ = ଶ,௠,௡߶ሶݓߜ =                       (ଵ,௠ݕ) ߶ሶ ଵ,௞,௠ݓ∆ ଶ,௠,௡,                     (11)ݓଶ,௡ܾ∆(ଵ,௠ݕ) = డℒ(ఏ)డ௪భ,ೖ,೘ = ∆ܾଵ,௠ݔ௞,                       (12) 

where ߶ሶ (∙)  is the first derivative of the activation function. 
Note that TD error ߜ exists in ∆ܾ௟,௡ and ∆ݓ௟,௠,௡ in Eqs. (9)-(12), 
the gradient of the loss function with respect to ܾ௟,௡ and ݓ௟,௠,௡ 
for ݈ = 1,2 . It means that the magnitude of the TD error 
influences the magnitude of the gradient for parameter update.  

On-line Q-learning needs the results of ܳ(ݏ, ,′ݏ)ܳ and (ߠ|ܽ  Thus, two sets of processing element (PE) arrays .(ିߠ|ܽ
are used, one for ܳ(ݏ, ,′ݏ)ܳ and the other for (ߠ|ܽ  For .(ିߠ|ܽ
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Fig. 3 Architecture of PE Array 

each PE array, ܭ  PEs are employed each having four 
multipliers and accumulators, as shown in Fig. 3. The input 
reuse architecture is adopted for input A. In order to provide 
configurability, multiplexers are inserted to change the signal 
flows. For the forward propagation (FP) of on-line Q learning, 
initially, the PE is configured in Mode 0. Variable ݕ෤௟ିଵ,௠ and ܾ௟,௡ are fed from input A and input B, respectively.  Input C 
then sends the weight ݓ௟,௠,௡ . Next, the PE is switched into 
Mode 1, which computes the partial sum of Eq. (6) in each clock 
cycle ݐ. Λ௠,௡(௧ାଵ) = ෤௟ିଵ,௠ݕ௟,௠,௡ݓ + Λ௠,௡(௧) .                 (13) 
with ݕ෤௟ିଵ,௠  from input A and ݓ௟,௠,௡  from input B. It takes ௟ܰିଵ ௟ܰ/(4ܭ)  clock cycles to complete the partial sum 
calculation. Note that ݕଵ,௡  will pass through the activation 
function and the derivative of activation function. Both outputs 
are stored in the local buffer for subsequent use. In addition, the 
partial sums must be added together to generate the final Q 
value, ܳ(ݏ, ,′ݏ)ܳ or (ߠ|ܽ  The PE is then set to Mode 1 .(ିߠ|ܽ
again but performs tree addition with input A equal to 1. It takes ݃݋݈ڿଶ(ܵ)ۀ clock cycles if there are ܵ partial sums. 

To support the back propagation (BP) for computing the 
gradient ∆ݓଶ,௠,௡  described in Eq. (10), the PEs can be 
configured to Mode 0, which performs multiplication only with 
input B equal to zero. There are ଵܰ multiplications. If two PE 
arrays are utilized concurrently, ڿ ଵܰ/(8ܭ)ۀ clock cycles are 
required. As to Eq. (11) about the gradient ∆ܾଵ,௠, Mode 0 is 
still used for multiplication of ∆ܾଶ,௡ and ݓଶ,௠,௡ to generate the 
intermediate result Λ௠. To complete the calculation of ∆ܾଵ,௠ in 
Eq. (11), ߶ሶ  is fetched from local buffer and the (ଵ,௠ݕ)
multiplication of Λ௠ and ߶ሶ  is performed. Note that each (ଵ,௠ݕ)
PE supports only vector  multiplication by a  scalar. 
Consequently, only one among four outputs is valid and it takes 

Table I Input settings and processing cycles of the respective 
step. 

 Input A Input B Input C Clock Cycles 

FP Initialization 
(Mode 0) 

ڿ ௟,௠,௡ݓ ෤௟ିଵ,௠ ܾ௟,௡ݕ ௟ܰ/(4ܭ)ۀ 
FP Partial Sum 

(Mode 1) 
௟,௠,௡ ௟ܰିଵݓ - ෤௟ିଵ,௠ݕ ௟ܰ/(4ܭ) 

Tree Addition 
(Mode 1) 

1 Λ௠భ,௡భ(௧)  Λ௠మ,௡మ(௧)  ۀ(ܵ)ଶ݃݋݈ڿ 
BP Mul. (10) 

(Mode 0) 
∆ܾଶ,௡ 0 ݕ෤ଵ,௠ ڿ ଵܰ/(8ܭ)ۀ 

BP Mul. (11) 
(Mode 0) 

∆ܾଶ,௡ 0 ݓଶ,௠,௡ ڿ ଵܰ/(8ܭ)ۀ 
BP Mul. (11) 

(Mode 0) Λ௠ 0 ߶ሶ (ଵ,௠ݕ) 4ڿ ଵܰ/(8ܭ)ۀ 
BP Mul. (12) 

(Mode 0) 
଴,௞ 0 ∆ܾଵ,௠ ଴ܰݔ ଵܰ/(8ܭ) 

L1 Parameter 
Update 

(Mode 0) 
଴ܰ ߠ∆ ߠ ߙ ଵܰ/(8ܭ), ڿ ଵܰ/(8ܭ)ۀ 

L2 Parameter 
Update 

(Mode 0) 
4ڿ ۀ(ܭ8)/1ڿ ,(ܭ8)/ଵܰ ߠ∆ ߠ ߙ ଵܰ/(8ܭ)ۀ  clock cycles.  The gradient ∆ݓଵ,௞,௠  can be 

obtained by multiplication of ∆ܾଵ,௠ and ݔ௞. Therefore, we can 
use Mode 0 with ݔ௞ from input A and ଴ܰ ଵܰ/(8ܭ) clock cycles 
are required. The parameter update needs ଵܰ ଶܰ/(8ܭ)  clock 
cycles for weights and ڿ ଵܰ/(8ܭ)ۀ clock cycles for bias in layer 
1. The PEs remain in Mode 0. The learning rate ߙ is assigned 
to input A, the parameter ߠ is sent from input B. The controls 
and settings for each step are summarized in Table I. 

IV. DATAPATH WITH FLEXIBLE BLOCK FLOATING POINT 

To verify the datapath precision requirements of on-line Q-
learning and training, a maze problem of size 12× 12 is 
employed for testing. If the robot arrives at the destination, 

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

84



 
 

 

reward of +1 will be obtained. On the other hand, if the robot 
falls in a trap, reward of -1 will be received. Both the destination 
and the trap are terminal states which end the episode. An 
example is given in Fig. 4. The black area denotes the blockage. 
The numbers of neurons, ଴ܰ, ଵܰ, and ଶܰ in each layer, are set 
to 144, 72, and 4, respectively. Define win rate ࣞ௜  of the ݅th 
epoch as ࣞ୧ = ଵா ∑ ܵ(݅ − ݆)ாିଵ௝ୀ଴ ,                    (14) 

where ܧ	 = 200  and ܵ(݅) = 1  if the robot can arrive at the 
destination in the ݅th episode successfully. Otherwise ܵ(݅) = 0. 
Fig. 5 shows the simulation results of the epoch win rate versus 
mantissa wordlength (WL) of the multipliers and the adders in 
PE arrays given the cycle-accurate model described in Fig. 3. It 
is clear that if the mantissa wordlength is not sufficient, the 
DRL accelerator may not converge. The IEEE-754 floating-
point (FP) representation uses 23 bits for mantissa and thus 
almost floating-point precision is required for the datapath of 
the DRL accelerator.  

 

Fig. 4 Maze of size 12×12. 

  
Fig. 5 Datapath precision requirement. 

The floating-point representation incurs higher complexity of 
the adders and multipliers compared to the fixed-point 
representation. In order to further reduce the complexity of the 
processing elements, the variations of the dynamic ranges of 
different variables are observed. Fig. 6 shows the distributions 
of the exponents of the gradient ∆ܾଶ,௡ and ∆ݓଵ,௞,௠  at the early 
and late stages during the learning process. The wider dynamic 
range is required at the early stage than at the late stage. In 
addition, when the network gets converged, the TD error 
becomes small and so do gradients. If the maximal exponent of 
the TD error is denoted as ℰஔ,୫ୟ୶, then from (9) and (10), the 
maximal exponent of ∆ܾଶ,௡ and ∆ݓଶ,௠,௡ can be expressed as 

 

Fig. 6 Distribution of exponents from gradient at early and late 
stages. 

 

Fig. 7 Distribution of exponents from the hidden layer and Q 
values at early and late stages. ℰ୼ୠమ,୫ୟ୶ = ℰஔ,୫ୟ୶                            (15) ℰ୼୵మ,୫ୟ୶ = ℰஔ,୫ୟ୶ + ℰ௬෤భ,୫ୟ୶ −	ℰ୭୤୤ୱୣ୲              (16) 

where ℰ௬෤భ,୫ୟ୶ is the maximal exponent of layer 1 output ݕ෤ଵ,௠ 
and ℰ୭୤୤ୱୣ୲ = 127. From (11) and (12), the maximal exponent 
of ∆ܾଵ,௠ then becomes ℰ୼ୠభ,୫ୟ୶ ≤ ℰஔ,୫ୟ୶ + ℰ୵మ,୫ୟ୶ + ℰமሶ ,୫ୟ୶ −	ℰ୭୤୤ୱୣ୲     (17) 
Note that ℰமሶ ,୫ୟ୶ = −2 for sigmoid function and ℰமሶ ,୫ୟ୶ = 0 
for Relu function and hyperbolic tangent. Besides, ℰ୼୵భ,୫ୟ୶ = ℰ୼ୠభ,୫ୟ୶ + ℰ୶బ,୫ୟ୶ − 	ℰ୭୤୤ୱୣ୲.          (18) 
Therefore, the maximal exponent of these gradients can be 
estimated according to ℰஔ,୫ୟ୶. Fig. 7 shows that the distribution 
of exponents from hidden layer outputs and Q values. It is 
interesting that the dynamic ranges of these variables do not 
vary too much at the early and late stages. 

The exponents of the augend and addend must be aligned to 
the maximum of them for the floating-point addition. 
Consequently, for those calculations that use Mode-1 
accumulation of the PE in  Table I,  the  precise  floating-point  
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Fig. 8 Performance comparison for different settings about 
BFP and FP. 

addition causes repeatedly realignments during the 
accumulation. Drumond et al. mentioned about this 
phenomenon in [13] and hybrid block floating-point instead of 
block floating-point (BFP) is used for the deep neural network 
training. Only the dot operations are handled by the block 
floating-point and the remaining operations are still performed 
in floating-point calculation.  FP-to-BFP conversion is required 
and inserted in the interface of dot-operations. 

Here, we propose to use flexible block floating-point design 
for the DRL accelerator, which needs not only on-line training 
but also on-line Q-learning. Note that the alignment of 
exponents of augend and addend and readjustment the exponent 
of the sum result in a large overhead of a floating-point adder 
compared to a fixed-point adder. From the scheduling of PE 
operations discussed in Sec. III, flexible block floating-point is 
applied to the data processing utilizing Mode-1 accumulation 
according to the respective data statistics without the FP to BPF 
conversion. Therefore, eight D flip-flops are adopted to record 
the block exponents used for the accumulations of the 
respective results: hidden layer outputs, FP partial sum, FP tree 
addition, layer-1 weights, layer-1 bias, layer-2 weights, layer-2 
bias, and gradients. These values except the last one can be 
obtained from the observations of the early learning process. 
For example, given offset of 127, the block exponent of hidden 
layer outputs is set to 125 from Fig. 7.  

Since TD error is gradually decreased and influenced the 
magnitude of gradients, thus we use floating-point to calculate 
TD error in Eq. (4) and obtain its true exponent. PE1, marked 
as red block with a floating-point adder, is reserved for TD error 
calculation. After the true exponent of TD error is derived, the 
maximum exponent of TD errors in 50 episodes is employed as 
the shared block exponent of gradients so as to reserve precision 
for gradients. 

For FBFP datapath, the fixed-point adder without post 
alignment can be used, the same as the BFP datapath. However, 
BFP needs a maximum searcher for a block of data. The 
maximal exponent is predefined for different variable groups 
with FBFP. In addition, the adjustment of the block exponent 
of gradient variables is not derived from the variables 
themselves, but derived from the TD errors, which is usually 

 

Fig. 9 Block floating-point adder. 

Table II: Complexity Comparison. 

Area (μm2) 200MHz 400MHz 

FP MAC 
[8] 

Adder 1244 1610 
Multiplier 2118 3254 

MAC 3946 5441 

FBFP 
MAC 

Adder 703 963 
Multiplier 2331 3001 

MAC 3651 4582 

Adder Improvement 43.4% 40.2% 

MAC Improvement 7.47% 15.79% 

decreasing gradually during the learning process. Thus, FBFP 
saves the complexity and latency for searching the maximal 
exponent of a data block. 

To verify the feasibility of the flexible block floating-point, 
a cycle-accurate bit-true model is constructed and several 
settings are compared, including FP, FBFP, BFP with one 
shared exponent (BFP case 1) which is equivalent to fixed point, 
and 8 separate BFP with fixed exponent for gradients (BFP case 
2). According to the operation configuration defined in Table I, 
the corresponding exponent will be used during the PE 
processing. Namely, the variation of TD error does not change 
the respective block exponents of gradients. The simulation 
result is given in Fig. 8. The accelerator using BFP with only 
one shared exponent for accumulation can not achieve 
converged learning performance. The learning performance of 
the accelerator using FBFP is better than that using BFP case 2 
because the precision of gradients becomes worse at the late 
stage during the learning process in BFP case 2. Hence, it is also 
clear that compared to FP, FBFP can attain hardware reduction 
with slight performance degradation. 

The complexity saving is then investigated. Implementation 
of DRL with FP is described in [8]. The FP and FBPF MACs 
are designed respectively in 40nm CMOS technology with 23-
bit mantissa at the same timing constraint of 200MHz and 
400Mz operating frequency. The FBFP adder is shown in Fig. 
9. No post-alignment is required after the adder. The 
complexity comparison in 40nm CMOS technology is given in 
Table II. The area of a FBPF adder is only about 60% of an FP 
adder. The area reduction of the FBFP MAC is about 15.8% 
compared to the FP MAC at the timing constraint of 2.5ns. 

V. CONCLUSION 

In this paper, the PE architecture and scheduling for DRL are 
designed. Two PE arrays are constructed, one for evaluation 
network calculation and the other for target network calculation 
during forward propagation. During backward propagation, two 
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PE arrays are adopted for gradient calculation and parameter 
update. The PE can be configured in two modes that can support 
all the required operations. Because of on-line Q-learning and 
on-line training, the datapath requires high precision. In order 
to save hardware complexity, FBFP is proposed which exploits 
the signal statistics and the block exponent of gradients can be 
adjusted according to the variation of TD errors. Simulation 
results show the feasibility of using FBFP and the small 
performance degradation compared to the one using FP. 
However, the FBPF can achieve 15.8% hardware saving for the 
complexity at high operating frequency. Consequently, 
feasibility of the DRL accelerator with FBFP supporting on-line 
Q-learning and training is demonstrated. 
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