
Segmentation of Palm Vein Images Using U-Net
Felix Marattukalam and Waleed H. Abdulla

The University of Auckland, New Zealand
E-mail: (felix.marattukalam,w.abdulla)@auckland.ac.nz

Abstract—Biometric recognition methods using human traits
like fingerprint, face, voice, palm-print, and palm vein have
developed significantly in recent years. Palm vein recognition
has gained attention because of its unique characteristics and
high recognition accuracy. Many palm vein recognition methods
proposed recently suffer from the issue of having low-quality
images right at the acquisition stage, resulting in degradation
of recognition accuracy. This paper proposes the use of a
Convolutional Neural Network (CNN); U-Net, to effectively
segment the vein networks from the background of near-infrared
palm vein images. The experiments were conducted on the
HK PolyU Multispectral Palmprint and Palmvein database. The
original images taken from the database were reduced to region
of interests. Morphological operations were applied to obtain
ground truth mask images. The mask images were then used
to train a modified U-Net in which Gabor filter was applied in
the first block of the U-Net architecture. The accuracy of the
segmented vein images was obtained by determining the overlap
between the segmented images obtained from the network and
the corresponding ground truth images from the morphological
operations. The overlap is evaluated using the Jaccard Index and
Dice Coefficient Metrics. For both of these similarity metrics,
the value “0” indicates no overlap and “1” indicates a complete
congruence between the subject images. The best Dice Coefficient
obtained in this experiment is 0.69 and the Jaccard Index is
0.71, which makes this technique promising for automatic vein
segmentation and can be adopted in palm vein recognition
systems.

I. INTRODUCTION

Palm vein recognition has been a topic of interest for
researchers in recent years. It is a biometric recognition
method in which the palm vein patterns are used as features for
authentication (one-to-one user comparison) or identification
(one-to-N user comparison). Vein patterns, which are unique
[1], [2], can be made visible under Near-Infrared Light (NIR)
[3], [4]. NIR light having wavelengths in the range of 760
nm – 820 nm penetrates the skin to a depth of 5mm [5],
[6]. Veins carrying deoxygenated blood absorb the NIR light,
whereas the skin and surrounding tissues reflect it [5]. Due
to this attribute, the veins appear as a dark network. This
network is then captured using an infrared-sensitive camera.
Once the images are captured, they are pre-processed to extract
suitable features that can be used by the recognition system.
Feature extraction primarily consists of vein network segmen-
tation from the background information. This segmentation has
remained a challenging topic affecting the recognition systems.
The information that is obtained from the segmented images
can be used to generate ground truth feature maps. These
feature maps can further be used as templates to train neural
networks for the recognition process. An automated solution to

segment the palm vein images would improve the recognition
accuracy of palm vein biometric systems significantly. Since
2012, Convolutional Neural Networks (CNNs) have widely
been applied for image classification and semantic segmenta-
tion problems in biometrics. CNN architectures like AlexNet,
GoogLeNet, and VGGNet are being used to obtain global
class probability per image and have proven to be extremely
efficient and accurate in this field [7]. The problem of semantic
segmentation in palm vein is somewhat more complex as the
number of output probabilities is directly proportional to the
number of pixels in an image. Fully Convolutional network
(FCN) introduced by Long et.al [8] was able to train end-
to-end with the image information shared between the up-
sampling and down-sampling paths thus improving the seg-
mentation. U-Net [9], unlike FCN is different in the decoder
path. FCN uses skip connections to enhance the segmentation
whereas, U-Net uses it to enhance the up-sampled features
in the decoder part of the network. U-Net also handles the
data scarcity problem in the biometric and biomedical domain.
Unlike normal CNNs, U-Net consists of encoder layers and
decoder layers. Encoder layer reduces the spatial dimensions
of the image, whereas decoder layer gradually repairs the
details in the spatial dimension of the image. The encoder and
decoder layers are interconnected so that the decoder layer can
repair and recreate the target details. The final layer consists
of the probability of each pixel belonging to the respective
classes which, in this case, would be either, the vein or the
skin.

In this paper, we propose a new palm vein segmentation
technique using the Convolutional Neural Network U-Net to
segment the vein network. The encoder layer of the U-Net
architecture is modified with a custom Gabor Filter to extract
the vein features. The experiments were performed on HK
PolyU Multispectral Palm vein and Palm-print database [10].
The obtained results are promising when compared to the
commonly adopted palm vein segmentation methods.

This paper is organized as follows. Section II discusses a
few promising recent palm vein segmentation methods based
on traditional approaches and deep neural networks. In section
III, the proposed algorithm is presented. Section IV reports the
obtained experimental results, while section V concludes this
paper highlighting the performance of the proposed technique
in vein biometric segmentation.

II. VEIN SEGMENTATION IN BIOMETRIC

Vein segmentation for ground truth template generation can
be done using multiple techniques. The two preferred methods
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are where the biometric features transformed into quantized
feature vectors and where the original features retained without
any transformation. The quantized feature transformation aims
at reducing the computational complexity and employs more
traditional comparison methods for recognition. Whereas when
the features are retained, the matching process is computation-
ally intensive but has higher recognition accuracy.

In [11], the palm vein features are extracted by using an
optimized algorithm using 2D Gabor filter. The feature vectors
are encoded and good recognition performance is achieved
using simple templates. However, the template security is
not analyzed. In [12], 2D Gabor filter has been used in a
directional coding technique. Its performance does not esti-
mate the optimum parameters of Gabor filter. In [13], 2D
palm hash code is constructed using both, palmprint and
palm vein. They used a Gabor filter for feature extraction.
Scale Invariant Feature Transform (SIFT) is often used in
palm vein systems.In [14], SIFT matching is used for palm
vein verification. The feature points are represented by SIFT
descriptors. Each descriptor is a 128 dimension vector and
the total size of the template depends on the number of
descriptors that have been detected. In [15], Local Invariant
features from multiple samples are extracted using SIFT. [16]
uses root SIFT which is a variation of SIFT for feature
extraction and matching. It is a more stable feature extraction
technique. Root SIFT and SIFT schemes are computationally
expensive as the template features have to be retained.In
[17], two methods are proposed i.e. Hessian matrix based
and Radon transform based for identification. The Hessian
matrix method extracts the features using the eigen values
of the Hessian matrix. This method offers good recognition
performance with small size ground truth template, hence
being computationally efficient. Methods in which palm vein
images are retained by just enhancing the images and used in
the biometric systems are computationally inefficient because
of large template size resulting in longer processing speeds
during the matching process. In [18], an improved Local
Binary pattern based scheme is used. This method achieves
high verification accuracy. However, the templates’ efficiency
with respect to privacy and size is not reported. In [19],
wavelet transform has been used for local feature extraction
which does not provide high recognition accuracy. In [20],
wave atom transform based palm vein recognition scheme
is proposed. The scheme maintains and matches the palm
vein templates with less computational complexity and large
storage requirements.

Many works based on Gabor filters [11], [13], match
filters [21], wide line detectors [22], and neural networks
are proposed for vein based verification systems. The as-
sumptions made in these systems suffer the following few
problems [23]. a) It is not always effective to extract the
vein patterns, b) it is impossible to describe the attributes
of all distributions created by the pixels, c) it is difficult
to develop a mathematical model to effectively model the
distributions. Deep learning methods are more effective and
hence more robust for both, ground truth template generation

Fig. 1: Flowchart of the proposed system a) Training phase
and b) Testing phase

and feature mapping in vein biometric systems. Some re-
searchers brought it into medical segmentation [24], [25] such
as retina image segmentation, brain segmentation and neuronal
membrane segmentation.Convolutional neural networks have
outperformed the state of the art computer vision applications
for segmentation [23]. Different from the above mentioned
segmentation methods, deep learning segmentation method
is an end-to-end architecture without the manual attribute
distribution assumption. However, many vein patterns show
more complex shape instead of a valley or straight line and
hence differing from the assumptions made. Based on the
optimal performance of U-Net in the field of medical image
segmentation [9], we employ it for palm vein segmentation.

III. THE PROPOSED METHOD

A. Overview of proposed method

The overall flowchart of palm vein segmentation using U-
Net proposed in this study is shown in Fig.1.
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First, the palm vein infrared images are reduced to the
region of interest (ROI) using the centroid method [26]. The
obtained ROI images are of the resolution 128 x 128 pixels.
The images are enhanced using adaptive thresholding. Mor-
phological operation of iterative erosion followed by dilation
are applied on the images to obtain a binary mask with
minimum noise. Medial axis thinning algorithm [27] is applied
on the resultant images to skeletonize the vein network and
obtain the final mask images which are then used to train the
U-Net with the custom Gabor filter layer. Once the U-Net is
trained, it can automatically segment any palm vein image to
generate reliable ground truth images for recognition systems.

B. Region of Interest

This step aims to reduce the palm vein image to a specific
region of interest. Often in palm vein recognition systems,
the whole palm image is not necessary for recognition. A
small region of palm consisting of the unique pattern is
sufficient to recognize the user. This also helps in reducing the
template size and hence makes the overall system algorithms
computationally efficient.

For a two dimensional image which is continuous,
f(x, y)(≥ 0), the mpq of p + q moment is given by (1) and
the central moment µpq is given by (2).

mpq =

∫ ∞
−∞

∫ ∞
−∞

xpyqf(x, y)dxdy (1)

µpq =

∫ ∞
−∞

∫ ∞
−∞

(x− x̄)p(y − ȳ)qf(x, y)dxdy (2)

Where p and q are non-negative integers. For a digital
image which is discrete and discontinuous, the formulae can
be transformed to be (3) and (4):

mpq =

N∑
j=1

N∑
i=1

ipjqf(i, j) (3)

µpq =
N∑
j=1

N∑
i=1

(i− ic)
p(j − jc)

qf(i, j) (4)

The zeroth and first order moments are (5), (6) and (7):

m00 =

N∑
j=1

N∑
i=1

f(i, j) (5)

m10 =

N∑
j=1

N∑
i=1

if(i, j) (6)

m01 =

N∑
j=1

N∑
i=1

jf(i, j) (7)

Here, ic, jc are the coordinates of the centroid, which are
given by (8) and (9)

ic =
m10

m00
(8)

Fig. 2: a) Original image b) ROI extracted from original image
using centroid method

jc =
m01

m00
(9)

The procedure can be summarized as follows. Each original
image from the database is taken and the above mentioned
centroid method applied on it. The obtained result is the ROI
image as shown in Fig. 2 with a resolution of 128 x 128 pixels.

C. Morphological operations

Once the region of interest image is obtained, the next major
step is to extract the vein features.

Thresholding is applied on this image to manually segment
the image by setting all the pixels whose intensity values are
above a threshold to a foreground value, in this case, white
color for vein and the other pixels to the background value
having black color. Unlike conventional thresholding, which
uses a global threshold, adaptive thresholding is applied. The
local threshold is calculated statistically by examining the
intensity values of each neighborhood pixel. Morphological
image processing methods are applied on the obtained image.

The binary image obtained contains numerous imperfec-
tions. Morphological image processing methods help remove
these imperfections. Erosion and dilation are the two fun-
damental morphological operations. Erosion removes all the
small scale details from the binary image affecting the region
of interest by reducing it to background information. Dilation
does the exact opposite of this by changing both size and
shape of the vein networks. Open morphological operation is
a compound operation of erosion followed by dilation. Medial
axis transform for the skeletonization of the extracted images
is then performed. Skeletonization shrinks the foreground
region, in this case, veins to skeletal remnants. Fig. 3 gives
the result obtained after performing morphological operations
and skeletonization on a ROI image.

D. U-Net architecture

The U-Net is different from a conventional Convolutional
Neural Network since it consists of encoder and decoder
layers. Encoder layers are responsible for the dimensional
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Fig. 3: Feature extraction using morphological method a)
Original ROI image b) Pre-processed mask image c) Erosion-
dilation operation output d) Skeletonized mask image

reduction of the image while the decoder layers repair the
image details. The encoder and decoder layers are connected
for information retention within the image, thus helping in
better repairing of the target image and hence the name U-Net.
The last layer of the network calculates the output probability
of each pixel, which belongs either to the palm vein network
or the background. The U-Net network architecture used in
this experiment is shown in Fig. 4.

The architecture looks like a ‘U’ as can be seen in Fig.4.
This architecture consists of three sections: the contraction, the
bottleneck, and the expansion section. The contraction section
is made of multiple contraction blocks. Each block takes an
input image and applies two 3x3 convolution layers followed
by a 2x2 max pooling operation. The number of kernels or
feature maps after each block doubles so that the architecture
can learn the complex structures in the images effectively. The
intermediate layer mediates between the contraction and the
expansion section. It uses two 3x3 CNN layers followed by
a 2x2 up convolution layer. This structure is then followed
by the expansion section. Similar to contraction section, it
consists of multiple expansion blocks. Each block passes the
input to two 3x3 convolutional neural network layers followed
by a 2x2 upsampling layer. Also, after each block, the number
of feature maps used by convolutional layer reduces to half
to maintain the symmetry. However, every time the input
also gets appended by the feature maps of the corresponding
contraction layer. This would ensure that the features learned
while contracting the image will now be used to reconstruct
it. The number of expansion blocks is same as the number
of contraction blocks. The resultant mapping passes through
another 3x3 CNN layer with the number of feature maps equal

to the number of segments desired.
To train the U-Net, 6000 images from the database were

used (12 images per class, the total number of classes was
500). 80:20 split of the database was done for training and
testing purposes. An adaptive learning algorithm called Adam
Optimizer with a learning rate lr = 0.00015 was used. The
accuracy and loss function was set as Dice Coefficient for the
first training session and Jaccard Index for the second session.
The network was trained and evaluated for 20, 30, 40 and 50
epochs respectively. In the first block, a custom Gabor filter
was used. A Gabor filter is a sinusoidal signal of a particular
frequency which is modulated by a Gaussian wave. The filter
has real and imaginary components that represent orthogonal
directions. The two components can be used independently or
can form a complex number. Equations (10), (11) and (12)
show the parameters that control the shape and size of the
Gabor filter.

g(x, y;λ, θ, ψ, σ, γ) = exp (−x
′2 + γ2y ′2

2σ2
) exp (i(2π

x ′

λ
+ ψ))

(10)

g(x, y;λ, θ, ψ, σ, γ) = exp (−x
′2 + γ2y ′2

2σ2
) cos (2π

x ′

λ
+ ψ)

(11)

g(x, y;λ, θ, ψ, σ, γ) = exp (−x
′2 + γ2y ′2

2σ2
) sin (2π

x ′

λ
+ ψ)

(12)
where

x ′ = x cos θ + y sin θ (13)

y ′ = −x sin θ + y cos θ (14)

Here, λ is the wavelength of the sinusoidal component, θ is
the orientation of the normal to the parallel stripes of Gabor
function, ψ is the phase offset of the sinusoidal function, σ
is the standard deviation of the Gaussian envelope and γ is
the spatial aspect ratio which specifies the ellipticity of the
Gabor function. K-type indicates the type and range of values
that each pixel in a Gabor kernel can hold. Table I shows the
Gabor filter parameters used in this experiment.

TABLE I: Values for Gabor Filter used

Kernel Size σ θ γ ψ
3 x 2 1 1 0.3 π x 0.5

IV. RESULTS AND DISCUSSION

A. Qualitative evaluation
We selected one representative sample from the 6000 im-

ages on which we performed the experiment. The obtained
results are shown in Fig.5. The results visually demonstrate
that the proposed segmentation is accurate when it is being
compared to the original image superimposed with the manual
annotation.
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Fig. 4: U-Net network architecture for palm vein segmentation

B. Quantitative evaluation

In medical image segmentation problems, manually labeled
images by experts for each subject is used as a gold standard.
The standard gold image is then compared with the binary
image template which the segmentation algorithm provides.
However, to the best of our knowledge, there is no database
with gold standard manual annotated labels to evaluate this
segmentation. Thus, we have evaluated the quantitative per-
formance of the model by computing the similarity accuracy
measure and loss function, namely, Dice Coefficient (DC) and
the Jaccard Index (J).

1) Dice Coefficient (DC): Dice coefficient measures the
extent of spatial overlap between two binary images. Its values
range between “0”, indicating no overlap, and “1” indicating
perfect overlap. The DC value is computed using (15).

DC =
2 | S ∩M |
| S | + |M | (15)

Where the segmentation result is denoted by S, while the
manual segmentation or the morphological operation output is
denoted by M.

2) Jaccard Index (J): The Jaccard index or Jaccard coeffi-
cient is used to measure the spatial overlap of the intersection
divided by the union of two labeled sets. It can be expressed

TABLE II: Dice Coefficient And Jaccard Index Values

Type Dice Coefficient Jaccard Index
Comparison - 1 0.6975 0.7131
Comparison - 2 0.7245 0.7122

by (16). It can also be deduced from Dice Coefficient using
(17).

J =
| S ∩M |
| S ∪M | (16)

J =
DC

(2−DC)
(17)

These similarity metrics are calculated and compared be-
tween the morphological output and the segmented output for
the first comparison (Comparison - 1), and between the man-
ually annotated image and segmented output for the second
comparison (Comparison - 2). The obtained results are listed
in Table II.

Fig. 6 and Fig. 7 show the accuracy and loss metric plots
for one of the evaluation session using twenty epochs. In this
case, Dice Coefficient is the selected metric for both, accuracy
and loss measurements. Accuracy measures the network’s
performance by counting the number of predictions where the
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Fig. 5: Segmentation results using the proposed method a) The original ROI image with manual annotation b) Mask generated
using the morphological methods c) The mask that was predicted by the proposed method d) Binary image of the final mask
which is the segmented output from the proposed method

Fig. 6: Comparison 1: Model accuracy using Dice Coefficient

Fig. 7: Comparison 1: Model loss using Dice Coefficient

predicted value is equal to the true value. Here, it measures
the similarity between the image predicted using the U-Net
model and the output images obtained after the morphological
operations. Loss function, also known as cost function, takes
into account the uncertainty of a prediction based on the
differences observed when compared to the true value. The
loss function used during the network training phase was the
Dice coefficient loss.

V. CONCLUSION

This paper presents a new method to segment infrared
palm vein images using a modified U-Net architecture. The
images taken from the database are reduced to the ROI using
Centroid method. Morphological operations are then used on
the obtained ROI images to further process them by mainly
applying adaptive thresholding and erosion. Medial thinning
algorithm is used to shrink the width of the vein network
outputs obtained from the morphological operations step to
their skeletal form. These images are used to train a U-
Net, which has a custom modified Gabor filter layer. The
results show that the proposed technique is able to segment
the palm vein network with a good accuracy. Since there is
no state-of-the-art method proposed to compare our results,
we used the standard segmentation similarity metric that is
most commonly used in medical segmentation, namely, Dice
Coefficient and Jaccard Index. The best Dice Coefficient value
for the comparison between the morphological output and
segmented results was 0.697 and for the comparison between
manually annotated ground truth and segmented image was
0.724. This indicates approximately 70% accuracy of the
segmented results making this method promising to generate
reliable ground truth images to train neural networks for palm
vein recognition systems.

Our future work will be to use these ground truth images
in a recognition system and compute the standard recognition
evaluation parameters like False Acceptance Rate (FAR), False
Rejection Rate (FRR), Equal Error Rate (EER) and Region of
Convergence (ROC). This will help design robust palm vein
recognition systems.
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