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Abstract — This paper proposes a machine learning system for 

identification of queen-less beehives by using audio signal 

enhancement methods and neural networks. In the proposed 

system, noisy audio signals captured from beehives are enhanced 

by using a Wiener filter; Improved Mel-frequency Cepstrum 

Coefficient (IMFCC) of the enhanced signals are then extracted 

and fed to a neural network. The result shows that the application 

of the proposed filter can improve the classification accuracy by 

at least 12%. The classification accuracy depends on the SNR of 

the input audio signal.  

INTRODUCTION 

Apiculture has become one of the primary industries in New 

Zealand since beekeeping was started in this country around 

180 years ago [1]. New Zealand honey is a popular and 

internationally known product. The most famous variety of 

New Zealand honey, Manuka honey caused a world sensation 

in 1991 when Bill Floyd, who coined the term Unique Manuka 

Factor (UMF), introduced it into the American market. For 

many years, New Zealand has been among the top 10 honey 

producers in the world, with more than 20,000 tons of 

production [2]. The honey annual export value has almost 

reached 350 million New Zealand Dollars (NZD). 

Unfortunately, the excellent benefits of Manuka honey and 

noticeable development of Apiculture increases not only 

market competition but also production cost. For example, 

selecting a well performing breeder queen bee costed 600 to 

2,000 NZD in 2016 and 2017, while it costed 3,000 to 5,000 

NZD in 2017 and 2018. The rentals of apiaries also grew by 

40% in the same period. In this situation, New Zealand 

beekeepers have had to manage their resources efficiently to 

cope with market challenges.  

Based on affordable application of Artificial Intelligence 

(AI), Data Science, Data Mining, Internet of Things (IoT), and 

other cutting-edge computing technologies, precision 

beekeeping has been proposed to monitor beehives 

intelligently and precisely. Obviously, the ultimate goal of 

precision beekeeping is to reduce production cost and increase 

the efficiency of beekeeping procedures. Data-driven 

beekeeping in addition to manual care is an inevitable result of 

fierce competition and technological development in this 

promising industry. Various types of data can be collected from 

beehives and fed to appropriate computing platforms, where 

the system can identify the health condition of beehives and 

send alarms or notifications to the beekeeper, for example 

through cellular phones.  

Various methods based on using different physical quantities, 

such as acoustic noise (audio signal), temperature, video, 

weight, vibration, number of bees, humidity, and O2/CO2 

content, have been developed to prove the feasibility of 

precision beekeeping. Among these methods, those use audio 

signals are very popular among researchers. This is because the 

most common communication form for bees is the vibration of 

wings which produce a sort of acoustic noise. Many audio-

based beehive monitoring methods are still in the development 

phase and have not been introduced to the industry in practice. 

There are still many challenges to be dealt with because of the 

existence of many unknown components in the audio signals 

captured inside beehives and complicated nature of such 

signals. In the audio-based beehive status monitoring systems 

proposed so far, it is usually assumed that the audio signal 

maintain a high Signal-to-Noise Ratio (SNR).  

In this paper, we propose a simple technique for enhancing 

the audio signals captured from beehives by using Wiener filter 

theory. Then, we extract the features of the enhanced signal by 

calculating Mel-Frequency Cepstral Coefficients (MFCC). 

Finally, we develop a Multi-Layer Perceptron (MLP) neural 

network to determine the existence of the queen in the beehive 

from the extracted features.  

AUDIO-BASED BEEHIVE STATUS MONITORING 

According to previous research of beehive sound monitoring 

[3-7], it is shown that a queen-less beehive can be identified by 

analysing an audio signal captured inside the beehive. However, 

they did not look at this problem in a real-life scenario where 

the captured audio signal is highly corrupted by environmental 

noise. In this section, we briefly review existing audio-based 

beehive status monitoring systems and motivate the need for 

improving existing systems. 

A. Acoustic signal processing 

In 2015, Wehmann et. al studied different acoustic signals 

generated by honey bees including hissing, buzzing, queen 

quacking, and piping. For their study, they developed and used 

an experimental system named Automatic Performance Index 

System (APIS) [4]. They captured an audio signal from the 

beehive when the system released stimuli in the beehive, for 

example, odours and electric shocks. The results showed that 

bees generated hissing like acoustic noise when they felt any 
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change in carbon dioxide concentration or they felt any electric 

shocks.  

In 2018, Kulyukin et. al compared deep learning and 

standard machine learning in classifying beehive audio 

samples [5]. They proved that a CNN which was used to 

classify acoustic spectrogram performed better than other four 

different machine learning methods. The hardware used in this 

research was BeePi which was a multi-sensor Electronic 

Beehive Monitoring (EBM) system. BeePi consists of 

Raspberry Pi, a mini camera and a microphone splitter, and 

several omnidirectional microphones with a frequency range 

between 15Hz and 20KHz. It includes a rechargeable battery 

charged by a solar panel. The microphone was placed at the 

entrance of the beehive to capture a 30-seconds audio signal 

every 15 minutes. This research successfully classified the 

audio signals into three categories: bee buzzing, crickets, and 

background noises. However, they didn’t consider health or 

status monitoring of the beehives and they assumed that the 

audio signal is noise free.  

In 2019, Antonio et. al proposed a method for detecting 

queen-less beehives by using acoustic signal processing [7]. 

The audio signal was acquired by omnidirectional microphones 

which were embedded in beehives and then were processed by 

an algorithm based on Logistic Regression (LR) model. Via 

extracting and comparing the MFCC features of the bee sound, 

two queen-less states of bee colonies were successfully 

detected and classified. The highlights of this study were that 

it used Singular Value Decomposition (SVD) to visualise and 

to compare the data acquired from beehives with different 

conditions. This avoided the incomplete interpretation of the 

bee’s behavior when the data of only one colony was analysed. 

The raw bee sound signals recorded from a beehive are the 

mixture of the sound contributed by each bee of the colony [7]. 

They can be regarded as a set of continuous low-frequency 

signals with high density. In the real beekeeping environment, 

however, the raw sounds contain the bee sound mixture and 

other noises that can be called non-bee sounds. The non-bee 

sounds are the ambient noises, such as human voice, engine 

roaring, rain noise, and wind noise. The raw sounds need to be 

annotated by labelling the data according to the features 

extracted from the pure bee sounds and the external acoustic 

samples. The segmented acoustic signals can be processed by 

the labels and then classified by an appropriate machine 

learning algorithms. 

The most intriguing finding of the previous studies can be 

summarized as a table illustrating the relationship between the 

types of bee sound signals, their frequencies, the signal patterns, 

the senders, and the possible activities the bees will do. Such 

table is shown in Table 1. Based on this table [8], a remote 

monitoring system was designed to detect the pest infestation 

in bee colonies by comparing the sound fingerprints between 

healthy and infected beehives. This research used three 

algorithms to make the comparison, including Support Vector 

Machines (SVM), Linear Discriminant Analysis (LDA), and 

Principle Component Analysis (PCA). The outcome showed 

that SVM and LDA had better experimental performance than 

PCA. 

 Frequency 

(Hz) signal 
Pattern Sender  Possible Activities 

Tooting 300 ~ 500 
Pulse 

sequence 
Queen 

Prevent hatching of 

further queens and 

trigger quacking 

Quacking 300 ~ 350 
Pulse 

sequence 
Queen 

Presence detection, 

viability of 

confined queens 

Hissing 300 ~ 3600 
Single 

sequence 
Colony Warning signal 

Piping 100 ~ 2000 
Single 

sequence 
Scout 

Triggers colony 

hissing, prepare for 

swarming 

Recruit 200 ~ 350 
Pulse 

sequence 
Scout 

Existence and 

quality of valuable 

food source 

 

Table 1 The relationship between bee’s audio signals and activities [8] 

 

B. Audio-based queen-less beehive identification 

In 2013, Duran et. al looked at identification of queen-less 

bee colonies from beehive audio signal [9]. They considered 

two physical features of beehive audio signal indicating the 

queen presence, which are called “warble” and “moaning”. The 

warble, which occurs in the frequency range between 225 to 

285Hz, is a signal of inactivity of the queen bee. The moaning, 

which is in the range between 165 to 285Hz, shows the absence 

of the queen bee in a bee colony. This study proved that the 

signals of queen-less beehive were prominent in low 

frequencies when using Short-time Fourier Transform (STFT) 

and S-transform Spectrogram. Compared with STFT, S-

transform can deal with the non-stationary signals appearing in 

the beehives. 

In 2019, Antonio et. al analysed patterns of the audio signal 

acquired from beehives by Lasso Logistic Regression (LLR) 

and Singular Value Decomposition (SVD) for identifying 

queen-less colonies [6]. Their study consisted of two aspects, 

the identification of the queen-less state and the classification 

of three different queen-less situations, a queenright colony, a 

queen-less colony in a natural way, and a healthy colony with 

a queen bee artificially removed. For the purpose of comparing 

and accessing the bee health status in these colonies, five 

beehives were used to implement two sessions of the 

experiment. The five beehives included two healthy colonies 

with a large population, two healthy colonies with a regular 

population, and one queen-less colony with a reduced 

population. The queen bees of two healthy colonies were 

removed (one with a large population and one in regulation). 

The classification was conducted by Logistic Regression with 

Lasso regularisation using the glment package in R, which 

provided the probability of the three-class outcomes. The 

dataset was partitioned into training and testing dataset (70% 

and 30% respectively), and the result of classification was 

showed as binary models returning the distinct features of all 

the classes. The Area Under Curve (AUC) of Receiver 

Operating Characteristic Curve (AOC) was calculated to 
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evaluate the algorithm performance, and it showed that its 

accuracy was above 95%. 

In 2019, the Hilbert Huang Transform (HHT) was combined 

with Machine Learning (ML) applications to improve the 

design of spectral representation in long-term modelling [7]. 

This study used an actual audio dataset achieved from the NU-

Hive project and two ML classification algorithms, which were 

SVM and Convolutional Neural Network (CNN), to recognise 

beehive statuses. The classification experiments compared the 

performance between SVM and CNN. Via five times of 

experiments with different sample settings. The best 

performance of SVM showed a high AUC score which was 

generated by inputting audio samples with the sample size of 

20 MFCC produced by the mean of MFCC coefficients in 

every ten minutes with the maximum frequency at 6,000 Hz. In 

comparison, the results of the CNN method showed its 

contribution to tackling the problem of the “hive-independent” 

dataset, which means the training and testing datasets were 

acquired from different beehives.  

A common problem with the methods discussed above is 

that they usually assume the audio signal is noise-free. The 

noisy audio signal can reduce the classification performance 

significantly.  

PROPOSED SYSTEM 

The first part (algorithm) of the proposed system includes a 

signal enhancement algorithm that improve the SNR of the 

audio signal captured inside a beehive. The Wiener filter theory 

is used to remove the noise in the time domain. Then, the 

improved MFCC of the enhanced signal are extracted as the 

feature of the input audio signal. Finally, the extracted features 

are fed to a neural network that determine the presence or 

absence of the queen bee. An increase in the classification 

accuracy is expected after using the proposed system, such that 

the system can operate in real-life situations where the audio 

signal captured inside the beehive is highly corrupted by 

ambient noise.  

A. Proposed Signal Enhancement Algorithm 

The FIR Wiener filter is chosen to remove noise from the 

noisy signal in the time domain 错误!未找到引用源。. The 

central part of configuring FIR Wiener filters is to compute the 

optimal filter coefficient. Firstly, the size of the linear matrix 

equation is set as 100 × 100. The performance of signal 

enhancement can be improved with the enlargement of the size, 

but the cost of calculation also increases. The optimal solution 

of the Wiener filter can be defined as: 

 

ℎ𝑜𝑝𝑡 = 𝑅𝑦𝑦
−1𝑟𝑦𝑑

−1 (1) 
 

Where, 𝑅𝑦𝑦(𝑛) is the autocorrelation matrix of the observed 

signal y and 𝑟𝑦𝑑(𝑛) is the cross-correlation matrix between the 

observed and the desired signals. In the next step, these two 

matrices must be calculated. 

Matrix 𝑅𝑦𝑦(𝑛)is calculated by the Toeplitz matrix function 

in MATLAB: 

 

𝑅𝑦𝑦(𝑛) = 𝑡𝑜𝑒𝑝𝑙𝑖𝑡𝑧 (𝑥𝑐𝑜𝑟𝑟(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑠𝑖𝑔𝑛𝑎𝑙)) (2) 

 

The cross-correlation matrix between the observed and the 

desired signals 𝑟𝑦𝑑(𝑛)  is calculated by 𝑥𝑐𝑜𝑟𝑟()  function in 

MATLAB: 

 

𝑟𝑦𝑑(𝑛) = 𝑥𝑐𝑜𝑟𝑟(𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑠𝑖𝑔𝑛𝑎𝑙, 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑠𝑖𝑔𝑛𝑎𝑙) (3) 
 

Then the optimal filter coefficient ℎ𝑜𝑝𝑡 is used to filter the 

noisy signals. 

B. IMFCC features 

The MFCC is the most popular measure to represent features 

of speech and other audio signals, but it is sensitive to the noise 

interruption, as mentioned above. In this case, the MFCC 

should be improved for the application of interest. It can be 

seen that the improved MFCC provides the classifier with a 

feature vector closer to the original signal’s. As the noise 

increases, the classification accuracy rate based on the 

traditional MFCC features drops sharply, while those based on 

the Improved MFCC features still maintain a high 

classification accuracy rate [10]. The MFCC features of the    

signal filtered by Multi-band Spectral Subtraction and Wiener 

filter can improve the features of the audio signals so that this 

type of MFCC can be called “Improved Mel-frequency 

Cepstral Coefficients (IMFCC)”. With the filtered signal, the 

features extracted are closer to that of the original signal. The 

IMFCC shows a better recognition rate of the target sound in 

noisy environments. Another advantage of IMFCC is that it 

considers the varying interference in different bands. For 

example, the rain noise is more prominent in the low-frequency 

range. The interference of rain noise at low frequencies leads 

to the inappropriate feature extraction, which may decrease the 

classification accuracy of the queen-less signal. The IMFCC, 

however, extracts features of the signal in each Mel-frequency 

band to improve the feature expression of the queen-less signal. 

The calculation of IMFCC feature extraction has six steps as 

following (The workflow of the IMFCC feature extraction is 

shown in Fig. 1): 

 

1)  Pre-emphasis 

The pre-emphasis filter with the coefficient as 0.97 is applied 

to amplify the high frequencies in the observed signals. 

Because the higher the frequency is, the more serious the loss 

of audio energy will be, increasing the amplitude of the signal 

in high frequency can make feature extraction more 

representative. 

 

2) Framing and window 

The output audio signal from Multi-band Spectral 

Subtraction and Wiener filter is framed into 20ms frames. The  
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Fig. 1 The workflow of the IMFCC 

 

frame size is set to 10ms in the noise filtering step for 

smoothing the signals to be processed, and it can save some 

computing resources to be 20ms in this step. Each frame length 

is 0.02×16000 = 320 samples. The frame step is set to 10ms, 

which allows 50% overlapping of two adjacent frames, which 

avoids signal distortion. The first set of 320 samples begins 

with the 1st sample, and the next starts at the 161st sample. It 

does not stop until the end of the signal. 

 

3) Discrete Fourier Transform 

Because the transformation of the audio signal in the time 

domain is usually challenging to see the characteristics of the 

signal, it is usually converted into an energy distribution in the 

frequency domain. Different energy distributions can represent 

the characteristics of different audio signals. The power 

spectrum estimation of the framed signals can be calculated by: 

 

𝑃𝑖(𝑘) =
1

𝑁
|𝑆𝑖(𝑘)|

2 (4) 

 

4) Mel-spaced filter-bank 

This is a set of 20 triangular filter banks that filter the power 

spectrum estimates of the periodic graph obtained in the 

previous step. The Mel-spaced filter-bank consists of 26 filter 

vectors with a length of 257. Most of the 257 values of each 

filter are 0, and only non-zero for the frequency range that 

needs to be collected. The input signal of 257 points will pass 

through 26 filters, and the energy of the signals passing through 

each filter can be calculated. 

 

 

5) Logarithmic energy and Discrete Cosine Transform 

The Logarithm of 26 energies are calculated, and then 26 

cepstral coefficients are obtained by performing DCT on the 26 

energies of the signals. Twelve numbers from two to thirteen 

are reserved, which are called MFCC features. It is added by 

1D Logarithmic energy to show the features of each frame. 

 

6) Generating the IMFCC features 

Finally, the difference of cepstral coefficients is added to 

represent the dynamic change of the cepstral coefficients over 

time. The M value is set as 2, plus the first-order difference 

operation to produce 26-dimensional feature vectors. 

 

Δ𝐶𝑚(𝑡) =
∑ 𝐶𝑚(t + 𝜏)𝜏𝑀
−𝑀

∑ 𝜏2𝑀
−𝑀

(5) 

 

The 26-dimensional feature vectors are the input of the 

Multi-Layer Perceptron to do Queen-less and Queenright 

classification. In the next section, the performance of IMFCC 

and denoise techniques will be shown. 

C. Multi-Layer Perceptron 

Multi-Layer perceptron (MLP) is generally called Artificial 

Neural Network (ANN). It is a fundamental and popular 

classification algorithm for Deep Learning. Usually, the MLP 

has at least three layers—the first layer called the input layer, 

the last layer called the output layer, and the middle layer called 

the hidden layer. The original data are fed into the input layer, 

and the expected output can be taken from the output layer. The 
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number of the hidden layers can be increased to make a more 

complicated model according to the tasks given. 

The hidden layers of the MLP model include many neurons 

that are connected to other neurons in the previous and next 

layers. The advantage of this structure is that all neurons 

calculate each input with different weights and bias at the 

hidden layers. The more neurons and layers are in the model, 

the higher accuracy the model calculates. The input is passed 

to each neuron next layer, calculated with the weights and bias 

and activated by the activation function. Its output is the input 

of the next layer, and the calculation process repeats until the 

output layer. This process is called feedforward. The loss (or 

error) is calculated at the output layer, and the loss will be 

minimised by using backpropagation method where the 

weights and the biases are updated to update the output [12]. 

The purpose of this is to make the output closer to the actual 

value (as shown in Fig. 2). 

 
Fig. 2 The MLP model update the output 𝑦 to make it closer to the true value 

by using feedforward, loss calculation, and backpropagation methods 

 

The MLP model has several activation functions. The 

sigmoid function can generate a smooth gradient because it can 

quickly get the derivative. It also bound the output value in a 

range between 0 and 1, which makes the output as a probability 

explanation more straightforward and more intuitive. However, 

it has vanishing gradient problem. The tanh function is an 

improvement version of the sigmoid function. It is a rescaled 

sigmoid function lying between -1 and 1. This benefits that the 

mean values of the tanh function are always around zero, while 

that of the sigmoid can be varies depending on the input values. 

Another advantage is that the tanh function can map strongly 

negative input to negative output, but sigmoid will generate the 

output close to zero, which can reduce the weight updating 

speed in backpropagation. This feature enables the tanh 

function to be suitable for processing bee audio signals because 

the feature vectors of bee sound possessing lots of negative 

values. 

Gradient Descent (GD) is the most popular method to 

minimise the cost function of an MLP model, but it has some 

drawbacks. One of its main disadvantages is that GD requires 

much manual work to find out the optimisation parameters of 

the algorithm, for example, the learning rate and convergence 

standard. The typical way to do this is to run the algorithm with 

different parameters, and the model with “the best” 

performance is picked out, which means the computing 

consumption of optimisation procedure is expensive. 

Compared with GD, the Limited memory Broyden–Fletcher–

Goldfarb–Shanno (L-BFGS) method, which is an optimiser in 

the family of quasi-Newton methods, is more appropriate to 

train and to inspect convergence. 

The architecture selection is another method to optimise an 

MLP model. The sensitivity analysis method based on 

derivatives mainly uses derivatives to evaluate the influence of 

input variables on output. When the derivative of a neuron 

approaches zero, the mean value and variance of the neuron are 

small and the neuron can be deleted. The architecture of the 

MLP model can be streamlined by deleting these negligible 

neurons in each layer of the model[13]. 

The selections of an activation function, an optimiser and the 

architecture are the elements of the MLP model optimisation. 

The difference between the classification performance of an 

unoptimised MLP model and an optimised MLP model is 

shown in next section. 

RESULTS 

A. The noise impact on classification performance 

We implemented the propose system as described in the 

previous section by using Python. The initial results showed 

the classification accuracy dropped dramatically when the 

input audio signal is noisy (which is usually the case in real-

life situations). The configuration of the MLP classification 

model is shown in Table 2. 

 

Parameter Setting 

Number of hidden layers  2 

Number of hidden neurons  5, 2 

Activation function Tanh 

Solver L-BFGS 

 
Table 2 The configuration of MLP classification model 

 

It can be seen from Table 3 that the classification accuracy 

of the input signal with the SNR of 10dB was almost 30% 

lower than that of the clean signal. 

 

 Clean bee 

signal 

Noisy signals 

40dB 20dB 10dB 

Classification accuracy 89.83% 80.33% 73.33% 60.83% 

 

Table 3 The comparison between the classification of the clean bee signal and 

the noisy signals with different SNR. 

 

Classification accuracy of around 60% is unacceptable for 

the queen-less beehive monitoring because it will provide 

wrong information about the bee statuses to the beekeepers. 

The next section shows the performance of processing the 

enhanced signal. 
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B. Signal enhancement 

The signals enhanced by the Wiener filter reduced the noise 

composition from the noisy signals. Through the SNR 

calculation of the noisy signals and the enhanced signals, it 

showed that the SNRs of signals enhanced by the Wiener filter 

rose by approximately 4dB, 16dB, and 23dB respectively. The 

exciting finding was that the smaller the SNR of the noisy 

signal was input, the better the noise reduction effect of the 

Wiener filter performed (as shown in Table 4). 

 

Signal enhancement effect 

Input SNR Output SNR 

40dB 44.06dB 

20dB 35.63dB 

10dB 32.82dB 

 

Table 4 The comparison between the SNR of the noisy signal before and after 

the Wiener filter. 

 

The classification performance of the enhanced signal was 

much better than noisy signals. The result showed that the 

classification accuracy increased by Wiener filter were around 

12%, 17%, and 29%, respectively. The classification accuracy 

of the MLP for the enhanced signals were approximately 90%, 

which showed that the signal enhancement effect of Wiener 

filter kept excellent and stable for input signals with high SNR 

in this experiment (as shown in Table 5). 

 

Classification accuracy 

Input SNR Only MLP Wiener filter + MLP 

40dB 80.33% 92.61% 

20dB 73.33% 90.78% 

10dB 60.83% 89.77% 

 

Table 5 The comparison between the classification accuracy of the noisy 

signal before and after the Wiener filter. 

 

C. MLP model optimisation 

An optimised MLP model was designed to compare with an 

unoptimised MLP model. An unoptimised MLP model used 

default settings which has just two hidden layers with five and 

two units respectively. The activation function used sigmoid, 

and the solver (Minimising the cost function) used GD 

(Gradient Descent algorithm). The optimised MLP model has 

three layers with ten, five, and three units, respectively. The 

tanh function is used for activation, and the L-BFGS is used for 

minimising the cost function. The setting of the main 

parameters of the two MLP models is shown in Table 6.  

 

 
Table 6 The configuration of the two MLP models 

 

The input is the feature vector of signals enhanced by Wiener filter 

Input 

Unoptimised MLP 

model 

Optimised MLP 

model 

Feature vector of 40dB 

enhanced signal 48.50% 97.33% 

Feature vector of 20dB 

enhanced signal 48.33% 97.06% 

Feature vector of 10dB 

enhanced signal 48.44% 95.50% 

 
Table 7 The comparison between classification accuracy of an unoptimised 

and an optimised MLP models 

 

The result (as shown in Table 7) showed that the 

classification accuracy of an optimised MLP model was around 

49% higher than an unoptimised one.  

 

D. Comparison between MLP and other common models 

  The noisy signal was processed by KNN, SVM and proposed 

MLP model to show the difference between the performance 

of conventional models and proposed one. The results showed 

proposed model has higher classification accuracy and degree 

of separability(as shown in Table 8 and 9). 

 

Classification accuracy 

Input SNR KNN SVM Wiener filter +MLP 

40dB 82.66%(K=13) 72.00% 97.33% 

20dB 75%(K=16) 68.00% 97.06% 

10dB 60.33%(K=7) 60.00% 95.50% 

 
Table 8 The comparison between classification accuracy of KNN, SVM and 

proposed MLP models 

 

AUC score 

Input SNR KNN SVM Wiener filter +MLP 

40dB 0.9 0.84 0.98 

20dB 0.84 0.78 0.98 

10dB 0.64 0.58 0.98 

 
Table 9 The comparison between classification accuracy of KNN, SVM and 

proposed MLP models 

 

CONCLUSIONS 

In conclusion, the contribution of this study is to propose an 

improved audio-based method for queen-less beehive 

identification from noisy signal. This method proves to greatly 

improve the classification accuracy of the queen-less beehive. 

The Wiener filter enhanced the bee audio signals by increasing 

4dB to 23dB SNR of the noisy signals. The MLP classification 

model with Tanh activation function and L-BFGS solver rose 

the queen-less classification accuracy by 12% to 29% by using 

the IMFCC features of the enhanced signals. Optimisation of 

the MLP model can dramatically increase the classification 

accuracy. Based on this experimental settings, the MLP model 

Parameter 
MLP model Setting 

Unoptimised Optimised 

Number of hidden layers  2 3 

Number of hidden neurons  5, 2 10, 5, 3 

Activation function Sigmoid Tanh 

Solver GD L-BFGS 
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with Tanh activation function and L-BFGS solver performed 

around 97% classification accuracy of the queen-less beehive, 

approximately 49% higher than the model with Sigmoid 

activation function and GD solver. Compared with KNN and 

SVM, proposed MLP model showed better performance 

evaluated by classification accuracy and AUC score. 
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