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Abstract—Reverberation has a considerable impacts on speech
quality and intelligibility. Weighted prediction error (WPE)
employs a linear regression model to estimate late reverberation
and then cancel it. The key point of the WPE is to estimate the
power spectrum of the early speech. However, its estimation relies
on an iterative procedure with high computational complexity.
Another problem is that the WPE has a noise-free assumption. So,
the performance degrades in noisy conditions. To address these
problems, we propose an algorithm for speech dereverberation
in the presence of background noise, in which deep learning is
integrated into the WPE method. Specifically, we employ a neural
network to predict the power spectral density (PSD) of early
speech and a binary mask which distinguishes target speech from
background noise. To alleviate the noise impact on estimation
of echo path, a dual-filter strategy is adopted to model the
echo paths of target speech and background noise individually.
Experimental results show that the proposed method significantly
improves speech quality in noisy environments.
Index Terms: long short-term memory, weighted prediction
error, dereverberation.

I. INTRODUCTION

In an enclosed space, such as a living room, speech signal is
often corrupted by its reflections from walls and other surfaces.
Reverberation degrades speech quality and intelligibility. It
presents a severe problem for a wide range of speech appli-
cations, e.g. hearing aids, hands-free telephony and automatic
speech recognition [1] [2] [3]. One way to solve the problem
is to use dereverberation technique to recover the target speech
from the observed reverberant signals.

To solve the reverberation problem, Nakatani et. al. [4]
proposed a method called WPE. In WPE, reverberations were
modeled as an autoregressive (AR) process. Early reverber-
ations of speech were recovered using maximum likelihood
(ML) estimation. WPE relied on an iterative procedure to op-
timize AR weights and PSD of the desired speech alternately.
Although WPE performs well, it has several limitations. First,
WPE does not consider the noise. Hence the performance of
WPE is frequently influenced by background noise. Second,
original WPE employs an iterative procedure, which is time
consuming. Third, for a short-duration recording, it is hard
to estimate the PSD accurately. Fourth, the performance may
be degraded when more iterations are applied [4]. In other
words, the iterative procedure does not guarantee to converge.
Therefore, several studies (e.g. in [5]) focus on replacing the
iterative procedure.

Recently, deep neural networks (DNNs) are introduced
to signal processing problems and have achieved substantial

improvements over the traditional methods [6] [7] [8] [9] [10]
[11]. Common usage of DNNs in signal processing is to pre-
dict the magnitude spectrogram of the target signal or a time-
frequency mask. Compared with a feedforward DNN, long
short-term memory (LSTM) accounts for temporal dynamics
of speech more naturally. In [12], Zhaoet al. used an LSTM
to remove the late reverberation. Experimental results also
showed that the LSTM-based model substantially outperforms
DNN-based model on unseen speakers and noises in terms of
objective speech intelligibility. Although DNN or LSTM have
great potential in building the non-linear relationship between
reverberant and desired speech, they are totally data-driven
model without considering domain knowledge of speech signal
processing which may improve the generalization of super-
vised algorithms (for example in [13]).

Kinoshita et al. [14] proposed a method that combines
DNNs and WPE (DNN-WPE) for dereverberation. In the
method, a DNN was employed to map reverberant noisy
speech to its corresponding anechoic noisy speech (without
reverberations). Then the outputs of the DNN were used as
the PSD in WPE. Therefore, it leads to a WPE-based method
without the iterative procedure. DNN-WPE implies that noise
and speech correspond to the same RTF by sharing the inverse
filter. However, their RTFs are different unless the sound
sources are in the same location. This is also why noise-free
assumption should be held in the original WPE.

The echo path of speech and noise are different and noise
is unavoidable. In this paper, we propose a dual-filter strategy
that combine long short-term memory (LSTM) and WPE
together for noisy speech dereverberation. This study assumes
a point-source noise field. Actually, no matter what kind of
noise field, as long as the echo path of target speech estimation
is accurate, the proposed method can work well.

The rest of the paper is organized as follows. We will
describe our proposed algorithm in Section 2 and Section 3.
The experimental setup and evaluation results are presented in
Section 4. We conclude this paper in Section 5.

II. PROBLEM FORMULATION

A. Conventional WPE

Considering a scenario where a single speech source is
captured by microphones. In the STFT domain, sn,k denotes
the clean speech signal with time frame index n ∈ {1, ..., N},
and frequency bin index k ∈ {1, ...,K}. The speech observed
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at the m-th (m ∈ {1, ...,M}) microphone, xmn,k can be
modeled as,

xmn,k =

Lh−1∑
l=0

(
hml,k
)∗
sn−l,k + emn,k, (1)

where hml,k is an approximation of the ATF between the speech
source and the m-th microphone with length of Lh. (·)∗
denotes the complex conjugate operator. The additive term
emn,k represents the background noise. The signal observed at
the first microphone (m = 1) can be rewritten in the well-
known multi-channel linear prediction (MCLP) form,

x1n,k = d1n,k +

M∑
m=0

(gm
k )

H (
xm
n−D,k-emn−D,k

)
+ e1n,k, (2)

where d1n,k is the desired signal consisting of direct speech
component and early reflections determined by the prediction
delay D, and (·)H denotes the conjugate transposition oper-
ator. The vector gm

k ∈ RLk is the regression vector of order
Lk for the m-th channel. The desired signal can be written as,

d1n,k =
(
x1n,k-e1n,k

)
-

M∑
m=0

(gm
k )

H (
xm
n−D,k-emn−D,k

)
. (3)

Conventional WPE assumed emn,k (∀n, k,m) to be 0. And (3)
can be written in a compact form using the multi-channel
regression vector gk ∈ RMLk as,

dn,k = x1n,k-gH
k xn−D,k. (4)

The desired signal in each frequency bin can be modeled
as a circular complex Gaussian distribution with zero-mean
and frequency-dependent variance. Assuming independence
across time frames, by using the maximum likelihood (ML)
estimation of the desired speech at each frequency, the joint
distribution of the desired speech coefficients at frequency bin,
k, is given by,

p (dk) =

N∏
n=1

1

πσ2
dn,k

exp

(
−|dn,k|

2

σ2
dn,k

)
, (5)

where σ2
dn,k

is the time-varying PSD of the desired speech.
By inserting dn,k from (4) into (5) and taking the negative of
logarithm of p (dk), the objective function can be written as,

`(Θk) = − log p(dk|Θk)

=

N∑
n=1

(log σ2
dn,k

+
|x1n,k − gH

k xn−D,k|2

σ2
dn,k

),
(6)

where Θk = {gk, σ
2
d1,k

, σ2
d2,k

, ..., σ2
dN,k
} is the unknown

parameter for the k-th frequency bin and constant terms are
ignored. A two-step algorithm to minimize the objective func-
tion is adopted by optimizing the AR weights and the PSD,
alternatively. Repeating the (7) and (8) until some convergence
criterions are satisfied or a maximum number of iteration is
exceeded. The flow chat of WPE is shown in Fig. 1.

ĝk =

(
N∑

n=1

xn−D,kxHn−D,k

σ2
dn,k

)−1 N∑
n=1

xn−D,k(x1n,k)∗

σ2
dn,k

. (7)

σ̂2
dn,k

= |dn,k|2, n = 1, 2, ..., N. (8)

Fig. 1. Conventional WPE.

From (8), it is noted that the ideal value of the σ̂2
dn,k

is
the power spectrum of desired speech. The DNN-WPE and
proposed method are take advantage of this and introduce
supervised learning technology to improve WPE.

III. PROPOSED METHOD

As described in the above section, the inverse filter obtained
by WPE and DNN-WPE is optimal for mixture, but not for
speech and noise respectively. In this paper, we take a dual-
filter strategy: a speech inverse filter and a noise inverse filter,
and integrate LSTM and WPE for dereverberation. First, the
ideal binary mask (IBM) is estimated by LSTM to distinguish
the speech and noise at one frequency bin. In addition, to
remove iteration procedure, the desired PSD of speech is also
predicted by LSTM. Second, after obtaining IBM and PSD,
the two inverse filters strategy is adopted by using WPE. In
this paper, we mainly focus on the dereverberation of speech.
For the process of the noise, an approximate method is adopted
where the power spectrum of mixture is used as the desired
PSD of noise.

We will describe the proposed method in three steps. In the
first step, the IBM and the desired PSD are estimated by a
recurrent neural network. In second step, the output of WPE
is obtained with the estimation of the speech AR weights and
noise AR weights. Finally, the enhanced signal is converted
from the frequency domain to the time domain using the
inverse short time Fourier transform (ISTFT).

A. IBM and PSD Estimation

IBM is used to distinguish whether speech dominates or
noise dominates at one frequency bin, which is defined by
comparing the signal-to-noise ratio (SNR) within each T-F unit
against a local criterion (LC) or threshold measure in units of
decibels. Only the T-F units with local SNR exceeding LC are
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assigned 1 in the binary mask. Let T (n) and M(n) denote
target and masker signal power measured in decibels at time
n. The IBM is defined as,

IBM(n) =

{
1 if T (n)−M(n) > LC
0 otherwise.

(9)

In this paper, T and M indicate reverberate speech and
noise speech, respectively. The LC is set to 0. In addition,
from (8) we can find that the PSD is the power spectrum of
the desired signal. In the LSTM pre-process stage, there have
two targets: 1) PSD of desired speech, 2) IBM. The model
parameters can be optimized to minimize the Mean Squared
Error (MSE) between the estimate and target, defined as,

J =
1

N × F

N∑
n=1

F∑
f=1

(∥∥∥X̂psd
f (n)−Xpsd

f (n))
∥∥∥2
FN

)

+
1

N × F

N∑
n=1

F∑
f=1

(∥∥∥M̂nf
f (n)−Mnf

f (n)
∥∥∥2
FN

)
,

(10)

where Xpsd indicates the PSD of desired signal, Mnf indi-
cates the IBM, and FN is the Frobenius Norm.

B. Inverse filter estimate

The speech dereverberation filter and noise dereverberation
filter can be calculated by (11) and (12).

ĝsk =

(
N∑

n=1

(
xn−D,kx

H
n−D,k

Xpsd2
· M̂nf (n, k)

))−1

·

(
N∑

n=1

(
xn−D,k(x1n,k)

∗

Xpsd2
· M̂nf (n, k)

)) (11)

ĝnk
=

(
N∑

n=1

(
xn−D,kx

H
n−D,k

(x1n,k)
2 ·

(
1− M̂nf (n, k)

)))−1

·

(
N∑

n=1

(
xn−D,k(x1n,k)

∗

(x1n,k)
2 ·

(
1− M̂nf (n, k)

)))
(12)

C. Dual-filter dereverberation

After getting inverse filter of speech and noise, using
the dual-filter inverse filter strategy, the final dereverberation
signal can be obtained by (13).

dn,k = x1n,k − M̂nf (n, k) · ĝH
sk
xn−D,k

−
(

1− M̂nf (n, k)
)
· ĝH

nk
xn−D,k

(13)

IV. EXPERIMENTAL SETUPENTS

A. Dataset and Metrics

The proposed system is evaluated by using the IEEE corpus
[15] spoken by a female speaker. There are 72 phonetically
balanced lists of sentences in the corpus, with 10 sentences
in each list. In our experiments, we select sentences from List
1-50, List 67-72 and List 51-60 to construct training data,
validation data and test data, respectively. The room impulse

response (RIRs) and noises come form 2014 REVERB Chal-
lenge2 [16]. The training and development sets are convolved
with 24 RIRs and corrupted by several types of noises. Each
RIR consists of 8 channels. The reverberation time (T60) of
24 RIRs ranges roughly from 0.2 to 0.8 second. The SNRs are
at 0, 3, 6, 10, 15, 21, 24 dB. The test set contains a set of re-
verberant noisy speech signals, generated by convolving clean
speech signals with recorded RIRs and subsequently adding
recorded noise signals. There are 6 different reverberation
conditions: 3 rooms with different volumes (small, medium
and large size) and 2 types of distances between the speaker
and the microphones (near=50cm and far=200cm). RIRs are
recorded by an 8-ch circular array with diameter of 20 cm. The
recorded noise is added with SNR at 0, 5, 10, 15, 20 dB. T60s
of small, medium, and large-size rooms are about 0.25s, 0.68s,
and 0.73s, respectively. We randomly generate 100k utterances
as training set to train the LSTM weights. 3000 sentences are
generated as test set to evaluate the proposed method.

We quantitatively evaluate the performance of the proposed
method by perceptual evaluation of speech quality (PESQ)
[17] and cepstral distance (CD) [18], both of which are widely
used to evaluate speech dereverberation task. The higher the
PESQ score, the better the speech quality is. For the CD, the
lower number indicates the better performance.

B. Comparison Method

Since the algorithm is independent on the number of
microphones, we evaluate and compare the performances in
single- and multi-channel scenarios, separately. We evaluate
and compare the performances in different SNR and room
conditions, separately. WPE [4] and DNN-WPE [14] are
involved for comparison.

C. Algorithm settings

The regression order and the prediction delay in the WPE
are set to 10 and 3 for multi-channel conditions. For single-
channel conditions, 37 and 3 are used. The DNN-WPE and
the proposed method employed the same configuration for fair
comparison. The length of the STFT analysis window is 20 ms,
and the window shift is 10 ms. Thus, the number of FFT points
is 320 for 16 kHz sampling rate. The number of iterations in
original WPE is set to 3, which got the best results according
to our experiments.

We use two unidirectional LSTM layers followed by one
fully-connected layers. The activation functions of IBM output
layer and PSD output layer are sigmoid and ReLU, respec-
tively. The number of memory cells in each LSTM is 512,
and the number of nodes in the fully-connected layer is 1024.
The cost function is mean square error (MSE). Weights of the
networks are randomly initialized. The ADAM optimizer [19]
is utilized for back propagation. The models are trained using
Pytorch.

In addition, for fairness, we replace DNN in DNN-WPE by
LSTM which has the same configuration as in the proposed
method, except for the output layer.
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D. EVALUATION AND COMPARISON

In order to compare the performance of the dereverberation
methods, we analyze the average PESQ and CD on test set in
terms of different RIRs, SNRs and input channels in following
subsection, respectively.

1) Different RIR conditions: Table I and II show the aver-
age PESQ and CD in terms of different rooms, respectively.
It can be seen that the proposed method obtains the highest
PESQ scores and lowest CD in most of the room conditions.
In room 1 with little reverberation, WPE is better than DNN-
WPE, and comparable with the proposed method. When the
reverberation becomes severe, DNN-WPE performs better than
WPE especially in terms of CD. In fact, the performance
of all three methods depend on the estimation of the early
reverberant spectrum. WPE employs mixture spectrum as the
initial early reverberation spectrum. In a little reverberation
room, mixture spectrum is close to the true early reverberation
spectrum. Therefore, WPE is more likely to converge to the
target from a good start point by its iterative process. In
contrast, it is more difficult for WPE to get a good estimation
in a room with large reverberation where the advantage of
WPE over DNN-WPE is not obvious even worse using PESQ
as evaluation metric. It can also be seen that WPE outperforms
DNN-WPE in small room (room 1) with less reverberation but
vice versa in large room (room 3).

When using CD as the evaluation metric, we can see in
Table II that the proposed algorithm is still the best in room
2 and room 3. In room 1, unprocessed speech has the best
result for near case, and slightly worse than WPE for far case.
It means that all three methods introduce speech distortion
during dereverberation. We can see that the DNN-WPE brings
more distortion than the WPE, and the proposed method
provides a rational balance between speech distortion and
dereverberation.

TABLE I
AVERAGE PESQ SCORE IN TERMS OF DIFFERENT T60.

Method

Room Room1 Room2 Room3
(T60=250ms) (T60=680ms) (T60=730ms)

Near Far Near Far Near Far
Unproposed 3.01 2.55 1.91 1.70 1.97 1.76

WPE 3.02 2.63 1.97 1.79 2.07 1.89
DNN-WPE 2.93 2.61 1.99 1.80 2.11 1.95
Proposed 3.02 2.65 2.01 1.80 2.10 1.89

TABLE II
AVERAGE CD IN TERMS OF DIFFERENT T60.

Method

Room Room1 Room2 Room3
(T60=250ms) (T60=680ms) (T60=730ms)

Near Far Near Far Near Far
Unproposed 2.09 2.55 4.56 4.83 4.20 4.47

WPE 2.15 2.52 4.47 4.73 4.04 4.25
DNN-WPE 2.63 2.91 4.53 4.80 4.14 4.35
Proposed 2.23 2.57 4.44 4.61 4.01 4.17

2) Different SNR conditions: In order to analyze the effect
of noise on dereverberation, we calculate the average PESQ
and CD in term of the SNR. Table III and IV show the PESQ
and CD results of methods on different SNRs, respectively.
From Table III, it can be seen that the proposed method can
get the highest PESQ scores in all SNR conditions except for
the 20 dB. The higher SNR, the larger PESQ gain is obtained
by all three methods. In table IV, we can see that the proposed
method obtains the lowest CD in all SNR conditions. In low
SNR conditions, with the effect of additive noise, the PESQ
and CD of DNN-WPE and WPE are similar to the mixture
sometimes. The reason is that in low SNR conditions, the echo
path of noise dominates the optimal solution.

TABLE III
AVERAGE PESQ SCORE IN TERMS OF DIFFERENT SNR.

Method
SNR(dB) 0 5 10 15 20

Unproposed 1.76 1.98 2.18 2.35 2.48
WPE 1.75 2.00 2.25 2.47 2.67

DNN-WPE 1.78 2.02 2.26 2.47 2.63
Proposed 1.79 2.03 2.48 2.64 2.60

TABLE IV
AVERAGE CD SCORE IN TERMS OF DIFFERENT SNR.

Method
SNR(dB) 0 5 10 15 20

Unproposed 4.64 4.23 3.78 3.33 2.95
WPE 4.65 4.20 3.70 3.18 2.73

DNN-WPE 4.70 4.30 3.88 3.46 3.11
Proposed 4.63 4.17 3.66 3.16 2.73

Fig. 2. Average PESQ score of different methods with 1- and 8-channel
inputs.

3) Different channel conditions: The proposed method is
independent of the number of microphones. We also compare
the performance of our method with WPE and DNN-WPE in
single-channel conditions. Fig. 2 and 3 show the average PESQ
and CD in 1 and 8-channel conditions. It can be seen that the
proposed method also outperforms the other two methods in 1-
channel conditions, and the more microphones, the better the
performance. The proposed method estimates the PSD and
IBM directly and inherits the advantage of the WPE which
can be applied to any topology of microphone array without
changing the algorithm.
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Fig. 3. Average CD of different methods with 1- and 8-channel inputs.

V. CONCLUSION

Deep learning has been introduced into speech signal pro-
cessing in recent years and exhibits great potential for the
classical problems in this area. One way to use deep learning
is to map the input signal to the output target directly. The
other way is to combine the deep learning with the traditional
methods, in which deep learning is used to estimate the
parameters needed in traditional methods. In this paper, we
propose a dereverberation algorithm which integrates deep
learning and the WPE. The deep neural network is used to
predict the power spectrum of the early speech, which is the
key parameter for WPE algorithm. At the same time, the deep
neural network is used to meet the noise-free assumption of
the WPE to some extent. According to the experiments results,
the proposed method achieves the best performance in most
of the conditions.
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