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Abstract—This study aims to achieve noise suppression by
processing the output of a microphone array with artificial
neural networks (NNs). A differential-type array is used to
avoid nonlinear distortions produced by a nonlinear system, such
as an NN. The output of the array is considered an image,
and it is transformed into a 2-dimensional (2D) spectrum. In
the 2D spectrum, the frequency components of a noise are
perfectly localized as direct current (DC) components along
the spatial frequency axis. In this study, noise suppression was
performed by spectral subtraction, after the DC components of
noise were instantaneously estimated from the amplitude and
phase spectra using independent NNs. As a result, the noise
reduction performance of the proposed method with a 16-cm-
long array was approximately 24 dB. Although the NNs were
trained by white noise, the system was effective for speech and
music signals as well as for white noise.

I. INTRODUCTION

Noise suppression using a microphone array is effective

when recording a target sound in a noisy environment [1].

If an artificial neural network (NN) is used, which is one of

machine learning techniques, a small microphone array having

a sharp directivity can be achieved [2], [3], [4], [5], [6], [7],

[8].

A microphone-array-based noise suppression method using

an NN that managed the waveform of a target and noise was

proposed in one of the previous studies [8]. A differential-type

microphone array [2], [3] was utilized to avoid the production

of distortion components of the target. Despite this advantage,

there were two outstanding issues: 1) unexpected broadband

noises that were not related to the input noise spectrum were

produced due to the error in the NN processing; 2) versatility

was insufficient because the system was not effective for

sounds that were different from the sound used in training the

NN. To overcome these issues, this study proposes a novel

noise-suppression method based on the two-dimensional (2D)

amplitude and phase spectra of the outputs from a microphone

array.

Though the 2D spectrum of the output signals from a

microphone array has been previously used for spatial filtering

[7], [9], [10], [11], [12], [13], [14], [15], only the amplitude

spectrum was addressed; however, this study considers the

phase spectrum as well. Moreover, the method proposed in

this study differs from those in other studies [9], [10], [11],

[12], [13], [14] in that the noise is suppressed by the spectral

subtraction based on the instantaneous estimation of the noise

spectrum [7], [15].

II. FUNDAMENTALS OF THE PROPOSED METHOD

A. Differential-type array

Generally, distortion components of the input signal are

produced when a signal is processed with a nonlinear system,

such as an NN. However, a differential-type array proposed

by Kobatake et al. [2], [3] does not produce any distortion

component with respect to the target sound because the target

was subtracted before the processing in an NN. Figure 1

presents a block diagram of the proposed system where the

input part consists of a differential-type array.

In a differential-type array, M+1 microphones are arranged

on a straight line; one of them is called a reference microphone

(RM), and the other M microphones are called sensor micro-

phones (SMs). The output from the RM is subtracted from

the outputs of the SMs to obtain differential signals. A target

sound is assumed to come from the vertical direction of the

array, and this direction is defined as 0◦ with respect to the

direction of arrival (DOA) of a sound. The differential signals

do not consist of target components because the target sound

arrives at all the microphones at exactly the same time. These

differential signals are processed to estimate the noise signal at

the RM, then it is subtracted from the RM output; as a result,

the target signal is obtained. The target is guaranteed to be

distortion-free because the target sound does not go through

the processor, including an NN.

When the output from the RM is denoted as xRM(n), and

the output and differential signals from the m-th SM are given

as x(n,m) and d(n,m), respectively, the differential signals

are given by the following equation:

d(n,m) = x(n,m)− xRM(n)

= s(n) + u(n− τm)− {s(n) + u(n)}
= u(n− τm)− u(n), m = 0, 1, . . . ,M − 1 (1)
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Fig. 1. Block diagram of the proposal system.

where s(n) is a target signal with the DOA of 0◦ and u(n)
is a noise with the DOA of θ observed at the RM. When the

microphones are assumed to be uniformly arranged and spaced

with l, the temporal delay τm at the m-th SM from the RM is

given by τm = (m+ 1)l sin θ/c where c is the sound velocity

of 340 m/s. Note, d(n,m) does not include s(n).

B. Noise suppression based on a differential image

The authors have defined a spatio-temporal sound pressure
distribution image by a 2D image consisted of temporal

sequences of luminance, which are produced by transforming

the instantaneous sound pressure of microphone outputs into

luminance, arranged in parallel, corresponding to the micro-

phone positions in an array [14]. In their previous study [8],

they attempted to suppress a noise based on such an image

created from the differential signals. Hereafter, this image

is referred to as a differential image. Figure 2 presents an

example differential image when white noise arrives from 90◦

to an array consisted of nine microphones (8 SMs and 1 RM)

on a straight line with the uniform intervals of 2 cm. The

abscissa is the time and the ordinate corresponds to the index

of the eight SMs from 0 to 7 where the RM was placed

next to M0 as shown in Fig. 1. This image was fed into an

NN in which the noise components included in xRM(n) were

estimated. Finally, the estimated values were subtracted from

xRM(n) to obtain the target signal.

In the previous study [8], the estimation of the noise

components was conducted by recalling the noise waveform

by the NN. In this study, however, the estimation is conducted

by recalling the noise spectrum.

III. PROPERTIES OF THE 2D SPECTRUM OF A

DIFFERENTIAL IMAGE

A. 2D spectrum of a differential image

By applying the 2D fast Fourier transform (FFT) to a dif-

ferential image, its 2D spectrum is obtained. In this study, the

abscissa and ordinate of a 2D spectrum are called the temporal

and spatial frequencies, respectively. The direct current (DC)

component of the spatial frequency is referred to as spatial #0

bin.
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4

6

Fig. 2. Differential image obtained by eight sensor microphones when white
noise arrives from 90◦. The length of a temporal segment is 512 points.

A differential image with temporal points of N and SMs

of M is given as a function d(n,m) where n and m are the

discrete time and microphone index. Its 2D spectrum D(kt, ks)
is obtained using the following equation:

D(kt, ks) =
1

MN

M−1∑
m=0

N−1∑
n=0

d(n,m)Wnkt

N Wmks

M

=
1

MN

M−1∑
m=0

N−1∑
n=0

{u(n− τm)− u(n)}Wnkt

N Wmks

M

=
1

M

M−1∑
m=0

{
U(kt)W

τmfskt

N − U(kt)
}
Wmks

M (2)

where kt and ks are the indices of the temporal and spatial

frequency bins, respectively. Moreover, WN = e−j2π/N and

WM = e−j2π/M denote the rotators for the temporal and

spatial axes, respectively.

The second term of the right side of Eq. (2) represents the

noise spectrum at the RM, URM(kt, ks) that was subtracted for

deriving the differential spectrum. The term is extracted and

modified to the following form:

URM(kt, ks) = −U(kt)

M

M−1∑
m=0

Wmks

M

=

{
−U(kt) (ks = 0)

0 (ks �= 0).
(3)

This equation implies that URM(kt, ks) is perfectly localized

as the spatial DC components (ks = 0). Although some

studies have considered the 2D spectrum for noise suppression

[9], [10], [11], [12], [13], they have not used the following

property: the aimed components localize as the spatial DC

components, i.e., the essential aim of this study is to use this

property.
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Fig. 3. Two dimensional amplitude spectrum of the differential image in Fig. 2.

The first term of the right side of Eq. (2) exhibits the noise
spectrum regarding the SMs, USM(kt, ks).

USM(kt, ks) =
U(kt)

M

M−1∑
m=0

W τmfskt

N Wmks

M (4)

When the spatial #0 bin (ks = 0) is examined, Eq. (4) is

modified to the following equation:

USM(kt, 0) =
U(kt)

M

M−1∑
m=0

W τmfskt

N . (5)

This equals to the spectrum that is obtained when the delay-

and-sum (DAS) beamformer [1] is applied to the noises

observed at SMs.

These imply that the two spectra of the noise at RM
which was subtracted (−U(kt)) and the output of the DAS
beamformer with SMs are superimposed on the spatial #0

bin to form D(kt, 0). Thus, −U(kt) can be extracted by the

following two steps: first, estimate the noise components at SM
on #0 bin, USM(kt, 0) using the components at bins other than

#0, USM(kt, ks) with ks �= 0; and second, subtract the estimated

values from the observed values at #0 bin. Finally, the target

signal s(n) is determined by subtracting the waveform u(n)
that is obtained by applying the inverse FFT (IFFT) of the

estimated noise U(kt), from the output of the RM.

Note, if −U(kt) is replaced with S(kt), this idea can be

regarded to be equivalent to the processing for 2D spectrum

when a non-differential-type array is used [7].

B. Amplitude estimation

Based on the aforementioned properties, the amplitude and

phase of a noise are estimated. Figure 3 presents the 2D

amplitude spectrum |D(kt, ks)| of the differential image shown

in Fig. 2. When kt is fixed to a specific value k0, a spectral

pattern of |D(k0, ks)| is referred to as a spatial amplitude

spectral pattern. Four examples of spatial amplitude spectral

Fig. 4. Examples of amplitude spatial spectral patterns taken from Fig. 3. The
parameters are the temporal frequency bin numbers.

patterns of only |USM(kt, ks)| are shown in Fig. 4 which were

taken from Fig. 3. Every pattern has a single peak, and it shifts

along the abscissa as the temporal frequency kt increases.

Thus, a light area along the diagonal in Fig. 3 can be observed.

The amplitude of the noise observed at the RM, |U(kt)|,
is estimated as follows. First, the values of a spectral pattern,

except for #0 bin, are fed into an NN and the NN recalls

the value at #0 bin. This will be done for every temporal

frequency bin and the spatial DC components |USM(kt, 0)| are

estimated as a result. Subsequently, these values are subtracted

from |D(kt, 0)| to obtain |U(kt)|.
C. Phase estimation

In the authors’ previous study [7], spectral subtraction

was conducted based on the amplitude spectrum only, i.e.,

the phases of noise components were not estimated but the

true values were used. In this study, the phase estimation is

essential because the two noise components of the noise at the
RM and noise regarding the SMs are included in the #0 bin

spectrum.

Figure 5(a) exhibits the 2D phase spectrum Arg [D(kt, ks)]
of the differential image shown in Fig. 2. The phase spectrum

presents complex changes, making it difficult to estimate the

phase at the spatial #0 bin. However, if the same phase data

are presented as the relative phases to #1 bin, a few systematic

changes can be observed, as shown in Figure 5(b).

Four examples of phase spatial–spectral patterns observed

in Fig. 5(b) are shown in Fig. 6. Based on these systematic

changes, the phases at the spatial #0 bin are to be estimated

by preparing an independent NN.

IV. ESTIMATION OF NOISE SPECTRUM USING NNS

A. Setup of estimation

Computational simulation experiments were conducted by

assuming a system shown in Fig. 1: nine microphones were

arranged in 2-cm intervals. A temporal segment consisted of

512 points with the sampling frequency of 16 kHz. Because the
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(a) Observed phases.
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(b) Representation as the relative phase to #1 bin.

Fig. 5. Two dimensional phase spectrum of the differential image in Fig. 2.

estimation processing was conducted for every 32-ms segment

independently, it is referred to as instantaneous estimation [7],

[15]. Temporal segments were created using the 512-point

Hanning window with a 256-point shift, while no windowing

was applied to the spatial axis before conducting the 2D FFT.

Two NNs were prepared for estimating the amplitude and

phase of USM(kt, 0) independently at every temporal frequency

bin in a segment. The numbers of units for each NN were 7-

15-1 for the input-hidden-output layers. The NN for amplitude

estimation has two hidden layers while that for phase estima-

tion has one. The activation functions for the hidden layers

were the rectified linear unit (ReLU).

The training data of the NNs were 512 spatial–spectral

patterns taken from the 2D spectrum of a differential image

when white noise arrived from 90◦. Each temporal segment

was a 512-point waveform; thus, the 2D spectrum consisted

of 512 temporal frequency bins.

Chainer V4 [16] was used for constructing the NNs with

the optimization algorithm of Adam. Training sessions of 1000

epochs with the batch size of 32 were conducted separately

for the two NNs.

Fig. 6. Examples of phase spatial patterns taken from Fig. 5(b). The parameters
are the temporal frequency bin numbers.

Fig. 7. Results of the closed test: scatter plot of amplitude estimation.

B. Learning to estimate the amplitude

First, every amplitude spatial–spectral pattern was rep-

resented as relative levels where the maximum value was

assigned to 0 dB. Subsequently, the levels were normalized:

the minimum and maximum levels were assigned to 0 and

1, respectively. The NN was trained so that the normalized

amplitude at the spatial #0 bin was to be recalled using the

amplitude data of the remaining seven spatial bins.

As a result of learning, the closed test results are shown

in Fig. 7. The overall accuracy is sufficient but there are

discrepancies when the observed value is 1. This occurs when

a spatial spectrum pattern has its peak at the spatial #0 bin,

such as the pattern of the temporal #0 bin in Fig. 4. These

patterns are observed when the temporal frequency is low or

the DOA of noise is small. It may be difficult for the NN to

recall its peak value using small data at the hems.
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Fig. 8. Results of the closed test: scatter plot of phase estimation.

C. Learning to estimate the phase

Based on the phase characteristics shown in Fig. 6, the NN

was trained so that the phase at the spatial #0 bin was estimated

using the remaining six out of the seven bins: the value of #1

bin was excluded due to its value always equal to 0 because

it was the reference of the relative phase. In addition to the

relative phase data, information indicating whether the DOA

of noise was positive or negative was used. This information

could be easily obtained by the fact that the peak existed in the

positive or negative spatial bin. When the peak existed at the

negative or positive bin, the value of −1 or 1 was given to one

of the input cells of the NN. The NN was trained using these

6-phase data and one DOA information to recall the relative

phase value at the spatial #0 bin.

As a result of learning, the closed test results are shown

in Fig. 8. The overall accuracy is excellent, except for some

outliers which are the data at very low temporal frequencies

(< 100 Hz), or high frequencies near the Nyquist frequency.

V. EVALUATION OF THE PERFORMANCE OF THE SYSTEM

A. Treatment of ill estimations

The estimation of amplitude is relatively difficult at low

frequencies where the estimation error is significant, as shown

in Fig. 7. In such a case, spectral subtraction of the esti-

mated noise may evoke additional noise. To avoid this, an

ill estimation condition was defined and coped with the errors

as follows: The noise at the spatial #0 bin USM(kt, 0) was

estimated based on the values USM(kt, ks) where ks �= 0.

Here, the estimated values are referred to as ESM(kt, 0).
Ill estimations occur when the difference between the true

value USM(kt, 0) and an estimated value ESM(kt, 0) is large.

The noise signal is especially enhanced when the following

condition holds:

|USM(kt, 0)− ESM(kt, 0)| > | − U(kt)|. (6)
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(a) Amplitude estimation only.
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(b) Amplitude as well as phase estimation.

Fig. 9. Noise suppression performance by the proposal system.

However, USM(kt, 0) and −U(kt) are not observed; thus, it

is impossible to determine whether an ill estimation occurred

based on the observed value of D(kt, 0) and the estimated

value of ESM(kt, 0). An ill estimation was determined to

occur when the estimated amplitude was 10 times larger than

the observed value (10 × |D(kt, 0)| ≤ |ESM(kt, 0)|). If this

condition is satisfied, the estimated value is considered equal

to zero (|ESM(kt, 0)| = 0). This indicates that the system

is equivalent to the conventional DAS array when an ill

estimation occurs.

B. Evaluation of noise suppression

Noise suppression performances of the proposed system

were tested for four types of noise: white noise, words of

“Sapporo” (Speech 1), and “Asahikawa” (Speech 2) taken from

a database [17], and a piece of music (classic1: classical music

No. 1 [18]).

Figure 9(a) presents the results when only amplitudes were
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Fig. 10. Noise suppression for the musical noise with bandpass filtering of
100 to 7500 Hz.

estimated, i.e., no estimation on the phase was conducted

and the D(kt, 0) phase was used for the IFFT process. It is

uncertain whether a sufficient amount of noise was suppressed.

Figure 9(b) exhibits the results when the phase and am-

plitudes were estimated. Significantly sharp directivities are

achieved for white noise and speech signals, and the maximum

suppressions reach approximately −24 dB. The maximum

suppression is larger than the results of the previous study [8]

in which the values were approximately −21 and −18 dB for

the noise used in the learning and a speech signal, respectively.

Moreover, if these SMs are used as the conventional DAS

beamformer or the minimum variance (MV) beamformer [1],

the maximum noise reduction could reach at most −10 or

−20 dB, respectively [7]. These imply that the proposed

system is effective.

However, the maximum suppression is restricted to approx-

imately −6 dB for the musical noise (classic 1). This is

because lower frequency components are dominant for this

musical noise. As mentioned above, the proposed system has

the tendency for a difficult estimation of the amplitudes of

lower frequency components. When the musical noise was

preprocessed with a bandpass filter with the passband of 100
to 7500 Hz, the maximum suppression reached approximately

−24 dB, as shown in Fig. 10. Note, no bandpass filtering was

applied for white noise in Fig 9. This is because white noise

has plenty of high frequency components so that well sup-

pression was achieved even when low frequency components

existed.

These results suggest that the proposed method is better than

the previous method [8] in which processing is conducted in

the time domain. Moreover, the present method overcame the

issue in the previous method of being effective only for the

noise that had been used in training the NN. However, the

present method needs further studies for improvement in the

estimation of lower frequencies.

VI. CONCLUSION

This study proposed a noise suppression system composed

of a differential-type microphone array and two NNs. In

the NNs, 2D amplitude and phase spectra are addressed to

estimate the property of a noise. As a result, the system

achieved a sharp directivity for noises that have not been used

for training the NNs. The authors succeeded to overcome the

issues in their previous method.

The present system estimates the amplitude and phase of a

noise component using two independent NNs. Further studies

will be required to use a complex-number NN for better

performance.
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