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Abstract—Driver arrival sensing which enables the car to
detect an approaching driver has been playing an important
role in the evolving smart car system. This paper presents a
driver arrival sensing scheme based on the fine time measurement
(FTM) released in the IEEE 802.11mc protocol. We observe that
when the initiating station (ISTA, such as a mobile phone or
WiFi client) keeps moving towards the response station (RSTA,
usually a WiFi access-point (AP)), there exists a knee point of
the WiFi-FTM range estimation after which the variation of the
WiFi-FTM range estimations follows a stable trend regardless of
the environment. Inspired by such an observation, we propose
a joint knee point detection and driver arrival time estimation
algorithm based on the trend of WiFi-FTM range estimations.
Given the arrival time, the car (RSTA) can determine the right
time to start the service requested by the driver. We implement
the proposed method using commercial 802.11mc WiFi chipsets
and conduct extensive experiments in different parking lots with
different testers. The results show that the scheme can achieve
≥ 92.5% accuracy with ≤ 1s arrival time estimation error.

I. INTRODUCTION

With the proliferation of WiFi devices in the past several
decades [1]–[4], many WiFi-based applications for smart car
systems [5], [6] such as activity recognition [7], driver authen-
tication [8] and Advanced Driver Assistance Systems (ADAS)
[9]–[11] have emerged. While these applications are mainly
for in-car use, there has not been many out-car applications
such as driver arrival sensing that needs to be further explored.

Driver arrival sensing is often used in remote control
including locking/unlocking the door, opening/closing the win-
dow/convertible tops and remote ignition key [12], [13]. While
these applications focus more on the driver’s presence sensing,
there are many other applications which need to estimate the
accurate arrival time of the driver (AToD). For example, a
car needs to sense the AToD so that the air conditioner (AC)
system can be turned on at a right time. Turning on the AC too
early will cause extra energy consumption while turning on the
AC too late may lead to an uncomfortable temperature when
the driver arrives. In the future, the car system may consist of
many service systems such as driver identification [8] to make
it more intelligent. As a result, a smart car needs to sense the
AToD so that it can manage multiple services properly such as
starting a time-consuming service (e.g., driver identification)
earlier while responding to a time-saving service (e.g., door
close/open) later on. On the other hand, the current driver
sensing system mainly applies a digital code matching and
rolling scheme by wireless transponders, which has a serious

security issue [14], [15]. As a result, security needs to be
enhanced in the AToD sensing system as well.

To address the aforementioned challenges, this paper pro-
poses an AToD sensing algorithm by leveraging the WiFi-FTM
protocol introduced in IEEE 802.11mc [16], [17]. There are
two main advantages by using WiFi than the traditional low-
power transponders [12]. First, the larger coverage of WiFi
devices enables an earlier detection of the AToD. Second, WiFi
provides more secure encryptions such as Wired Equivalent
Privacy (WEP) and Wi-Fi Protected Access (WPA) [18] than
the present digital code identification and rolling systems [12].
In addition, the WifiRttScan app [19] release by Google in
2019 to measure the distance to nearby FTM-capable Wi-Fi
access points (APs) makes the WiFi-FTM more available.

In this paper, we first evaluate the accuracy of the WiFi-
FTM range estimations in the practical parking lots by using
the commercial 802.11mc WiFi chipsets. We then show that
there always exists a knee point after which the WiFi-
FTM range estimations show a stable trend when the ISTA
(driver/client) keeps moving towards the RSTA (fixed on a
car). Based on such an observation, a novel algorithm is
proposed to detect the knee point and estimate the AToD.
Experiment results show that the proposed system can achieve
≥ 92.5% accuracy with ≤ 1s error of the AToD estimation.

The rest of the paper is organized as follows. In Section
II, we introduce the WiFi-FTM range estimation protocol
followed by the knee point analysis. Section III elaborates
on the knee point detection and AToD estimation algorithms.
Experiment results are given in Section IV while Section V
concludes this paper.

II. DISTANCE ESTIMATION BASED ON WIFI-FTM

A. Basics of WiFi-FTM

WiFi-FTM was released in IEEE 802.11mc [16], [17] to
enable the range estimations between two WiFi cards by using
the round trip time (RTT). As shown in Fig. 2, N FTMs in
a single burst can be averaged to get a more accurate RTT
estimations. The distance estimation RIS(k) at burst k between
the ISTA and RSTA is given by

RIS(k) =

1

2N

N∑
n=1

[(t4(k, n)− t1(k, n))− (t3(k, n)− t2(k, n))] · c
(1)
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Fig. 1: Illustration of the system in a parking lot.
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Fig. 2: Overview of FTM protocol.

where c = 3 · 108m/s is the light speed. t1(k, n) and t4(k, n)
denotes the departure and arrival time measured by the RSTA
at burst k, pulse n. Similarly, t2(k, n) and t3(k, n) are the
arrival and departure time recorded by the ISTA. Generally,
t1(k, n) and t4(k, n) are sent back to ISTA for range estima-
tions between the ISTA and RSTA. Note that the exchange
of the FTMs and its acknowledgment frame (ACK) is usually
finished within a very short period. Hence, the clock of the
two stations do not drift significantly [20].

However, impacted by the multipath propagation and block-
age in non-line-of-sight (NLOS) scenarios, the range esti-
mation provided by (1) may not be accurate [16], [17]. An
example is shown in Fig.1, where a user equipped with an
ISTA is walking towards his car equipped with an RSTA. The
user may approach the car along Route 1 (A→ B→D→E) or
Route 2 (A→ C→G→D→E) or other routes. Taking Route 1
as an example, at the starting point ‘A’, the WiFi-FTM-based
distance estimations are inaccurate due to NLOS of point A.
However, as the user gets closer to the car, e.g., passing point
‘B’ (or point ‘G’ in Route 2), the LOS signal starts to dominate
and the WiFi-FTM-based distance estimations become more
accurate. It is expected that the distance estimations when the
user approaches his car should exhibit a knee-point after which
distance estimation becomes reliable.

B. WiFi-FTM Range Measurement

To verify the existence of the knee point in distance es-
timation, we conduct multiple experiments with settings as
follows.

Hardware. We implement the WiFi-FTM using commercial
802.11mc WiFi chipsets as shown in Fig. 3. One WiFi chipset
is integrated with the Intel Galileo control board to work as an
RSTA which is fixed on top of a car during the test. Another
WiFi chipset is installed on a Intel Apollo board to work as
an ISTA. To build a mobile client, the ISTA is put in a box
(named as TestBox) and carried by a tester in the test . The
ISTA board runs Linux OS and receives instructions from a
Surface Pro through an Ethernet cable. The Surface Pro works
as an GUI through which we can control the ISTA such as

sending/stopping request and get real time WiFi-FTM range
estimations from the ISTA board.

Data Collection. In the experiment, the RSTA is fixed on
top of a car in the parking lot and a tester holds the TestBox
while moving towards the car from different directions and ini-
tial distances. Note that the initial distance means the distance
between the ISTA and RSTA when the tester starts to move.
Once the tester arrives at the car, he/she records the WiFi-FTM
range estimation showing on the Surface Pro GUI manually
as the ground truth of the arrival time TAM. Different testers
are invited to walk at different speeds. Extensive experiments
have been conducted in different parking lots and garages on
weekdays where the test car is surrounded by different cars
during the data collection.

C. Analysis of Range Estimation

Fig. 4 shows the distance measurements with different
initial distances and different directions, i.e., different routes
R1,R2, · · · ,Rn in Fig. 3. To test the impact of the moving
speed of the ISTA, Fig. 5 and Fig. 6 further show the results
when a tester is running (about 3m/s) and walking slowly
(about 1m/s) to the car. From Figs. 4 - 6, we can get the
following observation.

The range estimations variate irregularly at the begin-
ning and show a stationary trend passing a Knee Point.
As shown in Figs. 4-6, we denote the moment when the tester
gets to the car as Arrival Time TAM which is labeled every
time manually. At the beginning, the distance measurement
changes randomly versus the walking time due to the random
errors brought by the serious multipaths. As the ISTA keeps
moving close to the RSTA, the distance measurements begin
to decay linearly w.r.t. walking time. For example in Fig. 4-6,
if we align the distance measurements according to the TAM,
the decaying trend is very consistent near TAM. If we can
detect such a knee point and estimate the accurate distance
between the ISTA and RSTA as early as possible, the RSTA
can predict the arrival time of the ISTA and response to the
request from the ISTA properly. Next, we introduce a novel
knee point detection and driver arrival time estimation method
based on the aforementioned observations.
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Fig. 3: Hardware and experiment setup. (a) The same initial
distance. (b) Different initial distances.
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Fig. 4: Distance measurements when ISTA starts to approach
the RSTA from different directions and initial distances.
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Fig. 5: Distance measurements in which the ISTA moves to the
RSTA at a relative high speed (the tester runs to the car).
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Fig. 6: Distance measurements in which the ISTA moves to the
RSTA slowly (the tester walks slowly to the car).
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Fig. 7: Key steps of the knee point detection

III. KNEE POINT AND ARRIVAL TIME ESTIMATION

A. Knee Point Detection

Assume that we have a WiFi-FTM-based distance sequence
Dn = [dn, dn−1, . . . d2, d1] at time tn, the instant speed of the
ISTA at time tn can be written as

qn =
dn−1 − dn
tn − tn−1

. (2)

where tn and dn denote the sample time and the WiFi-
FTM-based distance estimation at time tn. To get an aver-
aged/reliable speed estimation, we take the latest T distance
points, i.e., [dn, dn−1, · · · , dn−T+1]], where T is termed as
window length as shown in Fig. 7. If the ISTA has stepped
into the area where the LOS dominates, Dn is monotonically
decreasing. As a result, every element in the instant speed es-
timation sequence Qn = [q1, q2, · · · , qT−1] should be positive
(strategy 1 in Fig. 7) since the distance dn gets smaller and
smaller with ISTA approaching the RSTA.

In addition, the natural walking speed of a driver can be
assumed as a constant during the whole journey when the
driver walks towards his/her car. As a result, the speed esti-
mations within Qn should be consistent while small deviations
are allowed because of the measurement errors. To quantify
the speed consistency, we define the average of speed ratios
within a window of length T as the speed consistency sn,
which is given by

sn =
||Rn||1
T − 2

=
1

T − 2

T−2∑
n=1

qn
qn+1

, (3)

where Rn = [r1, r2, · · · , rT−2] represents the speed ratio with
ri = qi+1/qi (i = 1, 2, · · · , T − 2). Operation || · ||1 denotes
the l1-norm. In strategy 2 of Fig. 7, if |sn − 1| ≤ 0.1, the
speed estimation sequence Qn is regarded as a consistent
speed estimation sequence and the knee point dn is detected.
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Fig. 8: Arrival time estimation at different speeds.

TABLE I: Accuracy of the arrival time estimation

#

Parameter/Conditions Arrival time estimation error: T̂k
AM − TAM

Max. initial Same initial
Speed Direction -3s -2s -1s 0s 1s | • | ≤ 1s

distance (m) distance (Y/N)

1 30 N Normal walking 0− 360◦ 6.2% 0 10.4% 83.4% 0 93.8%

2 20 N Normal running 0− 360◦ 0 0 10% 90% 0 100%

3 20 N Walking slowly 0− 360◦ 3.4% 4.1% 10.8% 73.3% 8.4% 92.5%

B. Arrival Time Estimation

To estimate the arrival time, we first define a LOS-Area
which is centered around the location of RSTA. Within the
LOS-Area, the LOS signal component dominates and the
WiFi-FTM range estimations are accurate. Generally, the
LOS-Area has different radii in different directions w.r.t. the
RSTA due to the impact of multipaths.

To be a knee point, there are two main constraints. First, the
knee point should lie on the edge of LOS-Area. If the ISTA
goes further away than the knee point, the distance estimation
accuracy will degrade. Second, once the ISTA passes through
the knee point and keeps approaching to the RSTA, the WiFi-
FTM distance measurements should be accurate. To meet the
two constraints, the knee point should be no further and closer.
Assume that the ISTA is dk away from the RSTA at the knee
point and the natural walking speed of a tester is relatively
constant, the arrival time can be expressed as

T̂k
AM =

dk

vk
, vk =

1

T − 1

T−1∑
n=1

qn. (4)

Note that the accuracy of the arrival time T̂AM can be evaluated
based on the recording of the true arrival time TAM once the
ISTA arrives at the car.

IV. PERFORMANCE EVALUATION

The experiment set up is the same as described in Section
II-B. To evaluate the estimation accuracy of the arrival time
TAM, we conduct multiple experiments where a tester walks
at different speeds including normal walking at about 1.2m/s,
running at about 3m/s and walking very slowly at about

1m/s. For each test, we ask the tester to walk close to the
car (RSTA) in 30 different routes and different directions.
The initial distance varies from 20m to 30m. Note that we
do not need to set all the initial distances as 30m since
some specific locations may be occupied by other cars. We
repeat the experiment in different parking lots and different
testers. The estimated arrival time is shown in Fig. 8, which
matches well with the ground truth. More results are given in
Table I. Clearly, the proposed method can achieve more than
92% percentile accuracy with no greater than 1s error. From
Table I, the estimated arrival time T̂k

AM is more likely to be
underestimated than the true arrival time TAM. This is because
that the WiFi-FTM range measurements correspond to the
straight line between the ISTA and RSTA in theory. However,
in practice, a tester/ISTA cannot approach to the car/RSTA
along the straight line because of obstacles such as other cars.
In this sense, the distance measurement is usually shorter than
the real walking distance, thus causing underestimation of the
arrival time T̂k

AM.

V. CONCLUSION

We propose a driver arrival time sensing method by using
the WiFi-FTM range estimations which are proved to show a
stable changing-trend after a knee point when the ISTA keeps
moving close to the RSTA. Based on such observation, we then
propose a knee point detection and a driver arrival time es-
timation scheme. Experimental evaluations using commercial
802.11mc WiFi chipsets show that the proposed system can
achieve ≥ 92.5% accuracy with ≤ 1s arrival time estimation
error regardless of the environments and users.
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