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Abstract—We present an algorithm for the constrained design
of a 2D FIR filter with sparse coefficients. Existing filter design
methods aim to minimize a filter order and maximize filter
performance. The 2D FIR filter coefficients designed by the least-
squares method with peak error constraints are optimal in the
sense of least-squares within a given order. However, they are not
necessarily optimal in terms of constructing a filter that satisfies
the design specification. That is, a higher-order filter with some
zero coefficients can construct a filter that satisfies the design
specification with fewer multipliers. Our method minimizes the
number of non-zero coefficients of the filter coefficients, while the
frequency response of the filter satisfies the design specification.
It performs better in terms of maximum error than the least-
squares method with peak error constraints having the same
number of multipliers.

Index Terms—2D FIR filter, sparsity, `0 norm, ADMM algo-
rithm.

I. INTRODUCTION

The design of FIR filters is an important issue in digital
signal processing. Many design methods have been proposed
by several authors [1]–[12]. Existing filter design methods aim
to minimize a filter order and maximize the filter performance.
However, as the filter length increases, the number of multipli-
ers used to construct the filter increases. It is a serious problem,
especially in a two-dimensional (2D) FIR filter design.

The least-squares (LS) method, which minimizes the mean
squared error of frequency responses, is widely used due
to its simplicity and flexibility [3]–[7]. In the LS design,
large error often occurs near a cut-off frequency. Adam et
al. have addressed the problem by adding constraints to the
minimization problem of the filter design [13], which is
termed as the constrained least-squares (CLS) method. In
this method, the maximum error is reduced by adding the
peak error constraints to its frequency response without having
large transition bands. Under an arbitrary maximum error
constraint, the filter coefficients designed by the CLS method
are optimal in the sense of LS at a given filter length, but
not necessarily optimal among filters with the same number
of multipliers in terms of constructing a filter that meets the
design specification. If we are allowed to have longer filter
lengths, we can design a filter that satisfies the condition
with fewer multipliers than the CLS method. To minimize

the number of multipliers instead of the filter order, some
approaches design the filter with zero-valued taps, which is
often called sparse filters [14], [15].

In this paper, we present a numerical approach to design
a constrained 2D sparse filter. Our method consists of two
steps. In the first step, we obtain an approximate solution
to the peak error-constrained L0 norm minimization problem,
which identifies the positions of the zero coefficients. In the
second step, a constrained sparse filter is designed by solving
a constrained filter design problem that includes arbitrary
constraints for the frequency response and filter coefficients.
Although this method does not guarantee optimality in the
sense of sparsity, it has better performance than the traditional
2D filter design method.

The paper is organized as follows. In Section II, the
weighted LS and CLS for the FIR filters are briefly described.
In Section III, our design problem is formulated and a design
algorithm that considers the sparsity of coefficients and the
arbitrary constraint for peak errors is proposed. In Section IV,
several examples are shown to verify the validity of the pro-
posed algorithm, and some comparisons with the conventional
method are shown. In the last Section V, we briefly conclude
this paper.

II. CONVENTIONAL METHODS

A. Weighted least-squares method

The frequency response of 2D linear phase FIR filters and
more general 2D non-linear phase FIR filters can be written
as a linear combination of trigonometric basis functions. If
the filter is a 2D symmetric linear phase filter of even-order
even-symmetry, it can be written as follows,

H(ω1, ω2) =

N−1∑
n=0

N−1∑
m=0

An,mφn,m(ω1, ω2), (1)

φn,m(ω1, ω2) = cos(nω1) cos(mω2),

{(ω1, ω2), 0 ≤ ω1, ω2 ≤ π},

where N = (N0 − 1)/2 + 1, N0 is the filter length and
An,m is the (n,m)-th elements of the filter coefficient matrix
A ∈ RN×N . In the more general case, φn,m(ω1, ω2) =
ejnω1ejmω2 . Although our design method can handle all types

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

17978-988-14768-8-3/20/$31.00 ©2020 APSIPA APSIPA-ASC 2020



of 2D FIR filters, we only show here the case of 2D linear
phase FIR filters whose frequency response is indicated by
(1). Here, we briefly review the weighted least-squares (WLS)
method. In general, the WLS method is defined as the problem
of minimizing the following cost function, expressed as a
finite sum of the errors on the discretized frequency points
as follows,

Φ =
K−1∑
i=0

K−1∑
j=0

|W (ω1,i, ω2,j)|2|H(ω1,i, ω2,j)−D(ω1,i, ω2,j)|2,

(2)
{(ω1,i, ω2,i), i = 0, 1, . . . ,K − 1},

where W (ω1,i, ω2,j) is a weight function with zero or positive
values, D(ω1,i, ω2,j) is the desired frequency response, and
K is the number of frequency response samples. ω1,i and
ω2,i are the i-th frequency of the frequency sample along
the ω1 and ω2 axes, respectively, which is {(ω1,i, ω2,i), i =
0, 1, . . . ,K − 1} ⊆ {(ω1, ω2), 0 ≤ ω1, ω2 ≤ π}. The filter
coefficient vector obtained by vectorizing the filter coefficient
matrix A is defined as a, and then we denote it by using the
L2 norm of the error.

Φ1/2 = ‖W(Ra− d)‖2. (3)

Here, the (i, j)-th element of R, the i-th element of d, and
the (i, i)-th element of W are given by

Ri,j = Rbi/Nc,(i mod N)(ω1,bj/Kc, ω2,(j mod K)),

Rn,m(ωi, ωj) = cos(nωi) cos(mωj),

di = D(ω1,bi/Kc, ω2,(i mod K)),

Wi,i = W (ω1,bi/Kc, ω2,(i mod K)),

{(ω1,i, ω2,i), i = 0, 1, . . . ,K − 1},

which are R ∈ RK2×N2

,d ∈ RK2

,W ∈ RK2×K2

, and a ∈
RN2

. W is a diagonal matrix. The optimal filter coefficients
a in the sense of LS can be uniquely determined by solving
the normal equation.

a = (RTW2R)−1RTW2d.

This is the general WLS method for 2D linear phase FIR
filters.

B. Peak Error Constraint

In the filter design, the LS approximation with peak error
constraints is useful in several applications. The L2 problem
with peak error constraints for a 2D low-pass filter with
passband/stopband edge ωp, ωs is defined as

min
a

K−1∑
i=0

K−1∑
j=0

(4)

|W (ω1,i, ω2,j)|2|H(ω1,i, ω2,j)−D(ω1,i, ω2,j)|2,
s.t. L(ω1,i, ω2,j) ≤ H(ω1,i, ω2,j) ≤ U(ω1,i, ω2,j),

{(ω1,i, ω2,i), i = 0, 1, . . . ,K − 1}.

Here, L(ω1, ω2) and U(ω1, ω2) are the specified lower and
upper bound functions, respectively. These functions are given
by

L(ω1, ω2) =


1− δp, if ω1, ω2 ∈ Ωp,

−δs, if ω1, ω2 ∈ Ωs,

don′t care otherwise,

(5)

U(ω1, ω2) =


1 + δp, if ω1, ω2 ∈ Ωp,

δs, if ω1, ω2 ∈ Ωs,

don′t care otherwise,

(6)

where δp and δs are the given error bounds in the passband
and stopband, and Ωp and Ωs are the set of frequency response
sample points in the passband and stopband, respectively. The
filter with peak error constraints is designed by solving (4).

III. PROPOSED METHOD

The WLS method is optimal in the sense of LS, under the
condition that the filter length is fixed. If we set some of the
coefficients of the filter coefficient vector to zero and allow
a longer filter length, we can design the filter such that it
satisfies the design specification with fewer multipliers. Our
goal is to design a 2D sparse filter with such constraints.
The proposed design algorithm consists of the following
two steps. We first determine the position where the filter
coefficients are set to zero by solving a peak error-constrained
L0 norm minimization problem (described in Section III-A).
We then solve an arbitrary constrained sparse filter design
problem (described in Section III-B) to bring the coefficients
determined in the first step to zero.

A. Determination of zero coefficients (step1)
To design sparse coefficients, we use the L0 norm. For the

input coefficient vector x, the L0 norm is defined by

‖x‖0 =
∑
i

|xi|0, (7)

where we define

|xi|0 =

{
1, if xi 6= 0,

0, if xi = 0.
(8)

We define a sparse filter design problem such that the function
(7) is minimized while satisfying the peak error constraints.

min
a

λ‖a‖0, (9)

s.t. ŴRa ∈ V1,
V1 = {x|Lbi/Kc,(i mod K) ≤ xi ≤ Ubi/Kc,(i mod K)},

where

Li,j =

{
L(ωi, ωj), if ωi, ωj ∈ Ωp ∪ Ωs,

0, otherwise,
(10)

Ui,j =

{
U(ωi, ωj), if ωi, ωj ∈ Ωp ∪ Ωs,

0, otherwise,
(11)

Ŵi,i =

{
1, if ωbi/Kc, ω(i mod K) ∈ Ωp ∪ Ωs,

0, otherwise,
(12)
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Algorithm 1 Algorithm1

1: input η, β1, β2, k = 0,a(0), z
(0)
n ,b

(0)
n , (n = 1, 2)

2: while A stopping criterion is not satisfied do

3:

a(k+1) ← arg min
a

β1
2
‖z(k)1 − a− b

(k)
1 ‖22 (13)

+
β2
2
‖z(k)2 − ŴRa− b

(k)
2 ‖22

4:

z
(k+1)
1 ← arg min

z1

λ‖z1‖0 +
β1
2
‖z1 − a(k+1) − b

(k)
1 ‖22
(14)

5:
z
(k+1)
2 ← arg min

z2

ιV1
(z2) (15)

+
β2
2
‖z2 − ŴRa

(k+1)
− b

(k)
2 ‖22

6: b
(k+1)
1 ← b

(k)
1 + a(k+1) − z

(k+1)
1

7: b
(k+1)
2 ← b

(k)
2 + ŴRa

(k+1)
− z

(k+1)
2

8: β1 ← ηβ1
9: β2 ← ηβ2

10: end while
11: Output : a

and L,U ∈ RK×K , Ŵ ∈ RK2×K2

. L and U are the
functions defined in (5) and (6), respectively. Ŵ is a diagonal
matrix, which extracts the frequency responses belonging to
the passband and stopband of the constructed filter. where
R is the basis function matrix introduced in Section II-A.
The parameter λ is introduced to control the sparsity of the
filter coefficient vector. ŴRa ∈ V1 is a condition for the
frequency response of the passband and stopband to satisfy
the peak error constraints. Here, we rewrite the sparse filter
design problem (9) to an unconstrained problem by using the
indicator function.

min
a

λ‖a‖0 + ιV1(ŴRa), (16)

V1 = {x|Lbi/Kc,(i mod K) ≤ xi ≤ Ubi/Kc,(i mod K)},

where ιV1
is the indicator function of V1. Here, ιV (x) penal-

izes a vector x if it is not included in the set V .

ιV (x) =

{
0, if x ∈ V,
+∞, if x /∈ V.

(17)

An approximate solution is obtained by applying the Alternat-
ing Direction Method of Multipliers(ADMM) [16]. ADMM is
a proximal splitting algorithm that can treat convex optimiza-
tion problems. Although ADMM is used as an algorithm to
solve convex optimization problems, it has been successfully
applied to various applications in non-convex optimization
problems [17], [18]. Therefore, ADMM is used for the non-
convex optimization problems of (16). The algorithm for
solving (16) is shown in Algorithm 1.

Here, η ∈ R is the step size to update β1, β2 and has a
value greater than 1. The reasonable solution is obtained by
solving the problem repeatedly while varying β1 and β2 by
multiplying η in each step. For the initial values of β1 and β2,
a constant greater than zero is set, respectively.

1) solution of a: The problem (13) is a simple quadratic
form w.r.t. a. The optimal solution is determined by solving

(β1I + β2R
TŴ2R)a = (18)

β1(z1 − b1) + β2R
TŴ

T
(z2 − b2).

Here, I ∈ RN2×N2

is an identity matrix.
2) solution of z1: Reformulating (14), we get

z
(k+1)
1 = arg min

z1

‖z1‖0 +
β1
2λ
‖z1 − a(k+1) − b

(k)
1 ‖22.

The solution of z1 is found for each element individually.

z
(k+1)
1,i = arg min

z1,i
|z1,i|0 +

β1
2λ

(z1,i − a(k+1)
i − b(k)1,i )2, (19)

where ai, z1,i, and b1,i are the i-th element of a, z1, and
b1 respectively. The solution z∗1,i can be obtained by hard
thresholding given by (19) as follows,

z∗1,i =

{
0, if |ai + b1,i| ≤

√
2λ
β1
,

ai + b1,i, otherwise.
(20)

3) solution of z2: The solution of z2 from (15) is found
separately for each element as follows,

z∗2,i = arg min
z2,i

ιV1
(z2,i) +

β2
2

(z2,i − (ŴRa)i − b2,i)2,

(21)

where (ŴRa)i, z2,i, and b2,i are the i-th element of
ŴRa, z2, and b2 respectively. One can easily find that the
solution for the above problem is given by the projection onto
the convex set V1 as

z∗2,i =


Ux,y, if (ŴRa)i + b2,i > Ux,y,

Lx,y, if (ŴRa)i + b2,i < Lx,y,

(ŴRa)i + b2,i, otherwise,

(22)
x = bi/Kc, y = (i mod K),

where L and U are the matrices defined in (10) and (11),
respectively.

A hard threshold is applied to the obtained solution and the
coefficient values of the filter coefficient vectors below the
threshold ξ1 ∈ R are set to zero. Let the zero-value index
of the filter coefficient vector be the zero coefficient position.
This is used in M of Section III-B.

B. Design of Constrained Sparse Filter (step2)

The purpose of the previous section is to find the positions
of the zero coefficients of the filter coefficient vector. Once
the position of the zero coefficients is obtained, we redesign
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Algorithm 2 Algorithm2

1: input

k = 0, z(0)n ,b(0)
n , (n = 1, 2),a(0) = a∗step1,M, µ1, µ2

2: while A stopping criterion is not satisfied do

3:

a(k+1) ← arg min
a

1

2
‖W(Ra− d)‖22 (25)

+
µ1

2
‖z(k)1 − ŴRa− b

(k)
1 ‖22

+
µ2

2
‖z(k)2 −Ma− b

(k)
2 ‖22

4:
z
(k+1)
1 ← arg min

z1

ιV1(z1) (26)

+
µ1

2
‖z1 − ŴRa

(k+1)
− b

(k)
1 ‖22

5:
z
(k+1)
2 ← arg min

z2

ιV2
(z2)+

µ2

2
‖z2−Ma(k+1)−b(k)

2 ‖22
(27)

6: b
(k+1)
1 ← b

(k)
1 + ŴRa

(k+1)
− z

(k+1)
1

7: b
(k+1)
2 ← b

(k)
2 + Ma(k+1) − z

(k+1)
2

8: end while
9: Output : a

the filter coefficients to obtain the optimal filter coefficients by
solving the following CLS problem with sparsity constraints.

min
a

1

2
‖W(Ra− d)‖22, (23)

s.t. ŴRa ∈ V1, Ma ∈ V2,

where M is the diagonal matrix for extracting the coefficients
of zero coefficient position. If the i-th element of a obtained in
Section III-A is 0, the (i, i)-th element of M is 1; otherwise, it
is 0. V2 represents the constraints for the sparsity of the filter
coefficients, ŴRa is a linear constraint added to a. V1 and
V2 are closed convex sets. We convert (23) to the following
unconstrained problem by introducing the indicator function
(17),

min
a

1

2
‖W(Ra− d)‖22 + ιV1

(ŴRa) + ιV2
(Ma). (24)

The second and third terms of the cost function (24) are non-
differentiable functions. Fortunately, since each term of the
cost function is convex, the cost function can be solved by
ADMM, and its algorithm is shown in Algorithm 2. a∗step1 is
the filter coefficient vector a after hard thresholding obtained
in step 1.

1) solution of a: The problem (25) is a simple quadratic
form w.r.t. a. The optimal solution is determined by solving

(RTW2R + µ1R
TŴ2R + µ2M

TM)a = (28)

RTW2d + µ1R
TŴT(z1 − b1) + µ2M

T(z2 − b2).

2) solution of z1: The solution of z1 is found for each
element individually.

z
(k+1)
1,i = arg min

z1,i
ιV1(z1,i) (29)

+
µ1

2
‖(ŴRa

(k+1)
)i − z1,i − b(k)1,i ‖

2
2,

where (ŴRa)i, z1,i, and b1,i are the i-th element of
ŴRa, z1, and b1 respectively. One can easily find that the
solution for the above problem is given by the projection onto
the convex set V1 as

z∗1,i =


Ux,y, if (ŴRa)i + b1,i > Ux,y,

Lx,y, if (ŴRa)i + b1,i < Lx,y,

(ŴRa)i + b1,i, otherwise,

(30)
x = bi/Kc, y = (i mod K).

3) solution of z2: The closed-convex set V2 is represented
by the following equation.

V2 = {x ∈ RN
2

| |xi| ≤ ε for ∀i}.

ιV2
(x) imposes a penalty if all elements of the vector x are not

less than or equal to ε. If ε = 0, we constrain the coefficients
value of the zero coefficient position obtained in Section III-A
to be zero. We relax this constraint by setting a small value
for ε. The solution of (27) is given by the projection of the
convex set V2.

z∗2,i =


ε, if (Ma)i + b2,i > ε,

−ε, if (Ma)i + b2,i < −ε,
(Ma)i + b2,i, otherwise.

(31)

A hard threshold is applied to the obtained solution and the
coefficient values of the filter coefficient vectors below the
threshold ξ2 are set to zero.

IV. EXPERIMENT

In this section, numerical experiments are shown to verify
the advantage of the proposed algorithm. All experiments were
designed in MATLAB. All frequencies are normalized by π
and frequency points are equally spaced. The filter lengths
N0 are 61 (N = 31), 91 (N = 46) and 141 (N = 71), and
δp, δs are 0.1, 0.05 and 0.015 for the respective filter lengths.
For the cutoff frequency ωc, the edges of the passband and
the stopband ωp and ωs are ωc ± 0.02, respectively. The W
used in the experiments is a function that returns 1 when a
frequency point belongs to the passband or stopband and 0
otherwise. The parameters used in Algorithm 1 are η = 1.001,
ξ1 = 1e − 6, β1 = 10 and β2 = 10, respectively and a(0)

is initialized by (RTW2R)−1RTW2d. The parameters used
in Algorithm 2 are ξ2 = 1e − 6, µ1 = 200 and µ2 = 1,
respectively, and a(0) is initialized with the solution obtained
in step 1 after hard thresholding.

We designed a low-pass filter with cutoff frequencies ωc
of 0.26, 0.5, and 0.74 and a band-pass filter with pass-
band frequencies Omegap of [0.22, 0.38], [0.42, 0.58], and
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TABLE I: Experimental Results (Low-pass Filter)

(N2, Nd, NCLS , ωc)
CLS Ours

E(U) E(L) E(U) E(L)
(961, 207, 225, 0.26) 2.01e-1 1.75e-1 1.00e-1 1.00e-1
(961, 250, 256, 0.50) 1.78e-1 1.68e-1 1.00e-1 1.00e-1
(961, 292, 324, 0.74) 1.50e-1 1.37e-1 1.00e-1 1.00e-1

(2116, 1402, 1444, 0.26) 1.55e-1 1.54e-1 5.00e-2 5.00e-2
(2116, 1150, 1156, 0.50) 1.35e-1 1.24e-1 5.00e-2 5.00e-2
(2116, 1072, 1089, 0.74) 1.31e-1 1.17e-1 5.00e-2 5.00e-2
(5041, 3060, 3136, 0.26) 5.72e-2 4.40e-2 1.50e-2 1.50e-2
(5041, 2836, 2916, 0.50) 4.27e-2 4.35e-2 1.50e-2 1.50e-2
(5041, 2608, 2704, 0.74) 3.41e-2 3.20e-2 1.50e-2 1.50e-2

TABLE II: Experimental Results (Band-pass Filter)

(N2, Nd, NCLS , passband)
CLS Ours

E(U) E(L) E(U) E(L)
(961, 229, 256, 0.2-0.4) 1.56e-1 1.46e-1 1.00e-1 1.00e-1
(961, 263, 289, 0.4-0.6) 1.49e-1 1.39e-1 1.00e-1 1.00e-1
(961, 545, 576, 0.6-0.8) 1.90e-1 1.85e-1 1.00e-1 1.00e-1
(2116, 732, 784, 0.2-0.4) 6.33e-2 6.45e-2 5.00e-2 5.00e-2
(2116, 707, 729, 0.4-0.6) 8.11e-2 8.19e-2 5.00e-2 5.00e-2
(2116, 716, 729, 0.6-0.8) 6.90e-2 6.58e-2 5.00e-2 5.00e-2

(5041, 1878, 1936, 0.2-0.4) 2.16e-2 2.12e-2 1.50e-2 1.50e-2
(5041, 2026, 2116, 0.4-0.6) 1.68e-2 1.67e-2 1.50e-2 1.50e-2
(5041, 2128, 2209, 0.6-0.8) 1.54e-2 1.53e-2 1.50e-2 1.50e-2

[0.62, 0.78]. The band-pass filter’s stopband Ωs is [0, 0.18] ∪
[0.42, π], [0, 0.38] ∪ [0.62, π], and [0, 0.58] ∪ [0.82, π] for
Ωp = [0.22, 0.38], [0.42, 0.58], [0.62, 0.78], respectively. The
desired response of the low-pass and band-pass filters is
expressed by the following equation.

D(ω1,i, ω2,j) =

{
1, if

√
ω2
1,i + ω2

2,j ≤ ωc,
0, otherwise.

(32)

D(ω1,i, ω2,j) =

{
1, if

√
ω2
1,i + ω2

2,j ∈ Ωp,

0, otherwise.
(33)

The execution results are shown in Table. I, and Table. II.
In Table. I, Nd is the number of non-zero coefficients in the
proposed method, NCLS is the number of coefficients of the
CLS method, and E(U) and E(L) are the maximum errors
in the positive and negative directions, respectively. From
Table. I, it can be seen that the proposed method satisfies
the maximum error constraint for all the filter specifications,
but the maximum error is larger than the maximum error
constraint for the CLS method. Experimental results show that
the proposed method is superior to the CLS method for filters
with equal or greater numbers of multipliers.

V. CONCLUSION

In this paper, we proposed a two-step approach to design
constrained 2D sparse FIR filters. In the first step, the optimal
sparse filter coefficients that satisfy the given maximum error
constraints are obtained. In the second step, the constrained
sparse filter was redesigned to satisfy the results obtained
in the first step and to minimize the error with the desired

response. The constraints allow the filter coefficients with a
value of zero to remain at zero and not exceed the given
maximum error. These solutions were obtained by applying
ADMM. The proposed filter was able to construct a better
filter in terms of maximum error than the CLS method.

In future works, we will improve our sparse filter design al-
gorithm in terms of optimality and computational complexity.
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