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Abstract—Non-line-of-sight (NLOS) imaging reconstructs the
shape and albedo of objects outside the field of view of an imaging
system. Based on this technique, a wide range of applications such
as autonomous vehicle navigation, robotic and machine vision, as
well as medical imaging will possess unprecedented capabilities.
Recent NLOS imaging approaches employ ultra-fast pulsed laser
and time-resolved photon detector to collect light transients,
which are however time-consuming due to the point-by-point grid
scan on the wall. Moreover, the maximum imaging distance is
only a few meters because of the limitation of the photon counter.
In this paper, we introduce Radio Frequency (RF) NLOS imaging
to reconstruct hidden objects with radio signals. By analyzing
the image formation model, we transform the reconstruction
problem into an optimization problem that can be solved with
additional constraints. The simulation results validate that we
can reconstruct letter-shaped objects using a 12×12 multiple-
input multiple-output (MIMO) array and a stepped frequency
signal with a bandwidth of 4GHz. , Compared with the optical
NLOS imaging, the proposed method can capture the hidden 3D
geometry at longer ranges with shorter acquisition times.

I. INTRODUCTION

Most of the information our brain receives comes from our
eyes, which inspires us to transform all kinds of signals such as
optical, radio, and acoustic signals into images. By processing
the optical images, we can obtain most data of our life,
but the non-line-of-sight (NLOS) scene cannot be captured
because of the line-of-sight (LOS) limitation of the optical
signals. A wide range of applications, including autonomous
vehicle navigation, robotic and machine vision, as well as
medical imaging would process unprecedented capabilities if
the NLOS imaging technique has been implemented.

Recent approaches solve the NLOS imaging challenge by
employing the optical imaging system with a pulsed laser
and a sensitive time-resolved photon detector to generate and
detect photon, respectively. There are mainly two shortcom-
ings of these NLOS imaging approaches: (a) a 2D scanning
galvonometer raster is required to scan the visible wall point-
by-point, which is very time-consuming; (b) the temporal res-
olution and maximum stored number of the Time-Correlated
Single Photon Counting (TCSPC) module are limited, due
to which the maximum detection range is limited (typically
smaller than 3 meter) [1]. To overcome the shortcomings, in
this paper, we propose to recover the three-dimensional (3D)
shapes and localization of hidden objects with radio signals.
Compared with optical NLOS imaging approaches, the radio
NLOS imaging approach utilizes a MIMO array that enables
all receiver antennas to collect data simultaneously, which is

orders of magnitude less time-consuming. Furthermore, our
system has no limitation on the view distance.

The capability of radio imaging has been demonstrated
using different electromagnetic spectrum. The first category is
the high-frequency imaging radar with Terahertz spectrum[2],
[3], [4], [5]. These systems are intrinsically different from
ours since they operate at much higher frequencies where the
wavelength is comparable to the roughness of the surface of
the object to be reconstructed, making the object becomes a
scatterer as opposed to a reflector. The advantage of these
systems is the high-resolution imaging quality. However, the
high cost of the device makes it less likely to be widely de-
ployed. The second category uses centimeter/milimeter-waves
with carrier frequency around a few GHz to tens of GHz. The
wide bandwidth and MIMO technique have great potential in
providing high-resolution imaging[6], [7]. Consider the home
sensing scenarios, our system is motivated by recent advances
in wireless research, which has shown that with larger than
1 GHz bandwidth Frequency Modulated Continuous Wave
(FMCW) signals, a system can capture the skeleton of a human
target using special-purpose hardware [8].

Our system is also aspirated by the optical NLOS imag-
ing techniques, which utilize laser pulse for imaging hidden
scenes. The hidden object reflects photons toward the visible
scene, which then redirects photons toward the detector. The
visible scene can be treated as a virtual array to model NLOS
imaging as conventional LOS imaging. Most optical NLOS
imaging systems employ time-resolved sensors (e.g., ultra-
fast photodiodes [9], streak cameras[10], and single-photon
avalanche photon detectors (SPADs)[1]). These sensors record
not only the number of incident photons (intensity) but also
their arrival times. Then, the image formation models to repre-
sent the relationship between time-related measurements and
the hidden object are discussed, based on which the inverse
problems for transient image reconstruction and geometry
recover can be merged into a non-linear optimization problem
that can be solved efficiently[11], [12].

In this paper, we present an algorithm that enables com-
putational imaging of objects by leveraging radio multipath
propagation. The key motivation of our work is that if the
reflection property of the reflector is specular for radio signals,
radio NLOS imaging reveals hidden objects more easily since
the measurements appear to be captured directly from a virtual
mirrored volume located behind the reflector as if the reflector
were transparent, as illustrated in Fig.1. In such a case, the
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Fig. 1. The illustration of the radio NLOS imaging system: (a) the radio signals are emitted from the transmitter, reflected by the reflector to a hidden object,
and then recorded by the receiver; (b) when the reflection property of the reflector is specular, the measurements appear to be captured from a mirrored
volume located behind the reflector, as if the wall were transparent.

Fig. 2. An illustration of the system model. The temporally modulated source
signal is emitted by the transmitter. After reflecting by the scene, the signal is
measured by the receiver. The received signal is demodulated by the reference
signal to generate the measurement for scene reconstruction.

NLOS imaging is equivalent to the LOS imaging where the
signal can reach the object directly. For the radio LOS imaging
system, the main challenge is the coupling of the reflections
from multiple points of the object. We address this challenge
by leveraging a 2D MIMO antenna array and a wide band
stepped-frequency signal. There are mainly two components
in our system. The first one is the image formation model
that illustrates the relationship between measurements and the
hidden object. The second one is the reconstruction model that
reconstructs the hidden object from the measurements through
solving an optimization problem. By including additional reg-
ularization term, we solve the optimization problem efficiently
to obtain robust reconstruction results.

II. IMAGE FORMATION MODEL

As illustrated in Fig.1(b), radio NLOS imaging is equivalent
to image the virtual mirrored object in the LOS setting.
Thus, in the rest of this paper, we focus on how to recover

the virtual object. As shown in Fig.2, our system consists
of transmitters who provide the temporally modulated radio
signal, and receivers who receive the incident signal. The
transmitted signal will be affected by the scene before arriving
at the receiver. Thus, the characteristics of the scene such as its
shape and size will be embedded in the received signal. The
image formation model is built to illustrate the relationship
between measurements and the object.

A. Matrix multiplication representation of image formation
model

Considering a single-path scenario shown in Fig.3(a), the
signal emitted from the transmitter at point pt is reflected once
at point p, and then received by the receiver. The distance
between point p and the transmitter is dt, and the distance
between point p and the receiver is dr. Let the source be
modulated with a periodic function s(t), then the received
signal at point pr is given as follows

rp(pt, pr, t) = s

(
t− d(p, pt, pr)

c

)
v(p)β(p, pr, pt), (1)

where d(p, pt, pr) = dr + dt is the propagation distance, c
is the speed of the signal, v(p) is the reflection coefficient at
point p, and β(p, pr, pt) represents the channel characteristics
including the reflection, scatter and falloff.

When there are multiple reflection points in the scene, as
shown in Fig.3(b), the overall received signal r(pt, pr, t) is the
integral of contributions from the set of all reflection points
as follows

r(pt, pr, t) =

∫
rp(pt, pr, t)dp

=

∫
p

s

(
t− d(p, pt, pr)

c

)
v(p)β(p, pr, pt)dp.

(2)
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It expresses the temporal signal profiles received at a pixel
in terms of the emitted signal s(t) and the scene properties (re-
flection coefficients, transport coefficients, and path lengths).
If s(t) = ejωt, the received signal is:

r(pt, pr, t) = s(t)

∫
p

e−j2πf
d(p,pt,pr)

c v(p)β(p, pr, pt)dp. (3)

The scene can be considered as a system that transforms
the signal emitted by the source into the signal received at
the destination. To obtain a compact expression of this trans-
formation by matrix multiplication, we combine the reflection
coefficient and source signal as a signal emitted to different
points as s(p) = s(t)v(p). Then, (3) can be re-written in a
matrix form as follows

R = HS, (4)

where R is the array of the signal received at several sensor
pixels and S is the array of the signal emitted by the source
to different points. The element of S is s(p). This equation
is called the transport equation and H is called the transport
matrix of the scene. Compared to conventional transport ma-
trix, the difference of the transport matrix lies in the frequency
factor: e−j2πf

d(p,pt,pr)
c , i.e., the transport matrix is a function

of the modulation frequency f .
As shown in Fig.2, the measurement is generated by multi-

plying the received signal with the reference signal. We choose
the conjunction of the emitted source as the reference signal
which is denoted as sref (t) = s(t)∗. After demodulation,
we obtain the image formation model, which is a function of
modulation frequency and the locations of transmitter/receiver
as follows

τ(pt, pr, f) =

∫
p

e−j2πf
d(p,pt,pr)

c v(p)β(p, pr, pt)dp. (5)

The image formation model can be represented as a matrix
form

τ = Hv, (6)

where H ∈ CN×M is the transport matrix with Hnm =
exp(−j2πfi d(p,pt,pr)c )β(p, pr, pt).

B. Transport matrix representation

The transport matrix is determined by channel characteris-
tics that contain two parts: 1) distance falloff and time delay
caused by signal propagation, which changes both amplitude
and phase of the signal; 2) reflection and scattering caused by
the interaction of the signal and the scene, which changes
only the amplitude of the signal. The effects of channel
characteristics are illustrated in Fig.4 and discussed in the
following.

1) Reflection and scattering: Reflection and scattering can
be modeled by the bidirectional reflectance distribution func-
tion (BRDF) which depends on the normalized vector ωt

pointing from a point p to the transmitter and the normalized
direction ωr pointing to the receiver. For different size objects
with different surface geometries, the observed BRDF varies
as illustrated in Fig.5. Specular scattering dominates from

(a) Single path

pt

1
p

2
p

3
p

rp

L H S= ´

(b) Multipath

Fig. 3. An illustration of the radio transport: (a) rays are emitted from the
source and reflected by a point scene, where the scene transforms the emitted
signal into the received signal; (b) radio transport along paths between all
the emitted and received rays can be compactly represented as a matrix
multiplication.
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Fig. 4. An illustration of channel characteristics effects: (a) the effect of
reflection and scattering can be modeled by reflectance distribution function
(BRDF) which only changes the amplitude of the signal; (b) the time delay
leads to a phase change, and distance falloff cause changes of amplitude.

surfaces that are on the order of the wavelength in size and flat
relative to the wavelength. In this case, BRDF can be modeled
as a delta function as given by Snell’s law:

fspecular(ωt,ωr) = δ(ωt + ωr − 2〈n,ωt〉n), (7)

where n is the surface normal.
A retroreflective effect can be observed from objects with

sharp angular geometries and corners, which are larger than
the wavelength. The BRDF can also be modeled as a delta
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Fig. 5. An illustration of BRDFs. Surfaces that are flat on a scale larger than
the wavelength exhibit specular scattering (left). Corner geometries on the
scale of the wavelength exhibit retroreflective scattering (center). For surfaces
smaller than the wavelength, diffraction around the object causes a diffuse
scattering event (right).

function :

fretroreflective(ωt,ωr) = δ(ωt − ωr). (8)

For surfaces smaller than the wavelength, diffraction around
the object causes a diffuse scattering event. In this scenario, the
BRDF is Lambertian because the signal is reflected to nearly
all directions.

2) Distance falloff and time delay: The distance falloff
is the effect that the radio energy attenuates as it propa-
gates through space. It depends on the propagation distance
of the signal from the transmitter to the scatter then back
to the receiver. For diffuse reflections, the signal falloff is
g(dt, dr) = 1/d2td

2
r , where dt and dr and distances from the

reflection point to the transmitter and receiver, respectively.
As specular and corner reflections redirect the wavefront rather
than causing an additional diffuse scattering event, the distance
falloff is proportional to the total propagation distance. The
signal falloff is therefore g(dt, dr) = 1/(dt + dr)

2. The
time delay causes phase changes of the signal which depends
on the propagation distance, transmission speed, and signal
frequency: e−j2πf

dt+dr
c .

According to the above discussion, the element of the
transport matrix can be written as:

Hij = e−j2πf
dt+dr

c g(dt, dr)f(ωt,ωr). (9)

III. OBJECT RECONSTRUCTION

The hidden object reconstruction problem is to solve the
inverse problem of (6), i.e., finding v given the τ . Since the
transform matrix H is poor conditioned and the noise exists
in the measurements. Therefore, it is necessary to include the
regularization term to improve the reconstruction.

We formulate the inverse problem as an optimization prob-
lem. The low-rank nature of the target surface enables us
to adopt low-rank optimization to reconstruct the object.
Specifically, we first introduce a new variable X , which is
the 3-D form of v, i.e., the 3-D object to be reconstructed.
Since we already know the coordinate of antennas and points
to be reconstructed, the transform matrix H can be obtained.
Thus, the optimization problem can be formulated as

min
1

2
‖Hv − τ‖2F + λ ‖X‖ω,∗

s.t. v = reshape(X),
(10)

where ‖X‖ω,∗ is the weighted nuclear norm of matrix X

‖X‖ω,∗ =
∑
i

|ωiσi(X)|1, (11)

σi(X) means the ith singular value ofX , ω = [ω1, ω2, ..., ωn]
and ωi ≥ 0 is a non-negative weight assigned to σi(X).

We bring the constraint into the objective function as the
form of augmented Lagrangian:

Lρ(v,X, y) =
1

2
‖Hv − τ‖2F

+ λ ‖X‖ω,∗ + yT (v − reshape(X))

+
ρ

2
‖v − reshape(X)‖2F

(12)

where y is the Lagrange multiplier, and ρ is the penalty factor.
The optimization problem can be solved efficiently by using

the alternate direction method of multipliers method (ADMM).
For convenience, the scaled form augmented Lagrangian is
used for ADMM by adopting scaled dual variable u = (1/ρ)y
instead of the Lagrange multiplier y:

Lρ(v,X, u) =
1

2
‖Hv − τ‖2F + λ ‖X‖ω,∗

+
ρ

2
‖X − reshape(v + u)‖2F .

(13)

ADMM now minimizes L(v,X, u) w.r.t. one variable at a
time while fixing the remaining variables. The minimization
is then done iteratively by alternately updating v,X, u. The
key steps of this algorithm are as follows:

vk+1 = arg min
v

L(v,Xk, uk)

= arg min
v

1

2
‖Hv − τ‖2F

+
ρ

2

∥∥∥Xk − reshape(v + uk)
∥∥∥2
F

=
HT τ + ρ(reshape(Xk) + uk)

HTH + ρ
.

(14)

Then we update the 3D object X

Xk+1 = arg min
X

L(vK+1,X, uk)

= arg min
X

λ ‖X‖ω,∗

+
ρ

2

∥∥∥X − reshape(v(k+1) + u(k))
∥∥∥2
F

= PSω(Σ)QT ,

(15)

where Y k = reshape(v(k+1) − u(k)) = PΣQT , and
Sω(Σ)ii = max(Σii − ωi, 0).

The updating of X is similar to that in [13]. As a 3D
volume, the SVD of X can only be computed slice by slice.
There are many repeated local patterns across a slice because
of nonlocal self-similarity, which can be utilized to improve
the reconstruction. Thus, we update the slice of X patch by
patch. For a local patch yj in image Y k

i (the ith slice of Y k),
we can search for its nonlocal similar patches across the image
by block matching, and stack these similar patches into a
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Fig. 6. The measurements are recorded as a 3D complex matrix, where three
dimensions represent transmitter antenna, receiver antenna and frequency,
respectively.

matrix Y k
ij . A patch group of Xk can then be obtained from

Y k
ij according to (15). All the patch groups are aggregating

together to form Xk
i . Finally, all slices Xk

i are aggregating
together to form Xk.

The final step of the ADMM algorithm is to update the
Lagrange dual variable by adding the (scaled) error:

uk+1 = uk + ρ(reshape(X(k+1))− v(k+1)). (16)

IV. IMPLEMENTATION

A. Simulation setup

In our imaging system, there are two linear arrays placed
along the x-axis and the y-axis, respectively. Each array
contains 12 antennas spacing 2.6cm apart. The array placed on
the x-axis works as the receiver, while the other array works as
the transmitter. Thus, we build a 12×12 MIMO system that
enables 3D object reconstruction. We assume that the radio
signal scatters isotropically from the object.

We utilize the stepped frequency signal as the transmitted
signal whose frequency range is 4 GHz to 8 GHz with a
40 MHz frequency step. By sweeping signal among all fre-
quency points, we can obtain frequency-related measurements.
According to the image formation model, measurements can
be computed by (5). Measurements can be represented as a
3D complex matrix. Three dimensions represent transmitter
antenna, receiver antenna and frequency, respectively. The
measurements generated from the proposed 12×12 TX and
RX channel combination are illustrated in Fig.6.

B. Simulation result

We first simulate two cases with letter “H” and letters “LT”.
The letter “H” in the first case is 38cm by 38cm, while
the letters “LT” in the second case are 30cm by 30cm. The
reconstructed results are shown in Fig.7 and Fig.8. We can see

Fig. 7. Reconstruction result of letter “H”.

Fig. 8. Reconstruction result of letters “LT”.

that the proposed method can well reconstruct the shape and
the depth of the letters.

We then compare the proposed method with recent optical
NLOS imaging methods including LCT [1], filtered back
projection[10], phasor[14], and Conv [12]. The hidden object
is a letter ”T” with width 60cm. To simulate the LCT approach
operates in a confocal scanning pattern, the 12×12 MIMO
transceiver should be replaced by an equivalent confocal scan
grid consists of 12×12 points. As we utilize the steeped-
frequency signal with a bandwidth of 4 GHz, the correspond-
ing time resolution is 0.25ns. Then, we can generate light
transient according to the image formation model in [1]. The
reconstruction results as shown in Fig.9. We can see that
with fewer scan points and lower time resolution, the optical
NLOS imaging approaches do not perform as well as ours.
This is mainly because the optical NLOS imaging methods
are sensitive to the time resolution.

Next, we simulate the case with the setup in[1], i.e.,
the confocal scan grid consists of 32×32 points, the time
resolution is 16ps, and the number of time points is 1024.
The corresponding reconstruction results as shown in Fig.10.
We can see that, even with a much more simple setup,
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Fig. 9. Comparison between optical NLOS reconstructions and our radio NLOS reconstruction with 0.25ns measurement time resolution.
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Fig. 10. Comparison between optical NLOS reconstructions and our radio NLOS reconstruction. Our reconstruction recovers the “LT” with 0.25ns measurement
time resolution, while optical reconstructions fail to recover the “L” even with 16ps measurement time resolution since the “L” is out the range that can be
recovered by the optical signal.

i.e., 12×12 MIMO array and 4GHz bandwidth, the proposed
method can achieve comparable reconstruction for the letter
“T”. Moreover, our method can recover “L” which is 3m away
from the array while the optical methods fail. This is due to the
largest range that could be recovered by optical NLOS imaging
is limited by the photon detector, i.e., with 1024 time points
the range iccs is equal to 1024× 16e−12 ∗ c/2 = 2.4576m.

V. CONCLUSION

In this paper, we propose to perform NLOS imaging with
radio signals. We formulate the imaging problem as a low-
rank optimization problem and utilize the ADMM to solve
the optimization. With simulations, we show that the proposed
method can capture 3D geometry at longer ranges with shorter
acquisition times, compared with the optical NLOS imaging
methods.
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