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Abstract—The present paper describes an instantaneous fre-
quency (IF) estimation method. The instantaneous amplitude and
phase can be obtained simultaneously by converting the real
signal into a complex time signal using the Hilbert transform. In
addition, the IF is obtained by differentiating the instantaneous
phase with respect to time. However, the amplitude of the
signal obtained by phase-shifting the input signal by 90-degrees
is different from that of the input signal because a ripple is
generated in the frequency characteristics of the finite order
finite impulse response (FIR) Hilbert transformer (HT). As a
result, errors are contained in the IF. In the present paper, we
theoretically show that the IF obtained using the finite order
HT contains harmonics. Moreover, we propose a method by
which to remove harmonics using an FIR filter with the specified
transmission zeros.

I. INTRODUCTION

Sensors currently used in electronic weighing instruments

are mainly electromagnetic force balance, strain gauges, and

tuning forks. Tuning fork scales share the advantages of both

sensors and are widely used in, e.g., the pharmaceutical,

automotive industries, chemical plants and precious metal

processing plants[1].

The basic principle of the tuning fork sensor is that this

sensor uses a physical phenomenon where by the resonant

frequency f(t) of a tuning fork vibrator changes when the ten-

sion changes with weight. The scale measures this frequency

change, which is then convert to a weight value. Therefore, it

is necessary to estimate the value of a single frequency with

high speed and high accuracy.

The frequency of a single sine wave can be measured using

a frequency counter or the instantaneous frequency (IF). In

the former method using a frequency counter, the reciprocal

type frequency counter is commonly used. Using this method,

the output becomes the irregular interval. Therefore, when

digital processing is performed on a value measured using

this method, a device such as an interpolation processor is

required[2].

In the latter method, the IF is obtained by time-

differentiating the phase of the analytic signal consisting of the

original signal and its Hilbert transform [3]. Therefore, there is

an advantage in that the output is generated at regular intervals.

There are many different implementations of the FIR Hilbert

transformer (HT) [4], [5], [6]. Pei and Shyu [4] presented a

HT based on an eigenfilter, and Kollar et al. [5] presented a

HT based on the least squares and the minimax criteria. Lim

et al. [6] introduced a method for the synthesis of a very sharp

HT using a frequency-response masking technique. These HTs

can be implemented as a digital filter with finite order in

actual systems. Therefore, the frequency characteristics of the

obtained FIR HT contain ripples. As a result, the amplitude of

the signal obtained by phase-shifting the input signal by 90-

degrees using the FIR HT is different from that of the input

signal. Therefore, since the estimated IF includes harmonic

frequency components, an accurate IF cannot be obtained.

To obtain a more accurate IF, the order of the filter may be

increased to reduce ripples in the HT. However, increasing the

filter order increases the delay time. This becomes a problem

in applications where fast IF estimation is required.

In this paper, we propose a highly accurate IF estimation

method using FIR filter with the specified transmission ze-

ros. A harmonic frequency component is included in the IF

obtained using a finite order FIR HT. Then, it is shown that

an accurate estimate of the IF can be obtained by removing

the harmonic frequency component with FIR filter with the

specified transmission zeros. Finally, the effectiveness of the

proposed method is shown in simulations.

II. IF ESTIMATION USING FINITE ORDER HILBERT

TRANSFORMER

The HT is a digital filter that changes the phase of the input

signal by π/2 without changing the amplitude of the input

signal. The ideal frequency response of the HT is given by

D(ejω) =

⎧⎪⎨
⎪⎩
−j (0 < ω < π)

0 (ω = 0)

j (−π < ω < 0).

(1)

When the HT is realized as an N-order linear phase FIR

filter, the zero phase amplitude characteristic of its frequency

response H0(e
jω) is expressed as

H0(e
jω)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2

N−2
2∑

n=0

h(n) sin{(n−N

2
)ω} (N : even)

2

N−1
2∑

n=0

h(n) sin{(n−N

2
)ω} (N : odd).

(2)

In this paper, the filter coefficient, h(n), is obtained using the

Remez algorithm [7].
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Fig. 1. Amplitude characteristic of the Hilbert transformer of finite order.
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Fig. 2. System diagram of the analytic signal generated using the Hilbert
transformer.

Next, we consider an HT of order N = 42 or 60,

low passband edge normalized frequency is 0.05, and high

passband edge normalized frequency is 0.95. The amplitude

characteristic of the HT obtained for each order is shown in

Fig. 1. As shown in Fig. 1, increasing the filter order reduces

the size of the ripple. The HT of the input signal x(t) produces

a 90-degrees phase shifted signal, xh(t). Thus, the complex

signal x̂(t) obtained by the system shown in Fig. 2 becomes

x̂(t) = x(t) + jxh(t). (3)

The angle of the complex signal x̂(t) in (3) has the following

instantaneous phase,

φ(t) = arctan
xh(t)

x(t)
. (4)

Moreover, the IF obtained by the time derivative of the phase

shown in (4) is defined as

f̃(t) =
1

2π

dφ(t)

dt
. (5)

As a specific example, the input signal and the 90-degrees

phase shifted signal obtained for each order of the HT are

shown in Fig. 3 and an enlarged view is shown in Fig. 4.

Here, the input signal is a sine wave with an amplitude of 1

and a frequency of 1,800 Hz. As shown in Fig. 4, the signal

after the HT has a different amplitude than the original signal
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Fig. 3. Input signal and HT signal.
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Fig. 4. Enlarged view of Fig. 3

due to the magnitude of the HT ripple at the frequency of

the input signal. The IF estimated using the HT in Fig. 1 is

shown in Fig. 5. Figure 5 shows that the estimated IF oscillates

around the true frequency. Since this vibration component is

the error due to ripple, the higher the order of the HT, the

higher the estimation accuracy.

Next, we consider in detail the estimated IF. We denote the

input signal in Fig. 2 as

x(t) = A sinω1t, (6)

where A and ω1 are the amplitude and angular frequency,

respectively. If the difference in amplitude between the Hilbert

transform signal and the input signal is Aδ because of the finite

order HT, then the Hilbert transform signal, xh(t), becomes

xh(t) = −A(1− δ)× cosω1t. (7)

When (6) and (7) are substituted into (4), the instantaneous

phase is

φ(t) = arctan

(−(1− δ) cosω1t

sinω1t

)
. (8)

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

2



0 0.5 1 1.5 2 2.5
Time[s] 10-3

1780

1790

1800

1810

1820

1830

1840

Fr
eq

ue
nc

y[
H

z]

N=42
N=60

Fig. 5. Instantaneous frequency (IF) estimated using the finite order Hilbert
transformer.

The instantaneous angular frequency obtained by the time

derivative of (8) is

ω̃(t) =
dφ(t)

dt

=
2(1− δ)ω1

1 + (1− δ)2 + [(1− δ)2 − 1] cos(2ω1t)
. (9)

When δ = 0, the instantaneous angular frequency is equal

to the input angular frequency ω1. However, when δ �= 0, the

instantaneous angular frequency is not constant. Therefore, the

estimated IF oscillates around the frequency of the input signal

as shown in Fig. 5.

In order to analyze the vibration component, we consider

the Fourier series expansion of ω̃(t);

ω̃(t) =
a0
2

+
∞∑

n=1

an cos(2ω1nt), (10)

where

an =
4ω1

π

∫ π
2ω1

0

ω̃(t) cos(2ω1nt)dt. (11)

Here, the Fourier coefficients an are

a0 = 2ω1 (12)

a1 =
2ω1δ

2

1− (1− δ)
2

a2 =
2ω1δ

4

{1− (1− δ)
2}2

· · ·
Therefore, the true value of the instantaneous angular fre-

quency consists of a DC component and vibration components

that are harmonics of even multiples of the original angular

frequency. Thus, the estimated IF also has vibration compo-

nents that are harmonics of even multiples of the frequency

of the input signal.
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Fig. 6. Fourier spectrum of the IF (N = 42).

In order to confirm the above statement, the Fourier spec-

trum of the estimated IF in Fig. 5 is shown in Fig. 6. The IF

has a component with a frequency of 3, 600Hz, which is twice

the frequency of the input signal, and another component with

a frequency of 7, 200Hz, which is four times the frequency

of the input signal. Therefore, both harmonic components can

be removed, an accurate IF can be obtained even with a finite

order HT.

III. FIR FILTER WITH THE SPECIFIED TRANSMISSION

ZEROS

In this paper, we use FIR filter with transmission zeros to

remove vibration components. The second order FIR filter with

transmission zeros having a transfer function is written as

Hp(z) = 1− 2 cos (2πfp/fs) z
−1 + z−2 (13)

and can remove the component of frequency fp from an input

signal[8]. In (13), fp is the transmission zero frequency and

fs is the sampling frequency. It is clear from Fig. 6 that

the estimation accuracy improves as the transmission zeros

increase. Therefore, in this paper, we set a minimum value

for the maximum number of transmission zeros that can be

included in fs/2 within the expected input frequency range.

For example, if fs = 50 kHz and the input frequency range

is from 1, 600Hz to 2, 000Hz, the number of transmission

zeros that can be placed in the range below fs/2 is seven at

1, 600Hz and six at 2, 000Hz, therefore an FIR filter with six

transmission zeros is designed. Figure 7 shows the amplitude

characteristic of FIR filter with six transmission zeros when the

transmission zero frequencies are even multiples of 1, 600Hz.

It’s clear from Fig. 7 that the signal is amplified at higher

frequencies This is a problem when the high frequencies

contain noise. Therefore, the amount of attenuation must be

secured in all frequency bands by designing a correction

filter[9]. The amplitude characteristics of a 40th order filter

consisting of a filter with six transmission zeros and 28th
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Fig. 7. Amplitude characteristic of FIR filter with six transmission zeros.
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Fig. 8. FIR low-pass filter with six transmission zeros.

order filters to compensate for them are shown in Fig. 8.

Furthermore, the stopband edge frequency is set to 3, 000Hz.

IV. SIMULATION

We show that the estimation accuracy of the IF can be

improved by removing these vibration components using FIR

filter with transmission zeros. In this simulation, the input sig-

nal is a sine wave with an amplitude of 1 and a discontinuous

frequency from 1, 600Hz to 2, 000Hz, sampled at a sampling

frequency of 50 kHz, assuming the output from the tuning fork

sensor. The low and high passband edge frequencies of HT

with 10th order are 1.25 kHz and 27.25 kHz, respectively. We

use a 40th order FIR filter shown in Fig. 8 to remove the

vibration component. Here, the transmission zero frequencies

were even multiples of the previous IF with the vibration

component removed, and the filter was redesigned for each

sample.
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Fig. 9. IF obtained by the proposed method.

Fig. 10. Enlarged view of Fig. 9 in the 1, 600Hz part.

Fig. 11. Enlarged view of Fig. 9 in the 1, 800Hz part.

Figure 9 shows the IF estimated using the 10th order

HT and the IF after removing the vibration components by

the proposed method. Furthermore, an enlarged view of the

1, 600Hz and 1, 800Hz are shown in Fig. 10 and 11. These

results are also shown in Fig. 9–11 show that the proposed

method enables accurate IF estimation.

Next, the performance under the noise environment is

evaluated. In order to show the usefulness of the proposed

method, we compare the results using the proposed method

with those using a high order HT. In order to get closer to

the conditions, a low-pass filter designed using the Remez

algorithm was used in the case of high order HT. The order

of the low-pass filter was set to 40th order as in the proposed

method. The order of HT was increased until the accuracy of
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Fig. 12. Results in noisy environments.

Fig. 13. Enlarged view of Fig. 9 in the 1, 600Hz part.

Fig. 14. Enlarged view of Fig. 9 in the 1, 800Hz part.

the proposed method was achieved. The maximum value of

variance of each frequency was used to compare the accuracy,

and the order of HT required to outperform the proposed

method was 150th order. Figure 12–14 shows the results of

adding 60 dB of white noise to the input signal. The values of

TABLE I
VARIANCE AT EACH FREQUENCY

method variance
1,600 Hz 1,700 Hz 1,800 Hz 1,900 Hz 2,000 Hz

proposed 0.0184 0.0227 0.0158 0.0120 0.0199
HT+lowpass 0.0210 0.0178 0.0163 0.0107 0.0181

the variance at each frequency are shown in Tab. I. From these

results, we can confirm that fast and accurate IF estimation is

possible even in noisy environments.

V. CONCLUSION

In this paper, we theoretically showed that the IF obtained

using an HT with a finite order contains harmonics. Moreover,

we proposed a method to remove harmonics using an FIR

filter with the specified transmission zeros. By removing the

harmonics, an example was used to demonstrate that a high

precision IF could be obtained even with a low order HT.

In the future, the use of a variable filter will eliminate the

need to redesign the filter for each sample.
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