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Abstract—Previous framework on automatic power line detec-
tion based on millimeter-wave radar videos assumes the Bragg
pattern of power lines are distinguishable with the background
signals. This limits its ability in recognizing fine-grained power
line signals within complex and noisy scenes. In this work, we
propose a detection method that combines both characteristics of
the amplitude and phase of the return radar signal. Experiments
demonstrate that our proposed approach is able to detect the
power lines accurately, efficiently and more robustly on a new
two-channel dataset.

I. INTRODUCTION

High-voltage power lines present hazardous operating con-
ditions for the helicopters especially when the pilots vision is
degraded by obscurants such as dust, smoke, fog, rain, and
snow [1], [2]. Radar can detect objects under poor visibility
conditions, including at night. Unlike RGB cameras, a radar
system is largely independent of the environment lighting
condition. For example, while power lines are usually subtle in
a video captured by an RGB camera, the metal surface structure
of the power lines can make them much more visible in the
radar signal. A few previous systems have been developed for
power line detection with radar. In [3], a Passive Millimeter-
Wave (PMMW) radar system is tested to image power lines
from a vehicle. The power lines in the PMMW radar signal
are reported to have higher contrast than in RGB images, but
they are still not very visible. In [4], the Radar Cross-Section
(RCS) model of power lines is developed, and the authors
observe the Bragg-pattern which is a distinguishing feature
of the power lines in the radar signal due to their periodic
surface structure. A polarimetric detection algorithm is further
proposed in [5] [6] by Sarabandi et al. for detecting power lines.
However, this approach is primarily proposed for the Synthetic
Aperture Radar (SAR), which is not especially suitable for
helicopters that could fly at the same height as the towers
and the power lines. Later, an automatic power line detection
framework [7] [8] principally based on image processing and
machine learning was proposed to solve this issue using the
radar amplitude image.

In this paper, we propose to incorporate the phase difference
information into the detection algorithm to improve the results
under difficult situations. We collect a new two-channel radar
dataset that represents more challenging conditions and show
that we can achieve more robust results compared to the

0This work was done while Haoming Chen was a Ph.D. student at University
of Washington.

Fig. 1. (a) An illustration of our two-channel object detection system in
a helicopter. (b). The amplitude image from the two-channel radar system.
(c). The phase difference image from the two-channel radar system. (d). An
enlarged phase region that includes power line signals.

previous power line detection algorithm [7] [8]. Figure 1 shows
the amplitude and phase difference channel provided by the
new two-channel radar dataset. As can be seen from the figure,
with a very strong ground noise return, the real power line is
invisible from the amplitude image and the previous algorithm
usually fails. However, the phase difference image pattern is
gradually changing with the distance of the object. Hence, the
power lines cause a discontinuity pattern on the phase differ-
ence image since the distance discriminates the power lines
from the background. Based on this observation, we propose
an algorithm to detect the discontinuous part representing the
power line in the phase difference image even if the scene
is complex and noisy. Experimental results demonstrate the
effectiveness of the proposed detection approach.

II. RELATED WORK

The previous detection framework [7] [8] shown in Figure 2
first applies image processing algorithms to reduce the noises,
and identify the possible candidates. Then, the coordinate trans-
form maps the thresholded image in the polar coordinate to the
Cartesian coordinate, so that the power line is a straight line on
the image. This process is followed by a Hough transform [9],
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Fig. 2. Simplified diagram of existing detection algorithm [7] [8] (red lines
in the output image show the locations of the detected power line)

which is a common approach for detecting straight lines in
an image. It transforms the spatial domain image into the
parameter domain. Each straight line can be represented in two
parameters: ρ as the distance from a certain point (typically the
origin) to the line, and θ as the orientation of the line. Thus,
each straight line corresponds to a single point (ρ, θ) in the
parameter domain.

The best candidates (ρ, θ) are chosen by the likelihood func-
tions defined in [8]. This process is denoted as the identification
step. Compared to the false power line, the true power line
has a Bragg pattern on the amplitude image. Therefore, a pre-
trained Support Vector Machine (SVM) classifier [10] is used
to determine if each candidate is a real power line or a noise
line. In the video sequence, the best (ρ, θ) candidate in each
frame are tracked by a particle filter algorithm [11] that receives
the feedback from the SVM classifier. More detailed formula
and descriptions can refer to [7] [8].

III. POWER LINE DETECTION USING PHASE IMAGES

The previous framework in [7] [8] works well in the cases
that the Bragg patterns are clear in the amplitude channel
(Figure 3(a)). However, in some cases, the return amplitude
signals of power lines are hidden in the strong background
noise. It is very difficult to detect the power line from the radar
amplitude image for these cases. In this situation, the previous
algorithm [7] [8] has a bad performance as the Bragg pattern
of power lines can be hardly detected.

To overcome this problem, the phase image (as in Fig-
ure 3(b)) which contains the distance information of the objects
can be utilized to assist the detection. For example, the phase
difference value of the flat ground is gradually changing as
the distance keeps continuously changing. However, due to
the power line and the background are located at different
distance locations, the phase values on the power lines are
not continuous with its background neighboring pixels, so a
discontinuity pattern can be seen on the phase difference image.
By using this phenomenon, the phase difference image can be
used to detect the power line. Previous algorithm [7] [8] on
the amplitude image cannot be directly applied on the phase
difference image. To fully utilize our previously developed
framework [7] [8], a method is to remove the continuous
background phase pattern so that power line patterns can be
strong signals compared to the rest regions. In the following
parts, we discuss some details of extraction and detection of
the power lines using the phase difference images.

1) Separate the strong and weak noise regions: Our previous
framework on the amplitude image works well for weak noise

Fig. 3. Two cases in the amplitude (left) and phase difference (right) image: (a)
Relatively weak noise amplitude with random phase difference. (b) Relatively
strong noise amplitude with smoothly changing phase difference (white arrows
point to the power lines). The orange boundaries denote the cropped active
region. The colors represent different magnitudes.

regions, so it is natural that we can separate the image into
strong noise and weak noise regions and apply the different
algorithms. To locate the strong noise region, a simple cropping
method is used to separate the image into two parts, an active
part and an inactive part. The active part is the part where the
average intensity is larger than a certain value. The cropped
active region (Figure 3(b)) in the phase difference image is
further processed by the unwrapping algorithm in the next
step. Meanwhile, we apply an empirical threshold: 0.8, on the
amplitude image to generate a noise mask N (1: amplitude
> threshold, 0: otherwise). It is worthwhile to note that the
same mask can also be used to remove the random noise in the
phase difference image, which is beneficial to the later phase
unwrapping process.

2) 2D phase unwrapping: Applying the power line detection
algorithm directly on the cropped region has two main prob-
lems. First, due to the nature of the phase values, the phase
difference value is wrapped and not continuous at the boundary,
where it has the jumping part from −π to π (blue region to
red region in Figure 3(b)). Hence, general background remove
methods failed due to the 2π discontinuities, which may lead
to false detections. Second, as mentioned above, the cropped
region still contains plenty of noises. It is hard to track the
tendency of the phase value with the discontinuities caused by
the noises. To address the two issues, we follow [12] and [13]
to unwrap and smooth the noisy phase difference image.

Different from the 1D phase unwrapping algorithm, the 2D
phase unwrapping need to be path-independent. Goldstein et
al. [12] point out that unwrap path dependency is caused by
point-like sources called residues. A residue is the clockwise
sum of wrapped phase differences around a loop of four
neighboring pixels. By introducing the phase wrapping operator

W (φ) = (φ mod 2π)− π, (1)

the W (φ) is constrained in the (−π, π], where φ is the wrapped
phase difference value, and n is a integer. Then, the residue map
R can be calculated in counterclockwise direction around each

2037

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



pixel by:

Ri,j =
1

2π
[W (φi+1,j+1 − φi+1,j) +W (φi+1,j − φi,j)

+W (φi,j − φi,j+1) +W (φi,j+1 − φi+1,j+1)],
(2)

where (i, j) is the location in the phase difference map, Ri,j

can have the value 0,−1,+1.
According to the theorem of loop integral [14], if all closed

paths are constrained to enclose zero net residue, then the
phase difference sum around any path is zero, and the un-
wrapped phase is defined uniquely. However, based on the
obtained residue map, non-zero residues are not guaranteed in
everywhere. Therefore, a constraint is imposed by forming the
residues in clusters, each with zero residue sum, and requiring
the unwrapping path enclose either all or none of the residues
in each cluster. In the implementation, we cluster the nearby
+1,−1 residues as well as the edges of the image (which can
serve as a kind of arbitrary residue) to create a branch cut mask
M whose sum residue is zero in everywhere. In this condition,
any path made up entirely of unmasked pixels is guaranteed to
be suitable for unwrapping.∮

W (∇φ) · dr ≡ 0. (3)

Therefore, the original phase difference value can be obtained
by the path integral along the unmasked path

ϕ(q) =

∫ q

s

W (∇φ) · dr + ϕ(s), (4)

where W (∇φ) denotes the phase derivative in the phase
difference image after the wrapping operator. ϕ denotes the
phase difference value after unwrapping. s is the starting point
of the path integral. Note that the path from point s to point q
should follow the unmasked regions.

Although the mask M suggests the forbidden region for
unwrapping, there are still thousands of possible integral paths
to choose. A path mixed with too many random noises will
lead to an unfavorable unwrapping result. Choosing a correct
path to unwrap the phase value is essential. Following [13],
the unwrapping results can be simply guided by a quality map,
which indicates the reliability of the measurements. In our
implementation, we use the negative variance map from the
phase image as the quality map Q:

Qm,n = −
∑
d

√∑
i,j(W (∇dφi,j)−W (∇dφm,n))2

k2
, (5)

where the k is the kernel size to calculate the variance. (i, j) is
the adjacent pixel index near the index (m,n). d can be x or y,
and W (∇dφm,n) means the wrapped average phase derivative
value along x or y axis in the kernel size range of index (m,n).

With the quality map, the algorithm first unwraps the phase
value of the pixel with the highest quality value along the
path indicated by branch cut mask M and noise mask N . An
intuitive idea is that non-noisy or continuous regions should
have smoother phase difference values, indicating these regions
should have lower variance and higher quality. Therefore, the

quality-guided phase unwrapping algorithm can accurately un-
wrap and restore the original phase difference without involving
too many noisy pixels. After all unmasked pixels have been
unwrapped, the masked pixels that adjoin unwrapped pixels
are unwrapped.

3) Background Removal: After the phase unwrapping al-
gorithm, the power line is the only discontinuous pattern on
the background with the gradually changing pattern. On the
unwrapped phase image, a median filter can be applied to
remove the power lines pattern (which is treated as noise), so
that the background is obtained. By subtracting the background
with the unwrapped image, the power line pattern can be
extracted. There are two concerns how to choose the median
filters: (1) the filter should cover more background pixels than
the power line pixels, so that the median value is from the
background; (2) The filter should not cover the noise region
N so that the median value can be close to the background.
Moreover, the phase difference image has a height of more
than 8K, and the phase values change more slowly along the y
direction. Therefore, in our experiment, a tall median filter with
a typical size of 101(height)× 21(width) pixels is applied to
smooth the regions adaptively with the help of the noise mask
N .

4) Adaptive Power Line Detection: After extracting the
power line pattern in the phase difference image, we can apply
the identification step [7] to extract the line candidates from the
parameter domain. As mentioned in the previous part, the phase
difference image based power line detection is more beneficial
for the strong noise region and the amplitude image based
detection is more suitable for the weak noise region. So, a
combination of these two methods is suitable to cover different
cases. In our experiment, it is straightforward to process these
two types of regions separately with different algorithms and
then combine the detected results together. The quantitative
results are shown in the experiment section.

IV. EXPERIMENTAL RESULTS

A. Dataset and Ground Truth Collection

We collect a new dataset containing more challenging sit-
uations for testing our proposed algorithm. The whole dataset
consists of an old collection (magnitude image only) and a new
collection (magnitude and the phase-difference images). The
old collection and new collection have 617 frames and 204
frames in total, respectively. Compared to the old collection
which contains only magnitude images, the new collection
provides the amplitude image and the phase difference image
for detecting power lines. Moreover, the new collection has
more complicate and difficult scenes to detect power lines.

The SVM classifier is the core in the power line detection
algorithm, thus, accurate labels for the training and testing are
necessary. In the previous work [7] [8], the candidate lines
are generated by the identification step and the corresponding
labels are manually checked with the original video by the
eyes. This process has two problems: (1) The identification step
may miss parts of real power lines, leading to an incomplete
training dataset; (2) If the algorithm is updated, we may need to
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Fig. 4. An illustration of data labeling and auto evaluation framework.

TABLE I
DETECTION RESULTS COMPARISON BASED ON PREVIOUS DATA

LABELING METHOD AND OUR NEW DATA LABELING METHOD. THE
RESULTS ARE EVALUATED ON AMPLITUDE IMAGE ONLY USING

ALGORITHM IN [7] [8]

Dataset Old Labeling New Labeling

Precision Recall Precision Recall

Old collection 93.21% 88.83% 94.33% 90.08%
New collection 30.47% 54.25% 60.27% 72.17%

manually re-label all new lines, which is quite inefficient. Based
on the above observations, we developed an efficient labeling
system with the ground truth database that can be used for both
algorithm training and evaluation.

The system is illustrated in Figure 4. In the system, all
the power lines (ground truth) are accurately labeled with
our labeling tool on the whole dataset in advance. The SVM
training data can then be easily obtained from the ground
truth dataset. To evaluate the detection performance of the
algorithm, we built a real-time evaluator that displays the
detection visualization as well as the evaluation metric. For
each detected line with its orientation and distance, the nearest
line in the ground truth dataset is selected. If the distance
between the ground truth and the candidate is larger than 2
pixels, the detected line is regarded as a false detection.

By using the datasets we collected, we can label and access
the ground truths in each frame. We randomly sample 700 real
power lines and 1000 false power lines from the amplitude
channel as the training set for the SVM classifier with Gaussian
kernel. The rest of frames are used for detection testing.

B. Data Labeling Method

To validate the new data labeling method is superior than the
old one, we first compare the detection results on the amplitude
image with the training data from different methods. Following
the evaluation protocol in [1], we calculate the precision and
recall metrics on the whole dataset. As can be seen in Table I,
the SVM model trained on the new data labeling framework can
achieve a slightly better performance on the old collection, and
30% precision and 20% recall boosting on the new collection
dataset. We found most of failure cases come from the new
collection dataset. This could be attributed to that the old
data labeling method fails to capture all real power lines with
background noises, leading to an incomplete training dataset.
During testing, when the scenes are complex and noisy, more

Fig. 5. Example of 2D phase unwrapping and background removal on real
radar image. (a) The original phase difference image. (b) The unwrapping
algorithm smooths the 2π discontinuities on the phase image. (c) The phase
image after applying median filter with help of noise mask to exclude the power
lines’ signal. (d) Background removal method by subtracting (b) with (c).

real power lines are filtered by the identification step that is
based on the Hough Transform. Additionally, the trained SVM
model causes more false detection on the new collection dataset
due to an incomplete training process. On the contrary, the new
data labeling method accurately labels the real power lines in
the whole sequences, even when the power line signals are
mixed with dense background noises. Thus, the new SVM
model largely reduces the false detection on each frame. This
experiment reveals that a complete training dataset based on the
new labeling method can improve the detection performance.

C. Phase Unwrapping and Background Removal

Although the new training data improve the detection per-
formance, some frames in the new collection dataset still have
uncommon false detection using the algorithm in [7] [8]. In
these frames, the background is so noisy that the identification
step cannot locate the true power lines. To relieve this situation,
the phase difference image provided by the new collection
dataset can assist the detection. Figure 5 shows the intermediate
stages of the proposed phase unwrapping algorithm and back-
ground removal method. As can be seen, the proposed phase
unwrapping algorithm effectively unwraps the phase values
and smooths the 2π discontinuities in the phase background
pattern. Since the discontinuities of the power line signals and
other random noises do not share the same characteristics,
those signals are kept after the unwrapping process. Note that
the random noise region can be indicated by the noise mask
N obtained through the previous region separation process.
By ignoring the noise region, the power line signals can be
easily extracted by the proposed background removal method.
As a result, the processed phase difference image has relative
clear background and can be utilized by our previous detection
framework. The quantitative results demonstrate our proposed
algorithm can effectively eliminate the background and noise
signals in the phase difference channel, resulting in a suitable
image for the following power line detection.

D. Detection with the Phase Difference Image

The phase unwrapping algorithm and background removal
method contribute a clean image for power line detection. We
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Fig. 6. Examples of line detection on phase difference image. (a) The original
phase difference image. (b) The phase difference image after background
removal method. Only the signals of power line are kept. (c) Coordinate
transformation on (b). (d) Hough transformation on (c). The red point represents
the parameters of the kept power line.

Fig. 7. Two detection examples by using phase difference image. In each
side, from left to right: amplitude image, phase difference image and phase
difference image after background removal. The red lines denote the detection
results.

use our previous architecture [7] [8] to detect the power line
in the phase difference image. Figure 6 shows that after the
background removal, only the power line signals are kept.
Without the interruption of noises, the algorithm correctly
identifies the most likely location of power lines. As a result, the
identification step can rapidly locate the real power lines even
without much help from the SVM classifier. Some detection
results are shown in Figure 7. We see that the power lines can
be detected accurately from the phase difference image after
the background removal method.

To this end, we compare the detection results from the
previous approach [7] [8] and the results from the adaptive
approach on the new collection dataset. Table II shows that
our adaptive approach achieves a better performance when the
background signals are noisy and covering the power lines. The
result suggests that the proposed phase algorithm is capable of
removing the background noises, and benefiting the detection
cases that have difficulties using amplitude channel alone.

V. CONCLUSION

In this report, we propose an adaptive power line detection
framework using image processing and machine learning to

TABLE II
DETECTION RESULTS ON THE NEW COLLECTION DATASET. AMPLITUDE

MODEL ON DETECT THE POWER LINES IN AMPLITUDE IMAGE. THE
ADAPTIVE MODEL COMBINES BOTH RESULTS ON AMPLITUDE AND PHASE

DIFFERENCE IMAGES

Model Precision Recall

Amplitude Model 60.27% 72.17%
Adaptive Model 86.16% 89.12%

combine the characteristics from both amplitude and phase
difference radar images. We investigate and improve our early
effort on the power line detection framework. Based on the
two-channel feature of the new dataset, we first proposed a
phase difference based detection algorithm, which can help to
detect the power line on a noisy background. We also develop
the data labeling framework and testing platform for training
the model and testing results that confirm the effectiveness of
our method.

With a higher resolution radar video, and the extra phase dif-
ference image processing, the computation complexity is much
higher. It is desirable that the algorithm can be implemented
using parallel processing so that real-time detection can be
achieved using a low-cost FPGA chip or GPU.
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