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Abstract—Multiple-target tracking (MTT) is one of the main
components of traffic monitoring systems directly responsible
for measuring traffic information. However, assessment and
evaluation of these vehicle tracking systems greatly varies and
are often incomparable due to different metrics and datasets.
This paper focuses on comparing and assessing the viability
of online multiple vehicle tracking systems for use in real-time
traffic monitoring. Most online vehicle tracking framework uses
background subtraction for real-time vehicle detection and vari-
ous blob-based appearance models for real-time multiple vehicle
tracking. The results show that commonly used metrics such as
multiple object tracking accuracy (MOTA) and multiple object
tracking precision (MOTP) are not necessarily reflective of traffic
monitoring performance, particularly in terms of vehicle count
accuracy. Furthermore, the track identity switching (IDS) metric
is identified to significantly affect the vehicle count accuracy,
particularly in terms of count precision, having a correlation
coefficient of r(100) = −0.709 with P-value p < 0.001.

I. INTRODUCTION

The work presented in this paper was motivated in part
by the need identified to develop various Intelligent Trans-
port System (ITS) applications to improve the Philippines’
traffic management capability by maximizing the utility of
road resources in an efficient and effective manner [1]. ITS
applications include traffic signal control systems, travel time
prediction, incident detection, and traffic counting; all of which
require an accurate monitoring of the road infrastructure to ex-
tract pertinent data. One of the means to extract data required
by these applications is through traffic monitoring. Real-time
vision-based traffic monitoring systems, in particular, have
progressed significantly due to the advancements in the field
of computer vision and computing. Camera sensors are easier
to install and maintain, and can record much more complex
information compared to other sensors which makes them
viable for ITS applications.

A. Vision-based Traffic Monitoring

To have a detailed traffic information of a road network,
vehicles must be tracked individually. In the context of traffic
monitoring, online tracking is widely used as it uses less
resources making it possible to be implemented in real-time
on a local processing unit. The typical process [2]–[7] of
an online video-based traffic monitoring system is shown in
Fig. 1. An image of the current traffic scene is extracted from
a video camera in the form of raw frames. A smaller part of

Fig. 1. A typical vision-based traffic monitoring system.

the image, called the region of interest (ROI), may then be
taken to reduce the resources needed by the system. The ROI
may then be further processed to correct perspective distortions
either based on the camera configuration or on the traffic flow.
After processing the frame, vehicles are detected using motion
and/or appearance models. The state of each vehicle detected,
such as its position and bounding box, are then estimated based
on the model(s) used. This is sequentially done for each frame
in the video, with each newly detected vehicle associated with
previously detected ones to form vehicle tracks, which are
sequences of vehicle states for each unique vehicle. Traffic
information can then be extracted from the tracks produced
such as vehicle count [7], [8], which ideally corresponds to the
number of tracks, and average vehicle speed [2], [7] which can
be computed from the tracks. Depending on the appearance
model used, each vehicle may also be classified [2], [4], [7]
for additional traffic information.

As seen in the typical traffic monitoring framework, vehicle
tracking plays a significant part in the measurement of traffic
parameters such as vehicle count and vehicle speed, which are
predominant metrics needed for many ITS applications. In the
context of traffic monitoring, online tracking is widely used
as it uses less resources making it possible to be implemented
in real-time on a local processing unit. This paper focuses on
the performance assessment of online multiple vehicle tracking
systems and their reliability in extracting traffic information on
different traffic scenes. A comparable assessment of existing
state-of-the-art tracking methodologies will aid in identifying
appropriate design considerations for multiple vehicle tracking
systems used in vision-based traffic monitoring.
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II. RELATED WORK

Tracking, in the context of this paper, refers to the tracking-
by-detection (TBD) framework. That is, all objects of interest
are detected for every frame in the video sequence before being
fed to a multiple object tracking algorithm. In particular, online
tracking systems, which processes the detections frame-by-
frame are explored. These are then put in context of video-
based traffic monitoring.

A. Vehicle Detection

Vehicle detection is an important preliminary process for
multiple vehicle tracking. It has been shown that the probabil-
ity of correct detection affects tracking in terms of probability
of losing track and probability of switching [9]. This means
that a more accurate vehicle detection process is likely to
result in a more accurate tracking. As a result, multiple object
tracking systems should be assessed jointly with its detections
to give a better understanding of its overall performance [10].
The most common vehicle detection technique for daytime
static cameras is background subtraction [5]–[8].

Background subtraction, in general, is the process of differ-
entiating the moving foreground from the static background.
In the context of vehicle detection, background subtraction
can be used either independently [6], [7], or for foreground
localization [5], [8]. Foreground localization approaches uses
other image features such as scale invariant feature transform
(SIFT) descriptors [8] and fast retina keypoints (FREAK) [5]
for improved detection performance and for detection-level
occlusion handling. The foreground object regions processed
from background subtraction may also be used to classify
vehicles according to size [7].

B. Multiple Object Tracking

Vision-based multiple target tracking systems can be cate-
gorized using their component models [12]. The appearance
model is perhaps the most important model in vision-based
tracking systems as it differentiates vision-based tracking sys-
tems from general state-based tracking systems. Appearance
models describes how an object is represented during detection
and/or tracking. Detection-level representation may vary from
tracking-level representation in the case of online tracking.
Detection-level vehicle appearance models in the literature
include 3D models [4], [11], edges [3], and blobs [5], [7].
Edge-based tracking makes use of contour or edge features
for tracking vehicles. For blob-based tracking: a vehicle may
be represented by its bounding box [3], [7], color histogram
[13], [14], or feature points [5], [8] during tracking.

Among the different appearance models used in vehicle
tracking, blob-based representation is the most popular. This is
due to the fact that online background subtraction algorithms
can be implemented for real-time multiple vehicle detection.
This makes blob-based tracking a feasible candidate for imple-
menting low-cost real-time multiple vehicle tracking systems.

Fig. 2. Extracted vehicle mask for blob-based tracking along with the
corresponding original frame. Video source taken from [17].

C. Blob-based Vehicle Tracking Systems

In this vehicle tracking approach, the scene is segmented
into vehicular and non-vehicular components. Vehicles are
generally represented by blobs or connected pixels with the
same values. An example is shown in Fig. 2, where the
white blobs represent the detected vehicles. The most common
vehicle segmentation scheme is background subtraction.

Among blob-based trackers, state-based tracking [7] is the
simplest as each vehicle is represented by the estimated state
(e.g. position) of the vehicle’s bounding box. The main draw-
back of this is that nearby vehicles in traffic scenes are likely to
have similar states and thus cannot be differentiated under oc-
clusion. Histogram-based tracking improves upon state-based
tracking by using particle filters along with additional vehicle
information such as color histogram [13], [14]. However, the
use of histograms requires proper initialization and object
segmentation. On the other hand, feature-based tracking [5]
makes use of vehicular feature points and visual descriptors to
represent a vehicle. The use of multiple visual descriptors for
each vehicle makes it possible to differentiate vehicles during
partial occlusion, assuming each vehicle has enough difference
in motion.

D. Performance Metrics for Assessment

A traffic monitoring system should be able to measure traffic
parameters accurately and as fast as possible to be of benefit to
ITS applications. The metrics listed in this section have been
used to define the performance of vehicle tracking algorithms
in the literature.

1) Execution Time and Track Accuracy: Execution time,
as reported, is the average or expected time an algorithm
will finish to complete a certain task. This metric is useful,
in aggregation to the execution time of other parts of the
traffic monitoring system, to determine if a system can be
implemented in real-time [16].

The simplest way of reporting the accuracy of a tracking
algorithm is by comparing the tracked states with the actual
states (e.g. position) of an object of interest [6]. In vision-based
tracking, this is usually either the centroid or the bottom center
of an object’s bounding box. The drawback of this metric is
that is only helpful for single target use as it cannot account for
target-to-track mismatch or track loss which are both evident
in multiple object tracking.
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2) Multiple Object Tracking Performance: In the interest
of comparing multiple target tracking algorithms, two metrics
have been made namely Multiple Object Tracking Accuracy
(MOTA) and Multiple Object Tracking Precision (MOTP). The
computation of these metrics requires that there be an actual
object state to tracker state correspondence for all frames of
interest. A threshold-dependent procedure can be done to make
a one-to-one correspondence between each object and tracker
state. In the context of vision-based tracking, this threshold is
related to either the distance between the object and tracker
states or the bounding box overlap of the actual object and the
estimate of the tracking system. An object with no matching
state estimate is considered a miss or a false negative while
a state estimate with no matching object is considered a false
positive. A distance threshold is also set to determine if the
correspondence is valid or not. If a correspondence is not
valid, the pair will be considered a mismatch. The formal
definition of each metric is then as follows [18]:

MOTA = 1−
∑

t (mt + fpt +mmet)∑
t gt

(1)

where mt is the number of misses or false negatives, fpt is the
number of false positives, mmet is the number of mismatches,
and gt is the total number of correspondence; all at time t.

MOTP =

∑
i,t d

i
t∑

t ct
(2)

where dit is the distance of the ith matching valid correspon-
dence at time t, and ct is the number of valid correspondence
at time t. For 2D MOT, dit can be represented as the percent
overlap between the object bounding boxes, more commonly
known as intersection over union (IOU), or the pixel distance
between the objects’ point of interest.

From the definition, it can be seen that MOTA is penalized
by untracked objects, false state estimates, and low individual
object tracking accuracy. On the other hand, MOTP is only
dependent on the matching pairs. Thus, both metrics are
reported hand in hand to get a complete evaluation of a
multiple object tracking system.

3) Track Quality: Aside from metrics regarding tracking
accuracy, track quality metrics were used to compare the
relative performance of different algorithms in multiple object
tracking benchmarks [10], [19], as used previously for pedes-
trian tracking [20], to quantify the typical errors observed in
multiple target tracking.

The first set of track quality metrics assesses how accurately
each individual object is tracked. Tracks are classified as:
mostly tracked (MT) if the track accuracy is greater than 80%;
mostly lost (ML) if the track accuracy is less than 20%; and,
partially tracked (PT) otherwise. Reporting of these metrics
may be normalized by the total number of tracks available for
comparison across different datasets. An ideal multiple object
tracker should be able to maximize the amount of MT tracks
while minimizing the amount of ML tracks.

The other two track quality metrics quantifies two common
errors observed in multiple target tracking: identity switching
(IDS) and track fragmentation (Fgmt). Both are reported as
a cumulative measure for the whole data set and may be
normalized by the Recall rate of the detections [10]. The IDS
metric is reported as the sum of the total number of times
a target object is incorrectly matched to a different object
track while the Fgmt metric is reported as the sum of the
total number of times each object is unmatched throughout
its lifespan. The IDS also corresponds to the number of
mismatches during MOTA computation. An ideal multiple
target tracker should be able to minimize these two metrics.

4) Traffic Information Accuracy: Traffic information that
can be extracted by multiple vehicle tracking systems include
cumulative vehicle count and average vehicle speed. The
cumulative vehicle count is incremented by the arrival and exit
of vehicles; that is, the number of tracks created for a certain
span should amount to the cumulative vehicle count in the
same span. On the other hand, the individual average vehicle
speed is estimated using the state of each vehicle during entry
and exit and the frame rate of the test sequence.

The speed of a vehicle is computed using the formula:

s ≈ kr
||pexit − pentry||
Texit − Tentry

(3)

where s is the average speed in meters per second, p is the
vehicle point of interest coordinates in pixels, r is the frame
rate in Hz, k is the video scale factor in meters per pixel, and
T is the frame index of each p.

For traffic monitoring applications vehicle count accuracy
[7], [8] and vehicle speed accuracy [2], [7], [16] have been
used to determine the capability of the vehicle tracking system
to extract information on the road network. The accuracy of
these traffic information metrics is usually expressed using
relative measurement accuracy, defined as:

Accuracy =

(
1− |x− x̂|

x

)
× 100% (4)

where x̂ is the measurement of the actual value x.
5) Comparison of Tracking Algorithms: Video-based track-

ing has a wide range of applications. Thus, it is expected
to have several comparisons in the literature. Object track-
ing algorithms, in particular, have been surveyed with great
detail [21]. Particularly, different tracking frameworks were
compared in terms of their capability to handle object entry,
object exit, occlusion, and multiple objects. Another compar-
ison included the evaluation of certain algorithms to handle
tracking under translation, rotation, and scaling. However,
such comparisons were qualitative and lack the comparison
of actual tracking implementations.

Vision-based multiple object detection and tracking bench-
marks have been made in recent years in response to the lack
of comparison among existing state-of-the-art algorithms [10],
[19]. However, the tracking systems evaluated in these bench-
marks are mostly pedestrian-oriented or detection-independent
offline trackers which are not feasible for real-time implemen-
tation.
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Fig. 3. Example of stable daytime traffic scenes from the UA-DETRAC dataset and their generated background model [10].
The blue lines correspond to the boundary of the region of interest.

III. METHODOLOGY

A comparative testbed is adapted from a typical background
subtraction-based traffic monitoring framework and shown in
Fig. 4. The test traffic sequences are processed, frame-by-
frame. First, a mask containing the region of interest is applied
on the current frame to be processed. After which, the initial
background image is compared with the current region of
interest (ROI) using background subtraction [22] to detect
the vehicular blobs in the ROI. The vehicle bounding boxes
are then determined from the detected vehicular blobs; and,
depending on the system, the vehicle will be represented by a
certain track-level appearance model. The state of the vehicle
(e.g. bounding box) is then predicted, based on the previ-
ous state, using the tracking system’s probabilistic inference
model. The next frame is then processed. After which, the
resulting detected vehicles are associated with the previously
detected vehicles, based on the appearance model. The series
of states, formed from associated vehicle detections, then form
several vehicle tracks which are all compared to the annotated
bounding boxes to determine the multiple object tracking
performance, track quality, and traffic monitoring performance
of the tracking system evaluated.

A. Dataset

A total of 34 stable daytime sequences are chosen from
the UA-DETRAC training dataset [10]. An initial background
mask is generated from the first 100 frames (4 seconds) of
each sequence using a standard temporal median filter to avoid
ghosting artifacts due to the use of background subtraction.
A user-defined region of interest (ROI) containing the traffic
flow is defined in each sequence resulting to a total of 140,644
bounding boxes from 2,213 vehicles in a total of 43,241 frames
for assessment. Example images of the sequences used along
with the user-defined ROI and generated background model is
shown in Figure 3.

Fig. 4. Comparative framework for the assessment of multiple vehicle tracking
systems.

B. Tracking Implementation

Three baseline tracking systems are implemented using
the Hungarian optimization data association model through
the Munkres algorithm. This data association model should
be sufficient for the various traffic scenes in the dataset
which are high frame rate video sequences in which vehicle
movement is minimal in consecutive frames. Another common
assumption used for all baseline tracking systems is that a
tracked object can only be lost or misdetected for at most 5
frames. Otherwise, the tracked object is terminated and not
registered as a vehicle track. The specific implementation of
the three blob-based tracking systems are summarized below.
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1) State-based Tracking: This system uses a Kalman filter
to predict the vehicle bounding box on the next frame [7].
The Munkres association cost is then set to the amount of
bounding box overlap, commonly known as intersection over
union (IOU), instead of pixel distance. The (minimum) overlap
threshold is set to Toverlap = 0.5. A simple initialization
and termination procedure is implemented and adapted from
UrbanTracker [5].

2) Feature-based Tracking: The UrbanTracker [5] is
adapted for evaluating feature-based tracking. This tracker
implements a state-machine for track initialization and termi-
nation, and merge-and-split procedures for occlusion handling.
The FREAK keypoint detector is set to a threshold value of
25 and octave number of 3. The default values of the FAST
feature extractor in OpenCV is used.

3) Histogram-based Tracking: The Kalman filter in the
state-based tracking system is replaced with a standard particle
filter. All other multiple object tracking models are identical
with the state-based tracker. The number of particles used is
200 and a total of 24 histogram bins are used for storing the
color histogram, 8 for each of the RGB channels.

C. Assessment and Testing

The following performance metrics will be used to evaluate
each candidate tracking methodology: (1) multiple object
tracking performance, using MOTA and MOTP, as well as
the False Positives (FP) and False Negative (FN) counts used
in MOTA computation; (2) track quality, through IDS, Fgmt,
MT, and ML; (3) traffic count estimation performance, through
count precision and recall, and count measurement accuracy;
and (4) traffic speed estimation performance, using speed
measurement accuracy.

The multiple object tracking performance and track quality
metrics are computed using a general MOT toolkit [19]
which compares the ground truth annotations with the tracking
system output tracks. Similarly, the traffic count and speed
measurement performance are computed by comparing the
system vehicle count and system average vehicle speed output
with the actual value based on the dataset ground truth
annotations.

Measurement of the true positive count for large datasets
is impractical since it would need to be manually counted.
Instead, the vehicle count true positive can be analytically de-
termined by counting how many ground truth tracks uniquely
correspond to each system output track. The ground truth
vehicle count in a sequence can be easily determined by
from the number of tracks in the ground truth annotations;
analytically, this corresponds to the sum of the vehicle count
true positive and false negative. Meanwhile, the vehicle count
measured by a tracking system analytically corresponds to the
sum of the vehicle count true positive and false positive. The
vehicle count binary metrics can thus be approximated by
implementing an association threshold on the ground truth and
system output tracks to determine the upper bound for vehicle
count true positives.

TABLE I
SUMMARY OF METRICS FOR PERFORMANCE ASSESSMENT

Metric Ideal Description
MOTA 100% Multiple Object Tracking Accuracy
MOTP 100% Multiple Object Tracking Precision

FP 0 False Positives
FN 0 False Negatives or Misses
IDS 0 Identity Switches or Mismatches

Fgmt 0 Fragmentation
MT 100% Mostly Tracked targets (>80% tracked)
ML 0% Mostly Lost targets (<20% tracked)

CnPrn 100% Count Precision
CnRcl 100% Count Recall
CnAcc 100% Count Accuracy
SpAcc 100% Speed Accuracy

The computation for vehicle count precision and count
recall is then as follows:

CnPrn =
TP cn

TP cn + FP cn
× 100% (5)

CnRcl =
TP cn

TP cn + FN cn
× 100% (6)

where:
TP cn is the number of correctly counted vehicles, deter-

mined analytically;
FP cn is the number of incorrect count increment; and
FN cn is the number of vehicles not counted correctly.
Lastly, the vehicle speed measurement is done by comparing

the average vehicle speeds computed from the associated
ground truth and system output tracks. Specifically, it is taken
as one (1) minus the average relative error, times one-hundred
percent (100%). This makes the two traffic measurement
accuracy metrics independent of one another. Thus, for a
tracking system to have a good traffic monitoring performance,
it must have a high count and speed accuracy; as well as
a high count precision and recall, to validate the reliability
of the measured count accuracy. A summary of the different
assessment metrics to be used are shown in Table I.

D. Overlap Threshold

The performance metrics used in multiple object tracking
algorithms are dependent on how each annotated (ground
truth) bounding box are matched to a tracking system’s output
bounding box. For 2D vision-based tracking, this is done
by employing an overlap threshold, tiou, between the actual
bounding box and the output bounding box. This overlap
threshold is usually set to tiou = 0.5 [19] for general cases
but has also been set to tiou = 0.7 [10] for strict multiple
vehicle tracking assessment. For background subtraction based
systems, detection bounding boxes may significantly be af-
fected by cast shadows. Having a strict association threshold
thus penalizes detections with shadows which is inherently
present in the systems to be compared. Thus, we shall use the
conservative threshold tiou = 0.5 for reporting the evaluation
metrics.
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TABLE II
PERFORMANCE OF SELECTED VEHICLE TRACKING SYSTEMS

System MOTA MOTP FP FN IDS Fgmt MT ML CnPrn CnRcl CnAcc SpAcc
State 37.4% 70.9% 33155 53726 1147 2067 44.9% 17.3% 57.8% 88.5% 47.0% 83.3%

Histogram 26.6% 70.0% 31072 71075 1054 2012 20.8% 29.4% 57.1% 78.5% 62.6% 75.7%
Feature 28.3% 68.3% 41413 59056 421 2588 41.5% 21.4% 78.7% 86.4% 90.3% 83.6%

(a) frame n (b) frame n+ 5 (c) frame n+ 10

Fig. 5. Errors due to track loss.
The blue lines correspond to the boundary of the ROI. The green solid bounding boxes correspond to ground truth while the red dashed bounding boxes

corresponds to tracked vehicles. Notice the tracked vehicle in (a). The tracker fails to update its hypothesis in (b), then the vehicle is lost in (c).

(a) tracked tree reflection (b) tracked lane marking

Fig. 6. Errors caused by misdetection.
The blue lines correspond to the boundary of the region of interest. The green solid bounding boxes correspond to ground truth while the red dashed

bounding boxes corresponds to tracked vehicles. The reflection of a tree is tracked in (a) while a lane marking is tracked in (b).

IV. RESULTS AND ANALYSIS

The performance of each blob-based tracking system is
evaluated in terms of multiple vehicle tracking performance,
namely, tracking accuracy and track quality; and traffic mon-
itoring performance, namely, count and speed accuracy. The
cumulative performance metrics of each system for all 34 test
sequences is shown in Table II.

The results show that in terms of multiple vehicle track-
ing, the state-based tracker is the most accurate in terms
of matching bounding boxes to the ground truth annotation.
The state-based system has the best MOTA, MOTP, MT,
and ML metrics, followed by the feature-based system, with
the histogram-based system having the lowest performance.
On the other hand, the feature-based tracking system is the
most accurate in terms of traffic monitoring performance. The
feature-based system has the highest vehicle count and vehicle
speed measurement accuracy. Meanwhile, the state-based and
histogram-based systems have similar traffic monitoring per-
formance which are both lower than that of the feature-based
system; the feature-based system having a higher vehicle count
accuracy, and the state-based system having a higher vehicle
speed accuracy.

A. Analysis of Tracking Accuracy Metrics

We first analyze the result in terms of multiple vehicle
tracking performance. As seen in Table II, the state-based
system has a lower number of false positives and false
negatives compared to the other two systems. Specifically, the
histogram-based system has a higher amount of false negatives
due to track loss which is shown in Fig. 5. This tendency to
lose tracks also leads to the histogram-based system having
the least amount of false positives since losing wrong tracks
will result in a lower number of false positives. This can be
attributed to the performance of the standard particle filter at
the tested number of particles.

Meanwhile, the significantly higher number of false posi-
tives of the feature-based system compared to the other two
systems can be attributed to tracking of non-vehicular blobs as
shown in Fig. 6. This is likely due to differences in low-level
tracking logic with the other two systems.

B. Analysis of Track Quality Metrics

Next, we analyze the results in terms of track quality. The
other error metric accounted for in the MOTA is the number
of identity switches (IDS), which is also treated separately to
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(a) frame n (b) frame n+ 5 (c) frame n+ 10

Fig. 7. Count false positives due to vehicle fragmentation.
The blue lines correspond to the boundary of the region of interest. The green solid bounding boxes correspond to ground truth while the red dashed

bounding boxes corresponds to tracked vehicles. Notice the vehicle on the lower half of the left lane. The vehicle hypothesis ID changes from (a) 114, to
(b) either 114 or 128, to (c) 128.

(a) State-based system (b) Histogram-based system (c) Feature-based system

Fig. 8. Count false positives due to vehicle fragmentation.
The blue lines correspond to the boundary of the region of interest. The green solid bounding boxes correspond to ground truth while the red dashed

bounding boxes corresponds to tracked vehicles. Notice the vehicle on the lower half of the left lane. The state-based and histogram-based tracking systems
tracks the vehicle into separate parts likely due to blob separation. Meanwhile, the feature-based tracking system can merge the blobs into one vehicle.

measure track quality. The feature-based tracker has the least
amount of identity switches compared to the other two tracking
systems. A common case of identity switching is shown in
Fig. 7.

C. Analysis of Traffic Measurement Accuracy Metrics

Finally, we analyze the results based on the traffic moni-
toring performance. The feature-based system has the highest
count and speed accuracy even though it does not have the best
multiple vehicle tracking performance. The state-based system,
which has better multiple vehicle tracking performance, is
affected mainly by its low count precision, which means that it
tends to over-count vehicles, resulting to a low vehicle count
measurement accuracy. The same over-counting problem is
encountered by the histogram-based system. An example of
how false positive counts occur is shown in Fig. 8. Meanwhile,
the state-based and feature-based systems have a higher speed
measurement accuracy than histogram-based systems due to
having less false negatives which cause late track initializa-
tions.

From the analysis of results, both track identity switching
and vehicle count false positives are mainly caused by vehicle
fragmentation due to errors during background subtraction.
Thus, the track identity switching metric, in the case of blob-
based tracking systems, affects the vehicle count measurement
accuracy in terms of vehicle count precision. This can be
further validated by plotting the normalized IDS vs CnPrn for

Fig. 9. Plot of normalized identity switches (IDS) against vehicle count
precision (CnPrn).

The normalized IDS is the number of identity switches over the total
number of vehicles in a sequence.

all possible sequence-to-system combinations, resulting to a
total of 102 data points as shown in Fig. 9. Statistical analysis
between the two normalized metrics results to a correlation
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coefficient of r(100) = −0.709 with a P-value of p < 0.001.
For reference, the MOTA and CnPrn metrics have a correlation
coefficient of r(100) = −0.059 and a P-value of p = 0.554.

V. CONCLUSION

This paper presents a standardized assessment and analysis
of background subtraction-based vehicle tracking systems. The
use of labeled bounding box annotations to determine the
upper bound of object count true positives is introduced. The
resulting count precision and count recall from the said true
positive upper bound makes it easier to automate the count
measurement accuracy of tracking systems reliably, albeit
on labeled datasets, by considering the possibility of having
undercount and over-count cancellations.

The feature-based tracking system has been found to be
the best tracker in terms of traffic monitoring performance.
Utilizing a complex appearance model decreases the amount of
identity switching with the drawback of less accurate tracking
overall (in terms of MOTA). Analysis of results show that
track quality (in terms of IDS) affects traffic monitoring
performance (in terms of CnPrn) much more significantly than
the tracking performance (in terms of MOTA).
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