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Abstract—Despite recent breakthroughs in the applications of 

deep neural networks, one challenge remains for deep model 

training when only limited training data available. New structure 

may be different from the previous models in different tasks. In 

addition, there may be insufficient labeled or unlabeled data to 

train or adapt a deep architecture to new tasks. In view of this, we 

propose the auxiliary structure for deep model learning with 

insufficient data via additional alignment layers to migrate the 

weight of the auxiliary model to the new model. The experimental 

results demonstrate that the auxiliary structure reduces the 

overfitting problem and can improve the accuracy using only a 

few training samples. 

I. INTRODUCTION 

The recent success of deep learning depends on the ability to 

apply gradient-based optimization to high-capacity models. It 

has achieved state-of-the-art performance in various research 

fields, such as image classification [1], video classification [2], 

and speech recognition [3]. These models perform extremely 

well in domains with large amounts of training data, e.g., (Deng 

et al. [4], 2009). They have recently outperformed all known 

methods on a large scale recognition challenge [5]. 

However, to obtain a large dataset is not easy especially on 

specific task. This is the critical challenge for using deep 

learning. With limited training data, the representational 

capacity of deep architecture dramatically overfits the training 

data. 

In this paper, we proposed an auxiliary structure to solve the 

task of deep model learning by using transfer learning 

technique. We take a pre-trained model, which was trained on 

a large dataset as our auxiliary model to train a new model. 

Between two models, alignment layer is exploited to help learn 

the new model without initial weight. 

The contributions of our paper are that we propose the solution 

for deep model training. It can use any pre-trained networks to 

train the new deep model given the insufficient training 

samples or lacks of the initial weight. Each path in dual-path 

deep neural network is flexible, we can choose the different 

deep models according to different tasks requirement.  

II. RELATED WORK 

In recent years, convolutional neural network (CNN) is a 

classical feed-forward network in deep learning, and widely 

used in computer vision [10, 11, 17, 18]. Deep learning is part 

of a broader family of machine learning methods based on 

learning data representations, as opposed to task specific 

algorithms. In image representation learning approaches, 

traditional methods use hand-crafted image features.  However, 

these features may not be applied for user-centric tasks, such 

as image recommendations. Therefore, Lei et al. [8] designed 

a dual-net deep network to learn user-centric image 

representations, and proposed a comparative deep learning 

(CDL) method to solve image recommendations problem. 

Dual-source deep neural network (DS-CNN) [16] that shares 

common features and retains flexibility through a dual path 

architecture to learning new features. DS-CNN differs from 

traditional deep neural networks. It contains two convolutional 

paths. Each path has its own model weight. Two outputs of dual 

paths can be integrated to obtain more discriminative results. 

We can also analyze and compare their difference. 

Knowledge distillation (KD) [20, 21] transfers knowledge 

from a large highly regularized teacher network into a smaller 

student network. It provides soft-target information by using an 

arithmetic or geometric mean of individual predictive 

distributions computed by the teacher network, so the student 

network can be trained on much less data than the teacher 

model. Generalized distillation (GD) extends KD methods by 

training a teacher network with separate clean and noisy 

training sets [22, 23, 24]. A student network can be guided by 

the soft-labels from a teacher network where soft labels are 

derived using enhanced features generated by a beamformer 

then processed through a network trained with conventional 

multi-style training. 

In this paper, we hope to construct our auxiliary by DS-CNN 

and domain adaptation technique. Domain adaptation is one of 

transfer learning issue. Transfer learning is an important 

research topic of deep model learning problem. Transfer 

learning can migrate models that are suitable for large data to 

small data for model migration [6][7]. In cross domain 

adaptation problem, Chen et al. [9] proposed a novel double-

path deep domain adaptation network (DDAN) to model the 

data from the two domains jointly. The idea of this architecture 

is defining the path of shop domain images as source domain 

because the posture and clothing distribution are consistent. 

Another path of street domain images as the target domain is 

used for testing. Then, they proposed an alignment layer 

between these two paths to force the parameters of two paths 
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to be similar. It means that the approach can effectively make 

the features of two different domains to be similar. Accordingly, 

we wish to construct our model by alignment layer and DS-

CNN technique. 

III. AUXILIARY STRUCTURE LEARNING FOR DEEP MODEL 

TRAINING 

In this section, we introduce and describe our model. Motivated 

by background knowledge, we propose a new deep model 

learning method, Auxiliary Structure Learning (ASL), as 

shown in Fig. 1. ASL method is used in asymmetric dual-path 

deep neural network. 
 

 
Fig. 1: Dual-path network architecture for ASL. 

 

3.1. Model Architecture for Auxiliary Structure Learning 
 

In the top path, we take a large generative deep learning model 

(e.g., AlexNet [10], GoogleNet [17]) as auxiliary architecture. 

Due to these well-known deep learning models use huge 

amount of data for model training, they have better model 

weight. In the bottom path, we take a small deep learning model 

as a target architecture without pre-trained weight. Each path 

in dual-path deep neural network is flexible, we can choose the 

different deep models according to different tasks requirement. 

In this paper, we focus on human action identification task. 

We use auxiliary model to train target model. The 

auxiliary model provides the pre-trained weight, and transfer 

the model weight to target model. Auxiliary model can help 

target model convergence easier and improve accuracy. In 

training stage, auxiliary model and target model need to be 

trained simultaneously. 

    Before we link auxiliary model layer and target model 

layer to alignment layer, we need to add a projection layer. 

Projection layer projects the input feature representation form 

auxiliary model layer and target model layer to the same 

dimension. Between the two models, we use the alignment 

layer to build dependencies. Alignment layer is actually a cost 

function in following form: 

 

                            𝐿𝑘(𝑎, 𝑡) = 𝜆 × ‖𝑋𝑎
(𝑖)

− 𝑋𝑡
(𝑗)

‖                      (1) 

 

where a and t individually represent auxiliary model and target 

model. 𝑋𝑎
(𝑖)

 and 𝑋𝑡
(𝑗)

 are the representations from the 

connection layer (e.g., convolutional layer or fully-connected 

layer). 𝜆 is a constant value to adjust layer importance. i and j 

represent the connection between alignment layer and layer in 

dual-path. k is the number of alignment layers. 

 

3.2. Considerations for Auxiliary Structure Learning 
 

In order to make the target architecture converge easier and 

improve accuracy, we consider three main factors in Auxiliary 

Structure Learning (ASL) method: (1) The dimensions of 

projection layer for alignment layer. (2) The number of 

alignment layer. (3) Weight fixing in auxiliary structure. 

 

3.2.1. The dimensions of projection layer for alignment layer 

 

 

 
Fig. 2: Projection layer dimension selection. 

 

of alignment layer, we choose Alignment2-3-4. (3) We fix the 

weight of convolutional layers weight in auxiliary structure. In 

this design consideration, we consider the dimensions of 

projection layer for alignment layer show as Fig. 2. We use four 

settings for projection layer: 512, 1024, 2048 and 4096. 

In Table 1, experimental results indicate that when the 

projection layer dimension is 2048, we can obtain the highest 

accuracy 40.8 % in target model. We select 2048 for our 

projection layer dimension. 

 
Table 1: The accuracy for projection layer dimension. 

Projection  

dimension 
Accuracy 

(Auxiliary) 

Accuracy 

(Target)  

512 51.0 34.7 

1024 37.0 38.2 

2048 32.8 40.8 

4096 28.6 39.1 

 

3.2.2. The number of alignment layer 

 

In this design consideration, we consider the number of 

alignment layers. We use five settings for alignment layers: (1) 

Alignment1-2-3-4-5. (2) Alignment2-3-4-5. (3) 

Alignment2-3-4. (4) Alignment3-4. (5) Alignment3. Details as 

shown in Fig. 3. 

In Table 2, the experimental results indicate that when 

alignment layer setting is alignment2-3-4, we can obtain the 

highest accuracy 42.7 % in target model. 
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Table 2: The accuracy for the number of alignment layer.  

 Accuracy 

(Auxiliary) 

Accuracy 

(Target)  

Alignment 1-2-3-4-5 35.3 40.1 

Alignment 2-3-4-5 40.7 38.5 

Alignment 2-3-4 36.8 42.7 

Alignment 3-4 37.0 38.2 

Alignment 3 41.5 39.5 

 

 
Fig. 3: The number of alignment layer. 

 

3.2.3. Weight fixing in auxiliary structure 

 

After doing the above experiments, most of experimental 

results demonstrate ASL method can be used to improve the 

accuracy for target model. At the same time, we found an 

unexpected situation: the accuracy for auxiliary architecture is 

decrease. We think the weight of auxiliary architecture is 

affected by the weight of target model in training stage. By 

fixing a part of parameters of auxiliary model, we hope it can 

reduce the problem for auxiliary model accuracy decrease. 

In this design consideration, we consider three situations 

to fix the weight in auxiliary architecture: (1) Weight fixing in 

convolutional layers and fully-connected layers (Both Fixed). 

(2) Weight fixing in convolutional layers (Conv Fixed). (3) 

Without weight fixing in auxiliary architecture (Unfixed). 

In Table 3, experimental results indicate that when fixing 

the convolutional layers weights in auxiliary architecture, we 

can obtain the highest accuracy for auxiliary architecture is 

40.71%, and we also obtain the highest accuracy for target 

model is 41.13%. 

 
Fig. 4: Weight fixing in auxiliary structure. 

Table 3: The accuracy for weight fixing.  

 Accuracy 

(Auxiliary) 

Accuracy 

(Target)  

Both Fixed 20.83 39.67 

Conv Fixed 40.71 41.13 

Unfixed 38.42 39.17 

 

 

3.3 Loss function for auxiliary structure learning 
 

 
Fig. 5: Final deep architecture selection for ASL. 

 

According the above experiments, we summarize our 

Considerations for ASL method: (1) The dimensions of 

projection layer for alignment layer is 2048. (2) In the number 

Our final model architecture is shown in Fig. 10. In this 

model, the total loss function definition is in following form: 

 

𝐿𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐿𝑘(𝑎, 𝑡)
𝑛

𝑘=1
+ ∑ �̃�𝑝(𝑦, 𝑧)

𝑚

𝑝=1
           (2) 

 

𝐿𝑘(𝑎, 𝑡)  is loss term for alignment layer. There are three 

alignment layers in our model, so 𝑛 = 3 . Other details for 

alignment loss is in Section 3.2. �̃�𝑘(𝑦, 𝑧) is softmax loss, and it 

define in following form: 

�̃�𝑝(𝑦, 𝑧) = log (∑ 𝑒𝑧𝑗

𝑚

𝑗=1

) − 𝑧𝑦                    (3) 

 

𝑧𝑗 is the j-th linear prediction result, y is the label for input data. 

p is the number of deep models, in our dual-path deep model, 

𝑚 = 2. 

IV. EXPERIMENTAL RESULTS 

In this section, we conduct some experiments on our 

collected dataset to verify the performance of our proposed 

method. We focus on human action identification task. 

 

4.1. Dataset 

 

We evaluate the performance of our models on three datasets, 

People Playing Musical Instrument (PPMI) dataset, Willow 

dataset and Uiuc-sports dataset.  
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First, we use People Playing Musical Instrument (PPMI) 

dataset [12] for our experiments. It contents 4800 Normalized 

images. The PPMI dataset contains 24 human interaction 

categories, with 12 kinds of musical instruments, and each 

instrument contains 2 different interactions. The images 

number of each class is 200. In each class, we take 100 samples 

for training and 100 samples for testing. 

The second dataset we use is Willow dataset [13]. It 

contains 991 still images and 7 kinds of action classes. We take 

430 images for training and 481 images for testing. 

Last, we use Uiuc-sports dataset [14]. It contents 1579 

images and 8 kinds of action classes. In each class, we take half 

samples for training and the rest for testing. 

 

4.2 Experiment Settings 

 

We implement our model using the Caffe software package 

[15]. All neural network models use the same parameter 

settings with learning rate 0.0002, momentum 0.9, and weight 

decay 0.0002. All input image size in our auxiliary model is 

resized to 227 × 227, and in our target model is resized into 

57 × 57. 

In the following experiments, we use the model 

architecture as shown in Fig. 1. We take AlexNet as auxiliary 

model with the pre-trained weight to train target model without 

pre-trained weight. Between two models, we use three 

alignment layers to make the feature representations similar 

and migrate the weight of the auxiliary model to target model. 

We train two models simultaneously. 
 

4.3 Experiment on PPMI dataset 

 

In this experiment, we compared our proposed method with 

other model training methods on PPMI dataset. First, we 

directly train our small target model without any pre-trained 

weight. Second, we train auxiliary model, AlexNet. Then, we 

use ASL method to train small target model. Sample images of 

this dataset and Classification accuracy showed in Fig. 6 and 

Table 4, respectively. We can see by adopting ASL, the 

accuracy of target model can be improved by nearly 15% 

compared to the target model trained stand along. 

 
Fig. 6: Final deep architecture selection for ASL. 

 

4.4 Experiment on Willow dataset 

 

In this experiment, we compared our proposed method with 

other model training methods on Willow dataset. Sample 

images and classification accuracy showed in Fig.7 and Table 

5, respectively. The classification accuracy can be 5% higher. 

Table 4: Classification accuracy on PPMI dataset.  

 Accuracy 

(Auxiliary) 

Accuracy 

(Target)  

Target 56.4 - 

AlexNet - 28.1 

Target (ASL) 36.8 42.7 

 

 
Fig. 7: Final deep architecture selection for ASL. 

 
Table 5: Classification accuracy on Willow dataset.  

 Accuracy 

(Auxiliary) 

Accuracy 

(Target)  

Target 50.8 - 

AlexNet - 39.8 

Target (ASL) 46.0 44.8 

 

4.5 Experiment on Uiuc-sports dataset 

 

In this experiment, we compared our proposed method with 

other model training methods on Uiuc-sports dataset. 

Classification accuracy showed in Table 6. The improvement 

can be also achieved by 5% higher by using the proposed ASL. 
 

Table 6: Classification accuracy on Uiuc-sports dataset.  

 Accuracy 

(Auxiliary) 

Accuracy 

(Target)  

Target 86.6 - 

AlexNet - 74.8 

Target (ASL) 84.5 81.6 

V. CONCLUSION 

In this paper, we propose a method for deep model training, 

use auxiliary structure and alignment layer to train deep 

convolutional neural network. Our experimental results 

demonstrate that our method can improve the performance in 

target model. With the replacement of different auxiliary 

architecture, we can apply our method in different tasks, such 

like detection and retrieval. In the future, we will solve the 

problem for auxiliary model layers less than personalization 

model layers (Small to Big). We can replace the larger auxiliary 

model (e.g., GoogleNet, VGGNet [18]) with AlexNet or 

dividing the target model into several sub-target model to make 

every sub-model layers less than auxiliary model layers. 
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