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Abstract—Language models, which are used in various tasks
including speech recognition and sentence completion, are usually
used with texts covering various domains. Therefore, domain
adaptation has been a long-ongoing challenge in language model
research. Conventional methods mainly work by the addition of
a domain dependent bias. In this paper, we propose a novel way
to adapt neural network-based language models. Our proposed
approach relies on a linear combination of factorised hidden
layers, which are learnt by the network. For domain adaptation,
we use topic features from latent Dirichlet allocation. These
features are input into an auxiliary network, and the output
of this network is used to calculate the hidden layer weights.
Both the auxiliary network and the main network can be trained
jointly by error backpropagation. This makes our proposed
approach completely unsupervised. To evaluate our method, we
show results for the well-known Penn Treebank and the TED-
LIUM dataset.

I. Introduction
Language models (LMs) are usually trained on training data

covering a large variety of text domains. However, domain
specific language models usually show a lower perplexity
(PPL) and better performance in automatic speech recognition
(ASR) tasks than general LMs at test time. Adapting general
LMs to specific topics or genres has therefore been a subject
of ongoing research interest. Various approaches have been
proposed for N-gram and neural network-based LMs, which
benefit from topic or genre information. In many approaches,
this topic information is provided by topic models, such as,
latent Dirichlet allocation (LDA) [1] .

Conventional feature-based domain adaptation methods for
neural network-based LMs usually add a bias to the network
input or output. This bias depends on the topic feature or a
(given) domain label. Our proposed method is fundamentally
different from these conventional methods. We factorise the
output layer into multiple layers, where each layer is weighted
by a factor weight. This means we use a linear combination
of different subspaces. With our method, some adaptation
layers can learn information that is common to different
topics, while other layers can learn topic specific information.
This is similar to the linear combination of multiple domain
dependent LMs, which share a common hidden state. We
cannot form such a linear combination with only a bias. The
factor weights are calculated from an auxiliary network, which
is trained jointly with the main network by standard error
backpropagation. As input into the auxiliary network, we use

LDA features extracted from a sliding window. This method
has been successfully employed for acoustic model adaptation
[2], [3] and speaker aware beamforming [4] and we investigate
its application to LMs.

We provide experimental results for the well-known Penn
Treebank (PTB) [5] and the TED-LIUM dataset [6], [7] to
evaluate our method. We use state-of-the-art long short-term
memory (LSTM) [8] as a recurrent unit because LSTM-
LMs perform better than vanilla recurrent neural network
LMs (RNN-LMs) [9], [10]. The results show that our method
performs consistently better on both corpora than a baseline
LSTM-LM.

II. Previous Research

In previous research, topic tracking LMs [11] were proposed
for the topic adaptation of classical N-gram LMs. The topic
tracking LMs used an LDA-like framework to adapt N-gram
probabilities to topic information. This method was effective
when used on an English and a Japanese lecture corpus.

For neural network-based LMs, there are two main
paradigms, namely model-based and feature-based adaptation.
With model-based adaptation, which means re-training or fine-
tuning network weights, an adaptation layer is inserted into
the network. The weights in this adaptation layer are updated
using in-domain data. model-based adaptation has been used
for feed-forward [12], [13] and RNN-LMs [14]. Recently,
model-based adaptation with a linear hidden network (LHN)
[15], [16] was also proposed. However, fine-tuning can be a
problem if the adaptation data are few, because the adapted
models are prone to overfitting [17].

In feature-based adaptation, that is topic-based bias adap-
tation, domain specific features are used as an additional
input into the network. These topic features mainly act as
an additional bias, which depends on the topic. The first
approach for RNN-LMs [18] made use of LDA features to
allow the network to exploit the context information of the
current word. This technique has also been used for RNN-LMs
[19] on multi-domain broadcast data in the MGB Challenge
[16]. In the context of the MGB Challenge, the authors showed
that feature-based model adaptation outperforms model-based
adaptation. Domain adaptation has mainly been proposed
using vanilla RNN-LMs. To the best of our knowledge, the
only other previous research on LSTM-LM adaptation was
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Fig. 1. LSTM-LM with factorised hidden layer for model adaptation (factL-
STM).

presented in [20], which uses the same adaptation mechanism
as [18].

III. LSTM LanguageModel

Before explaining our proposed adaptation technique in
more detail, we briefly review a baseline LSTM-LM. Let us
denote the vector encoding the current word ID by a one-hot
vector w(t). Then the input into the LSTM x(t) is calculated
using the embedding matrix U(w)

x(t) = U(w)w(t). (1)

The following set of equations is then used to calculate the
output h(t) and the state c(t) of a single LSTM cell [10]

i(t) = σ(W(i,w)x(t) + W(i,h)h(t − 1) + b(i)), (2)

f (t) = σ(W(f,w)x(t) + W(f,h)h(t − 1) + b(f)), (3)

o(t) = σ(W(o,w)x(t) + W(o,h)h(t − 1) + b(o)), (4)

g(t) = tanh(W(g,w)x(t) + W(g,h)h(t − 1) + b(g)), (5)
c(t) = f (t) � c(t − 1) + i(t) � g(t), (6)
h(t) = o(t) � tanh(c(t)), (7)

where i(t), f (t) and o(t) are usually named the input, forget
and output gates, respectively. W( j,w) and W( j,h) denote the
weight matrices for gate j for the word input and the previous
hidden layer, respectively. b( j) indicates the bias vectors for the
respective gates. Since we use vector notation in the above
equations, σ(·) is the element-wise sigmoid, tanh(·) is the
element-wise hyperbolic tangent and � denotes an element-
wise multiplication.

In the case of a simple LSTM-LM, h(t) would be followed
by a linear layer and the softmax function to calculate the
probability for the next word ŵ(t + 1)

ŵ(t + 1) = softmax(V(w)h(t) + b(V,w)), (8)

where V(w) and b(V,w) are the weight matrix and the bias vector,
respectively.

IV. Proposed Factorised Hidden Layer Based LSTM-LM
Adaptation

In the conventional method for acoustic model adaptation
in ASR, an adaptation feature is used as the input of an

adaptation layer. However, a novel approach to acoustic model
adaptation was introduced in [2], [3]. The authors showed
that the adaptation performance could be further improved by
applying a rather different scheme, where they used a linear
combination of multiple hidden layers. When applied to our
task of LM adaptation, it can be described as follows.

Figure 1 shows our proposed approach (hereafter denoted as
factLSTM) using factorised hidden layers for LM adaptation.
In this case, the output of the LSTM is used on the input of
N linear layers with the corresponding weight matrix L(w)

n and
bias b(L,w)

n . The size of each weight matrix L(w)
n is the number

of hidden units times the vocabulary size. Each of the linear
layers is weighted by a factor weight γn and summed up on
the input to the softmax function

z =

N∑
n=1

γn(L(w)
n h(t) + b(L,w)

n )︸                    ︷︷                    ︸
=zn

(9)

ŵ(t + 1) = softmax(z). (10)

There is no non-linearity after the factorised hidden layers.
There is only a multiplication with a weighting factor before
calculating the probability for the next word ŵ(t + 1).

Each factor weight γn is calculated from the output of an
auxiliary network, which uses topic features calculated from
an LDA as input. This auxiliary network can be of arbitrary
depth. We use a single linear layer followed by a sigmoid
non-linearity

γ = [γ1, γ2, . . . γn, . . . , γN] = σ(U(a)a(t) + b(U,a)), (11)

where U(a) and b(U,a) are respectively the weight matrix and
bias for the linear layer. The auxiliary network can be, as
shown in [3], trained jointly with the main network by standard
error backpropagation.

V. Latent Dirichlet Allocation
LDA is a generative model for estimating topics in a

collection of documents. It assumes that each document in
this collection is modelled by a mixture of an underlying
set of topics. These topics are modelled by a mixture over
a set of topic probabilities. As a bag-of-words model, LDA
ignores the word order in a document and provides a low-
rank representation of the document, namely the number of
topics.

In LDA, the following generative process generates each
document in a collection:

1) Sample the document length M from a Poisson distri-
bution: M ∼ Poisson(ξ)

2) Choose a multinomial distribution over topics for the
document by sampling from a Dirichlet distribution
parametrised by α: Θ ∼ Dir(α)

3) For each word wm of the M words:
• Choose a topic: qm ∼ Multinomial(Θ)
• Choose a word wm from the unigram distribution

associated with the topic p(wm|qm, β)
The key parameters in LDA are α and β, which have to

be learned during model training. α determines the shape
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of the Dirichlet distribution over the multinomial distribution
from which the topics are drawn. β is a parameter directly
influencing the word probabilities.

When the training corpus consists of a single document,
we regard a chunk of sentences as a single document for
LDA training in the experiments. To generate LDA features
for each word, we estimate the topic distribution for a fixed
size window of past words.

At this point, we would like to mention that we are
aware that the LSTM itself captures some kind of context
information. However, the cell state in the LSTM (which we
relate to the context stored in an LSTM) is processed by an
exponentially decaying function. That means that a context
from further in the past will be weighted less than one from
the more recent past. On the other hand, LDA neglects word
order and therefore all the words in a document will contribute
equally when a topic distribution is calculated.

VI. Experiments

A. Dataset

We use two different datasets in the experiments. The first
is the well-known PTB. It consists of articles from the Wall
Street Journal and the training set has roughly 0.9M words and
a 10K vocabulary. We used the standard preprocessing, that
is, sections 0-20 as training, 21-22 as validation and 23-24 as
the test set.

The second corpus we used was the TED-LIUM corpus [6].
Our ASR system was based on the standard Kaldi [21] recipe.
However, to train the LMs, we used an enhanced dataset
consisting of subtitles crawled from other TED talks. In total
we crawled subtitles for 2494 talks. The resulting training set
had a size of 5.1M tokens with a vocabulary size of 73K
words. We thresholded the vocabulary to include only words
that appeared more than once, which resulted in an effective
vocabulary size of 43K words.

We used our own validation and test sets when training our
LMs. The order of the talks was the same as in the IWSLT
2011 evaluation campaign [22]. For consistency, we generated
our datasets from the original subtitles in the same way as our
5.1M word training set. In the experimental results section, we
will report results for our own test set and the Kaldi recipe’s
test set.

B. LDA Training and Topic Estimation

To train our LDA model, we applied two different schemes
depending on the dataset. For PTB, we used the same process-
ing scheme as in [23]. That means, we divided the training set
into chunks of 10 utterances, and we regard each of these
chunks as a single document. For the TED talks, it was
not necessary to make this segmentation because the dataset
consists of different talks and we can use each talk as a
separate document.

Before training the LDA, we removed a list of common
stop words, as well as, high and low frequency words. This
preprocessing was only employed to train the LDA and to

TABLE I
PPL on the validation set of PTB for different numbers of factorised hidden
layers versus different LDA dimensions (LSTM-LM 105.66). The number in

brackets gives the number of factors used.

Model

LDA
topics 30 40 50 60

factLSTM (5) 105.06 105.55 105.93 106.08
factLSTM (10) 102.15 102.11 102.81 101.02
factLSTM (20) 102.92 102.80 101.54 101.06
factLSTM (30) 101.36 102.64 102.24 100.91
factLSTM (40) 103.75 102.69 101.75 100.69

compute the LDA features. The LDA implementation for our
experiments was the one provided in scikit-learn [24].

To calculate the LDA features for each word in the datasets,
we used LDA features extracted from a sliding window
covering the previous 50 words in case of PTB and 200
words in case of TED. The LDA features represent the topic
distribution over this sliding window.

C. Neural Network Training Parameters

The networks in our experiments used 300 LSTM units.
We used a single layer of LSTM units, as this exhibited the
best performance with the following training parameters. All
networks were trained for 20 epochs on PTB and 40 epochs
on TED talks. The results given below were chosen from
the best model on the validation set. The learning rate was
0.1 and we used the AdaGrad optimiser [25]. Gradients were
clipped to an L2-norm of 5. The mini-batchsize was 128 and
the backpropagation through time length was 20 words. In all
our models, we applied dropout [26] with a dropout ratio of
50% to the input of the LSTM x(t), as well as, to the output
of the LSTM h(t). We implemented our LMs with the open
source toolkit Chainer [27].

D. Penn Treebank Results

First, we will show PPL results for the validation and test
sets of PTB. As a baseline N-gram LM, we estimated a trigram
LM with Kneser-Ney [28] smoothing using the SRILM toolkit
[29]. However, the PPLs we give for the neural network LMs
are without trigram interpolation. That means these PPLs are
the values obtained using only the neural network LM.

The performance of factLSTM depends on the number of
LDA topics. To investigate which combination of LDA topics
and factorised layers works well, we conducted experiments
for different LDA and factorised layer combinations. Table I
shows the results for LDA sizes of 30 to 60 and 5 to 40 factors.
First, when the number of factors is kept constant, the PPL
generally decreases as the LDA size increases. However, with a
small number of factors, the PPL did not decrease significantly
compared with the LSTM-LM baseline.

The second parameter to look at is the number of factorised
layers. In our experiments, the PPL decreased with an increase
in the number of factors. In addition, networks with more
factors can make more effective use of a larger LDA. However,
choosing a large number of factors does not seem to yield
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TABLE II
PPLs for baseline and factLSTM model on the validation and test sets of

PTB.

Model val test
trigram 182.16 171.68
LSTM 105.66 98.94
factLSTM 100.69 94.99

TABLE III
PPL andWER for our own subtitle-based test set and TED-LIUM with 50
LDA topics, a 200-word window size and factLSTM with 15 factors. The
trigram result represents the 1-best result and the results for the neural

network LMs are for 100-best rescoring.

Model test WER[%]
subtitle TED-LIUM val test

trigram 156.41 222.05 16.3 15.1
LSTM 51.98 156.29 14.2 12.1
factLSTM 38.37 109.59 13.7 11.7

much further PPL reduction on the PTB dataset. This might
be due to the small size of PTB.

Comparing the results for the factLSTM with the LSTM-
LM baseline, our proposed method consistently outperforms
an LSTM-LM. When a large enough number of factors is used,
our proposed method achieves a significant PPL reduction.

In Table II we show the final PPL results for the baseline
models and our proposed approach. We used 60 topics for
factLSTM with 40 factors. Our proposed factLSTM improved
5% on the validation set and 4% on the test set compared with
the LSTM-LM baseline.

E. TED-LIUM Results

For the TED talks we show PPL results for the trigram
distributed with the Kaldi recipe [7]. As with PTB, the PPLs
shown for TED lack any N-gram interpolation. However,
we used trigram interpolation for 100-best rescoring. The
corresponding interpolation weights for each LM and the
trigram were optimised on the validation set (provided with
the Kaldi recipe).

Table III shows our results for the TED-LIUM dataset.
The trigram, which is provided with the Kaldi recipe, uses a
different vocabulary and more training data than our models.
However, the training data are mainly out of domain data,
which explains the difference in PPL compared with the neural
network-based models1.

With an LSTM-LM the PPL decreases greatly (as expected)
compared with the trigram LM. The reduction was 60% for
our subtitle-based test set and 17% for the TED-LIUM test
set. In 100-best rescoring, we reduced the WER by 20% with
an LSTM-LM.

For TED-LIUM we used LDA features from 50 topics and
a window size of 200 words. For this factLSTM we used 15
factors (limitation due to GPU memory size). On the TED-
LIUM test set, our method showed significantly lower PPL
than LSTM-LM, that is a 29% relative reduction. In 100-best

1We also estimated a trigram on our own training data, which considerably
reduced the PPL of the trigram LM to 106.58, but in order to stay consistent
with the Kaldi recipe we did not use this trigram in the experiments.

rescoring, the WER was 3% relative lower than an LSTM-LM
on the test set.

VII. Conclusion and FutureWork

We presented a novel approach to unsupervised domain
adaptation for neural network LMs based on factorised hidden
layers. The method achieves a lower PPL than a conventional
LSTM-LM on the PTB and TED-LIUM corpus. We also saw
a significant reduction in WER compared with an LSTM-
LM baseline after 100-best rescoring on the TED-LIUM
dataset. Our proposed method was able to outperform the other
methods for two very different datasets.

To further improve our method, we are currently looking
into combining factLSTM with bias adaptation. In addition,
our proposed approach increases the number of parameters,
and we are considering different strategies for parameter
reduction by, for example, applying the factorisation to a
different layer in the network.
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