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Abstract—This paper has three aims that are to point out
that signals generated by conventional BWE methods generally
include some aliasing artifacts, to propose a novel bandwidth
extension (BWE) method considering the effects of aliasing arti-
facts, and to apply various BWE methods to speaker verification
to evaluate the effectiveness of the BWE ones. Study on BWE
methods using non-linear functions has a long history started
from for analog signal processing, but conventional BWE ones
have never considered the influence of aliasing artifacts caused
by the band limitation that digital signals have. This paper is
among the first to point out that discrete-time signals generated
by BWE methods generally include some aliasing artifacts due
to the band limitation to be decided according to the sampling
frequency. Next, a new non-linear artificial BWE method, con-
sidering of aliasing artifacts, is proposed. Moreover, to evaluate
the proposed framework, speaker verification experiments and
objective tests are conducted. Experiment results show that
speech signals extended by the proposed framework provide the
error reduction of 46.2%, compared with a typical conventional
method. Additionally, the generated speech signals are evaluated
by using three object measures: PESQ, RMS-LSD and STOI. It
is also implied that equal error rates in speaker verification tasks
have a closest relation with RMS-LSD in with another measures.

I. INTRODUCTION

In communication networks, bandwidth of transmitted
speeches is typically limited to 3.4 kHz. The limited narrow-
band speech signals lead to serious degradations of speech
quality, naturalness, and speaker individuality. It is also well-
known that performances of statistical-based machine lean-
ing systems such as speech recognition, speech synthesis
and speaker verification are strongly affected by the band-
limitation. To improve the degradations, various bandwidth
extension (BWE) methods have been studied so far, where
BWE methods are regarded as one of techniques to restore
high frequency losses caused by the bandwidth limitation,
sometimes referred to as super resolution ones. This paper
aims to point out that signals generated by conventional BWE
methods generally include some aliasing artifacts, then to
propose a new BWE method considering aliasing artifacts,
and finally to evaluate the effectiveness of the proposed BWE
method in speaker verification experiments.

BWE methods have been conducted in various research
fields such as speech processing, image and video one, and
acoustics signal one. Many different approaches to BWE have
been reported later and that can be categorized as either blind
or non-blind. Non-blind methods restore missing frequency

components from auxiliary high-frequency (HF) side infor-
mation which is encoded into a data stream together with
low-frequency (LF) components. In contrast, blind methods
estimate missing HF components using only the LF compo-
nents. Additionally, they can be broadly classified into two
types according to a difference in computational approaches:
non-leaning-based type, to which the proposed method cor-
responds, and leaning-based type. This paper focuses on the
former one, that a light-weight computational cost. Non-linear
BWE methods including rule-based spectrum folding [1]–
[5] and mapping approaches [6]–[8] are in the former type,
while statistical approaches using Gaussian mixture models
(GMMs) [9], [10], hidden Markov models (HMMs) [11]–[15]
or neural networks [16]–[18] belong to the latter one. In the
BWE methods, the quality extended of signals has been mostly
evaluated according to objective measures such as signal-to-
noise ratio (SNR) and log spectral distance (LSD). However,
it has been reported that the measures are not always suitable
for performance evaluation of statistical machine learning-
based systems such as speech recognition [19]. In [20], it
has been also shown that some non-leaning-based methods
outperform GMM-based methods in terms of LSD values,
but the performance evaluation of statistical machine learning-
based systems have not been carried out.

Because of such a situation, this paper discusses non-
linear BEW methods and its performance evaluation. Study
on BWE methods using non-linear functions has started from
for analog signal processing [21], however conventional BWE
ones have never considered the influence of aliasing artifacts
caused by the band limitation that digital signals have. In this
paper, it is pointed out that discrete-time signals generated by
BWE methods include some aliasing artifacts due to the band
limitation. BWE methods can be categorized into according
to various criteria. One category is a blind or non-blind
method [22]. The second one is whether belongs to source-
filter or non-source filter model [23]. The other ones are a
time-domain or transform-domain BWE algorithm [24] and
an approach based on decoding or information hiding [25].
In these cases, the proposed method is regarded as a blind,
non-source filter, transform-domain, and decoding approach.
In order to evaluate the proposed method, speaker verification
experiments with a GMM-UBM system and objective tests are
conducted. From the results, the proposed BWE methods from
8 kHz to 16 kHz have an error reduction of 46.2% compared
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Fig. 1: non-linear BWE (K = 2)

with the conventional methods [26], [27]. Additionally, the
generated speeches are evaluated with perceptual evaluation
of speech quality (PESQ), short-time objective intelligibility
measure (STOI) and root mean square log spectral distor-
tion (RMS-LSD). These results are shown that the proposed
method outperforms conventional BWE methods in term of
RMS-LSD as well as equal error rate (EER) in the speech
verification tasks.

II. PREPARATION

A. Non-linear bandwidth extension

Conventional non-linear BWE methods are summarized,
here. Firstly, let yNB [t] be a continuous-time signal with a
narrowband width as shown in Fig. 1 (a), where t is used to
denote the continuous-time variable. To produce a signal with
a wider bandwidth yWB [t], the use of a non-linear function
fN (·) has been proposed as, in [21],

yWB [t] = fN (yNB [t]). (1)

Figure 1 (a) illustrates the relationship between yNB [t] and
yWB [t] in the frequency domain. As shown in the figure, some
harmonic components are generated from yNB [t] by using
the non-linear function, so yWB [t] has not only the original
frequency components but also the harmonic ones.

This principle has been extended to discrete-time sig-
nals [20], [28]–[33]. In [30]–[33], a non-linear BWE method
has been studied as an efficient scheme for image super-
resolution. Figure 2 shows the block diagram of the procedure
in [30]–[33]. In Fig. 2, x[n] is a discrete-time signal with
the same bandwidth as yNB [t] in Fig. 1, where n is for the
discrete-time variable. By using an upsampler with an integer
factor K and a linear digital filter hK [n], an upsampled signal
yNB [n] is generated as shown in Fig. 1 (c). Note that the
spectrum of yNB [n] is periodic and its period is given by the
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Fig. 2: Block diagram of conventional BWE
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Fig. 3: Spectrogram examples of speech signals (FS0 = 8 kHz,
FS1 = 16 kHz)

sampling frequency, FS1 . In addition, yNB [n] has no harmonic
components. A non-linear function can be used to generate
harmonic components as well as for continuous-time signals.
In [30]–[33], a general form of non-linear functions is given
by,

yWB [n] = sgn(y′NB [n]) · |y′NB [n]
α| × β, (2)

with

sgn(a) =


1 (a > 0)

0 (a = 0)

−1 (a < 0)

, (3)

where α and β are parameters to control the non-linearity,
and a is a real value. These functions have been successfully
applied to image super-resolution. The delay in Fig. 2 depends
on filter order.

However, we have to take special care to the periodicity
that the spectrum of discrete-time signals has. In other words,
the bandwidth of yNB [n] is limited to FS1/2. Figure 1 (d)
demonstrates the effect of the band limitation, where the
inpulse responce of a digital filter, hA[n] in Fig. 2 is assumed
as

hA[n] =

{
1 (n = 0)

0 (n ̸= 0)
, (4)

for simplifying the discussion. From the figure, yNB [n] in-
cludes some aliasing artifacts, although it also includes some
useful harmonic components.

One of our aims is to propose a new BWE method con-
sidering the aliasing artifacts. This paper is among the first to
point out the effect of the artifacts in the BWE.

B. Necessity for speech signals

In Fig. 3, some spectrogram examples of speech signals
are demonstrated in terms of the difference in high frequency

1869

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



Narrowband
signal

Extended
signal

Limiter

Sampling rate Upsampling rate

Non-linear
function

Upsampling

option
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Fig. 5: Proposed BWE (K = 2)

components, in which the reference signal in (a) has 8 kHz
bandwidth, (b) is a speech with 4 kHz bandwidth produced
from the reference one, (c) is a wideband speech generated
from the speech in (b), by using the conventional BWE
method [30], and (d) is a wideband speech generated with
the proposed BWE method. From these examples, both of
the BWE methods in Figs. (c) and (d) can generate some
harmonics components in the high frequency band (4 kHz–
8 kHz). Furthermore, comparing the lower frequency compo-
nents in Fig. 3 (c) with those in Fig. 3 (d), it is confirmed that
the proposed method allows us to reduce aliasing artifacts.
This paper aims to propose a new BWE method considering
aliasing artifacts, and to evaluate the effectiveness of the
method.

It is well known that band-limited speech signals degrade
intelligibility and speaker’s characteristics. Moreover, the per-
formances of statistical-based machine leaning systems such as
speech recognition, speech synthesis and speaker verification
are strongly affected by the band-limitation. In the telephone
communication systems, narrowband signals, up to 3.4 kHz,
have been used. Meanwhile, recently, wideband or super-
wideband communications, which use a wider bandwidth than
3.4 kHz, also come to be used, so there are various speech
signals with different bandwidths in actual communication sys-

tems. As a result, the signals mixed with various bandwidths
make statistical-based machine leaning systems more complex.
Because of such situations, BWE methods are required to
improve the situations.

III. PROPOSED BWE FRAMEWORK

A. BWE considering aliasing artifacts

To reduce the aliasing artifacts descried in 2.1, a new BWE
method is proposed. Figure 4 is the block diagram of the
proposed method. The difference between Fig. 2 and Fig. 4 is
that there are two filters, i.e. hA[n] and hB [n] in Fig. 4. If the
impulse response hA[n] meets eq. (4), hA[n] dose not provide
any operation.

Figure 5 illustrates the difference in the frequency domain.
As shown in Figs. 5 (a) and (c), the use of the filter hB [n]
enables us to delete the aliasing artifacts that overlap the
original components of a signal. Meanwhile, the filter hA[n]
plays a role in the control of harmonic components due to
filtering the original components.

The limiter in Fig. 4 is given by, as well as in [30].

y′WB [n] =

{
yWB [n], yWB [n] ≤ Th

M, yWB [n] > Th

, (5)

where Th is a threshold value and M is a constant value. Based
on the procedure in Fig. 4, it is expected that ŷWB [n] does
not include aliasing artifacts, although it includes the original
components.

B. Filter specification

Two filters, i.e. hA[n] and hB[n] in Fig. 4 are explained
here in more detail. In the proposed BWE method, hA[n]
and hB[n] are designed as band-pass FIR (Finite Impulse
Response) filters with the specifications given in Fig. 6, as well
as in [27], although the conventional method [30] uses a high-
pass filter as hA[n]. The quality of ŷWB [n] slightly depends
on the specifications of filters used for the BWE method, so
almost the same specifications as those of the conventional
BWE one [27] are used to fairly evaluate the effect of aliasing
artifacts in this paper. In the experiments, the filters in Fig. 6
are used as hA[n] and hB[n].

C. Application to speaker verification

So far, BWE methods have been evaluated based on some
objective measures such as mean opinion score (MOS) [34]
and PESQ [35], STOI [36] and RMS-LSD [37]. However, it
has been reported that the measures are not always suitable
for the performance evaluation of statistical machine learning-
based systems [19]. In this paper, to evaluate the proposed
BWE method, GMM-universal background model (GMM-
UBM)-based speaker verification systems are used as one
of typical speaker verification systems [38]. The flow of the
verification system with BWE is illustrated in Fig. 7.

In the enrollment part, databases are used to estimate
an UBM as the speaker independent model. The UBM is
represented as a GMM, and the speaker dependent model
λA is estimated from the UBM and the feature vector of
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Fp1 = 3.76 kHz and Fp2 = 7.84 kHz, stop-band frequencies
Fs1 = 3.44 kHz and Fs2 = 8 kHz, a pass-band ripple of ±1
dB, a stop-band attenuation of 40 dB, and a filter order of

120.

Fig. 6: Filters designed for the proposed BWE

an enrollment speaker A by using the maximum a posterior
(MAP) adaptation. In Fig. 7, the database consists of signals
sampled at 8 kHz, and then BWE methods are adopted to
estimate signals sampled at 16 kHz from the signals of the
database. The speech samples of an enrollment speaker are
also extended to signals sampled at 16 kHz as well.

In the verification part, BWE methods are applied to a
query speech sample, and the verification score S(X, λA)
is calculated between the query feature vectors X and the
enrollment speaker model λA. According to a threshold θ,
the query is decided to accept or not. Under this flow,this
paper aims to discuss the relationship between the subjective
measurements and the performance of the speaker verification
system with the conventional BWE methods or the proposed
one.

IV. EXPERIMENT

To evaluate the effectiveness of the proposed method,
speaker verification experiments and objective tests were per-
formed.

A. Experimental condition

For speaker verification systems, the GMM-UBM-based
framework was conducted as Fig. 7. Table I summarizes

TABLE I: Experimental conditions for GMM-UBM systems

Database (UBM)
JNAS [39](female only)

16 kHz sampling
Training data (UBM) 23,657 sentences

Database VLD database [40]
(Speaker dependent (SD) (Headset microphone)

model) 48 kHz sampling
# of Speaker 17 (female only)

Training data (SD)
70 sentences / speaker
(Total 1190 sentences)

Test data
30 sentences / speaker
(Total 510 sentences)

# of mixtures 1,024
Frame length 25 msec
Frame shift 10 msec

Feature MFCC 19 order + ∆ + ∆∆

experimental conditions for constructing the GMM-UBM-
based speaker verification systems with the BWE methods.
To estimate an UBM as the speaker independent model,
Japanese Newspaper Article Sentences (JNAS) database [39],
which contains over 150 female speakers, was utilized. As
an enrollment database, Voice Liveness Detection (VLD)
database [40] with 17 female speakers was used. The JNAS
and VLD databases were recorded at 16 kHz and 48 kHz,
respectively. Therefore, the signals in the VLD database were
downsampled from 48 kHz to 16 kHz in order to generate
reference speech signals. A speaker dependent (SD) model
was estimated with 70 sentences for each enrollment speaker
by using the MAP adaptation. Besides, other 30 sentences
per enrollment speaker were used for test set. In the speaker
verification systems with the BWE methods, every speech
sample was downsampled from 16 kHz to 8 kHz to be used
as the narrowband signals x[n]. Then, each BWE method was
applied to the narrowband signals. The following methods
were compared, under Th=0.001 and the use of MATLAB
R2017a.

(A) UP
In the method “ (A) UP,” all speech data for the
UBM, SD models and the test set were generated
from the narrowband data sampled at 8kHz by the
upsampling operation with K = 2, as yNB [n] in
Fig 1 (c). Note that the speech data did not include
any harmonic components in the high frequency
components.

(B) Conv. I
All speech data were generated from the data given
in “ (A) UP” by applying the conventional BWE
method [26], [27]. In Conv. I, hA[n] and hB[n] were
used as band-pass filters in Fig. 6.

(C) Conv. II
All speech data were generated from the data given
in “ (A) UP” by applying the conventional BWE
method [30], where α and β in Eq. (1) were ex-
perimentally set to 1.8 and 100, respectively. hA[n]
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in Fig.2 was a high-pass filter with a stop-band fre-
quency Fs = 2.4 kHz, a pass-band cutoff frequency
Fp = 3.6 kHz, a pass-band ripple of ±1 dB, a stop-
band attenuation of 60 dB, and a filter order of 28.

(D) LPAS
All speech data were generated from the narrowband
data sampled 8 kHz by applying the Linear Predic-
tion based Analysis-Synthesis (LPAS) method, which
has been proposed as one of blind and non-learning
BWE method [5].

(E) Proposed I
All speech data were generated from the data given
in “ (A) UP” by the proposed method. hA[n] meets
Eq. (4). α and β in Eq. (1) were set to 1.8 and 100,
respectively.

(F) Proposed II
All speech data were generated from the data given
in “ (A) UP” by the proposed method, with the two
band-pass filters in Fig. 6, where α and β were to
1.5 and 100, respectively.

(G) 8k
The narrowband data sampled at 8 kHz were used
for all data.

(H) 16k
The reference data sampled at 16 kHz were used for
all data.

The evaluation of speaker verification systems were carried
out with equal error rates (EERs).

For the objective tests of speech quality, PESQ, STOI and
RMS-LSD were used. RMS-LSD stand for the log spectral
distance between two signals given by,

D =
1

K

K∑
k=1

√√√√ 1

N

N−1∑
i=0

∣∣∣log10 Ak(i)− log10 Âk(i)
∣∣∣2, (6)

where Ak(i) and Âk(i) were power spectrums in k frame
of the reference speech and the generated speech by the
BWE methods. N and k indicated the frame length and the
frame number, respectively. A low RMS-LSD value meant the
generated speech was close to the reference one. The reference
and narrowband signals were prepared by the same manner as

the speaker verification tasks. For the tests, the number of the
pairs of the reference and narrowband signals was 1,700.

B. Experimental results

Figure 8 shows the EERs of the speaker verification systems
with each method. The BWE methods were carried out under
FS0

= 8 kHz, FS1
= 16 kHz and K = 2 as shown in Fig. 4.

From the comparison of (G) and (H), it was recognized that the
performance of the speaker verification systems was consider-
ably degraded due to the effect of the narrowband limitation.
The EER of (A) was lower than that of (G), even though both
of them had the same bandwidth. This is because that the
frequency response of filter banks in the extraction process of
mel-frequency cepstral coefficients (MFCCs) depended on the
sampling frequencies of input signals. Among the conventional
methods (B), (C) and (D), while the EERs of (B) and (C) were
worse than that of (A), (D) obtained the lower EER than (A). It
indicated that the non-linear-based methods (B) and (C) were
suffered from the aliasing artifacts, even though these methods
were able to generate the high frequency components. The
EERs of the proposed methods (E) and (F) were lower than
that of (D). This result denoted that (D), (E) and (F), which
contains the high-pass filter in the latter part of each BWE
process were able to relax the aliasing artifacts. Furthermore,
the performance of (E) and (F) were better than that of (D)
due to the effective harmonics generation.

Figures 9 illustrates the objective measurement results with
box plots. The box plots were drawn to visualize the distri-
bution of scores. The top and bottom sides of the box meant
the upper and lower quartiles of all results. The center quartile
(median) was located inside the box as a bar. Both whiskers
of the upper and lower sides represented the maximum and
minimum values of the distribution.

Figure 9 (a) shows PESQ scores of each method. The PESQ
score ranged from of 0 (bad) to 4.5 (best). At Fig. 9 (a), the
scores of the conventional methods (B) and (C) were almost
the same as that of (A) as well as the EER results. However,
the scores of the proposed methods (E) and (F) were worse
than those of (A), (B) and (C). The PESQ algorithm has been
developed to predict the MOS score, which was a subjective
measurement by comparing the reference speech with the
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Fig. 8: Speaker verification results (FS0 = 8 kHz, FS1 = 16
kHz)

(a) PESQ (Reference: 16 kHzsampling data)

(b) STOI (Reference: 16 kHzsampling data)

(c) RMS-LSD (Reference: 16 kHz sampling data)

Fig. 9: Objective evaluation results

degraded one. Since the proposed methods simply generated
some harmonic components from narrowband signals with a
non-linear function, the proposed methods did not guarantee

the improvement of the naturalness.
The second measurement is STOI, which based on a corre-

lation coefficient between the temporal envelopes of the clean
and degraded speeches, in short-time, overlapping segments.
The STOI value ranged from of 0.0 to 1.0. The tendency of
Fig. 9 (b) was almost the same as Fig. 9 (a) because STOI was
one the measurement for the naturalness. Only the tendency
between the PESQ and STOI scores of (D) was different.

Figure 9 (c) shows RMS-LSD values for each method.
Even though (B) and (C) used the same non-linear function
as the proposed method, both of (E) and (F) obtained lower
values than (B). From this result, it indicated that the proposed
methods and LPAS were able to relaxed the aliasing artifacts
in the lower bandwidth and led the better RMS-LSD values
as well as the EER results. From these results, it was also
implied that EERs in speaker verification tasks had a closest
relation with RMS-LSD in with another measures.

V. CONCLUSIONS
This paper pointed out three matters. The first one was

that signals generated by the conventional non-linear-based
BWE methods included some aliasing artifacts. Next, the novel
non-linear BWE method was proposed to avoid the aliasing
artifacts. To evaluate the proposed methods, some experiments
using the GMM-UBM speaker verification systems and the
objective tests were carried out. The proposed method outper-
formed the conventional methods in terms of both of the EER
and RMS-LSD results, although it did not in terms of PESQ
and STOI scores. From these results, it was also implied that
EERs in speaker verification tasks had a closest relation with
RMS-LSD in with another measures.

In future work, the proposed method will be evaluated with
the practical communication scheme ITU-T G712 [41], and
will be compared under other machine learning systems and
other languages. Also, there is a possibility that the proposed
method can be extended to SWBE method.
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