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Abstract—Creating aesthetically pleasing pieces of art, includ-
ing music, has been a long-term goal for artificial intelligence
research. Despite recent successes of long-short term memory
(LSTM) neural networks in sequential learning, LSTM neural
networks have not, by themselves, been able to generate natural-
sounding music conforming to music theory. To transcend this
inadequacy, we put forward a novel method for music compo-
sition that combines the LSTM with Grammars motivated by
music theory. The main tenets of music theory are encoded as
grammar argumented (GA) filters on the training data, such
that the machine can be trained to generate music inheriting the
naturalness of human-composed pieces from the original dataset
while adhering to the rules of music theory. Unlike previous
approaches, pitches and durations are encoded as one semantic
entity, which we refer to as note-level encoding. This allows easy
implementation of music theory grammars, as well as closer
emulation of the thinking pattern of a musician.

I. INTRODUCTION

The creation of all forms of art, including music, has been
a long-term pursuit of artificial intelligence (AI) research.
Broadly speaking, music generation by artificial intelligence
(AI) is based on the principle that musical styles are in effect
“complex systems of probability relationships”, as defined
by the musicologist Leonard B. Meyer. In the early years,
symbolic AI methods were popular and specific grammars
describing a set of rules drive the composition[1], [2]. These
methods were later much improved by evolutionary algo-
rithms in various ways[3], as embodied by the famous EMI
project[4]. More recently, statistical models such as Markov
chains and the Hidden Markov model (HMM) became popular
in algorithmic composition[5], [6]. Parallel to these develop-
ments was the rapid rise of neural network (NN) approaches,
which have made remarkable progress in fields like signal
and image recognition, as well as music composition[7]. At
present, the cutting-edge approaches to generative modeling of
music are based on Recurrent Neural Networks (RNN)[8], [9],
[10], [11] like the Long Short-Term Memory (LSTM) neural
networks[12], [13], [14].

While RNN and LSTM networks perform well in modeling
sequential data, they suffer from a few significant shortcom-
ings when applied to music composition. The music generated
is often drab and dull without any discernible theme, consisting
of notes that either sound either too repetitive or too random.
It is thus desirable to have a machine that can learn to generate
music adhering to the principles of music theory, although that

is beyond the capabilities of ordinary neural networks or usual
grammatical methods.

In this work, we hence improvise an LSTM with an original
method known as the Grammar Argumented (GA) method,
such that our model combines a neural network with gram-
mars. The abovementioned procedure is summarized in Fig. 2.
Another novel feature of our model is our note-level encoding
method. This combines the duration and pitch of each note
as a single semantic entity, which is closer to how human
composers think. Our results indicate that our GA model
possess markedly superior performance in music generation
compared to its non-GA version, according to metrics based
on music theory like the percentages of notes in the diatonic
scale and chords, and pitch intervals within an octave.

II. METHODS

A. Note-Level Encoding

Although machine-learning methods have made significant
progress in music composition, so far none has managed
to closely simulate how human composers create music. In
particular, human composers regard the pitch and duration
of each note as attributes of a single entity, which in turn
forms the building block of more complex musical motifs. By
contrast, existing approaches either analyze pitches and note
durations separately in separate neural networks[15], [16], or
represent music as quantized time series[8], [10], [17], [18],
[13], [19]. In this work, we shall attempt to more closely
emulate human composers by combining the pitches and
durations of musical notes into one entity, which we shall call
as note-level encoding. Very importantly, this encoding allows
the natural implementation of the rules of music theory as
grammars, which act on notes and not merely fixed durations.
This will be elaborated in Section II-C.

Our training data is derived from the MIDI sequences
of 106 piano pieces by contemporary musicians like Joe
Hisaishi, Yiruma, Yoko Kanno and Shi Jin. For consistency, we
transpose all pieces to start with C major/A minor, only include
pieces with 4/4 time signature, and retain only the melody
such that the resultant music is monophonic. This entails
omitting music accompaniments, grace notes and intensity
changes. In particular, only the highest note, which typically
carries the melody, is retained when simultaneous notes occur.
This leaves us with a sequence of “Note On Events” and
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“Note Off Events”, which can then be directly encoded as
a sequence of one-hot vectors containing duration and pitch
information, like Fig. 1. Each one-hot vector consist of a 59-
bit segment representing pitch semitones that occur in dataset,
concatenated with a 30-bit segment representing durations
from a semiquaver to a breve. Indeed, by including both pitch
and duration within a single vector, our note-level encoding
method enables the machine to “learn” music composition by
regarding the notes as fundamental building blocks, just like
with human composers.

a quarter note of A4

a eighth note of A4

(eighth, A4)

(quarter, A4)

00···10,0000···0100

01···00,0000···0100

Fig. 1. The duration and pitch of each note, as extracted from MIDI files, are
encoded in a single (binary) one-hot vector, This is illustrated by the quarter
and eighth notes above, both of A4 pitch.

B. LSTM Neural Networks

Simple RNNs are inadequate for music composition as they
do not perform well with long-term dependency due vanishing
gradients[20]. This long-term dependency is necessary for
understanding musical motifs which often last beyond several
time steps. Our solution is to employ a more advanced type
of RNNs known as a long short-term memory (LSTM) neural
network, which also possess a memory cell with potentially
longer-term storage of data controlled by various gates. The
training details of our LSTM neural network will be discussed
in Section III.

C. Grammar Argumented Method

One problem plaguing neural network approaches to music
composition is that the music generated largly do not con-
form to basic principles of music theory. For instance, they
often have too many chromatic notes (excessive chromaticity),
overly large pitch intervals, and unharmonious melodies.

We propose a novel approach called the Grammar Ar-
gumented (GA) method that can significantly alleviate this
problem without any manual intervention (Fig. 2). The idea
is to augment the training data such that it also includes
machine-generated music that perfectly satisfies the principles
of music theory. To do so, the music generation is broken into
two phases, the first for generating training data that perfectly
conforms to criteria derived from music theory, and the second
for the actual musical output. In the first phase, a GA filtering
step is applied to the output, such that only melodies satisfying
the three grammatical rules described below can pass (as
amended data). The residual nonconforming data will be

abandoned by resampling. Next the amended data will be
added to the training data for retraining the machine before
the second phase of generation produces the actual output.

Inspired by music theory, we put forward three specific rules
for the GA filtering. The first rule is that the notes (after trans-
lation to C major) must belong to the C major diatonic scale
(DIA). While occassional chromaticity (presence of chromatic
notes C#, D#, F#, G#, and A#) can add extra color to a musical
piece, LSTM generated music without GA argumentation
contains too many chromatic notes and consequently sound
random and devoid of structure. The second rule is that the
pitch interval between two consecutive notes do not exceed
an octave, i.e. that of short pitch interval (SPI). Large jumps
in pitch usually sound disruptive and unlyrical, and we leave
their artful implementation to future work. The third rule is
that any three consecutive notes must belong to a triad (TRI).
Triads are pairs of pitch intervals representing chords, which
are of fundamental importance in musical harmony. There
are four types of triads, namely the major, minor, augmented
and diminished triads, each inducing a different emotional
response. Triads are furthermore the building blocks of all
seventh chords, which add sophistication to the composition.

III. EXPERIMENTS

Our model consists of one LSTM layer and one fully
connected layer. The LSTM layer includes 128 cells with input
dimension 89, the length of each note’s binary representation.
There are 89 nodes in the fully connected layer, which is
also the output layer. We build and train this model with
Keras[21], a high-level neural networks library.

This model was first trained with the original dataset with
the length of seed phrase set to 7 (notes). The loss stopped
decreasing after 400 epochs, and we label the resultant weights
as Orig. In the first phase of generation, we used Orig to
generate 100k notes for each GA rule and obtained 5759,
5217 and 7931 amended notes respectively. Each group of
amended data was then mixed with the original dataset to
produce three different sets of new training data. A fourth
set of new training data was obtained by mixing all these
three groups of data (MIX) with the original training data.
The model was then retrained with these new data, yielding
four new sets of weights labeled DIA, SPI, TRI, and MIX,
based on the GA rules they conform to. For statistics analysis,
we used a public random seed to generate 100k notes with all
five sets of weights, including Orig. Finally, the second phase
of generation was performed with these five sets of weights
to produce the actual output music.

IV. RESULTS AND EVALUATION

We first look at a representative segment from machine’s
full composition generated in MIX mode, which encompasses
all three GA rules. The music score of this segment is shown
in Fig.3. Evidently, the machine prefers notes in the C major
diatonic scale, with only one chromatic note (E-flat). There is
also some rudimentary use of repeating motifs, as appearing in
bars 3-4 and 10-12. The machine has also employed variations
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generating & 
amending notes with 

music theory

generating notes
(unamended)

Fig. 2. The GA method. First, we train the LSTM neural network with the original dataset (top). In the first phase of generation, each note is evaluated with
the GA rules from music theory, and each nonconforming note is replaced by a conforming note. The resultant amended data is next mixed with the original
dataset, and used to retrain the LSTM network. This network then composes the machine-created music output in the second phase of generation.

of rhythm in bars 3, 4, 6 and 12, reminiscent of actual songs.
On the whole, the segment is generally lyrical, consistent with
music in the dataset.

To quantitatively evaluate the music generated, we put
forward three metrics motivated by the GA rules based on
music theory (Section II-C). They are the percentage of notes
in the diatonic scale (pdia), percentage of pitch intervals within
one octave (pSPI ) and percentage of triads (ptri). These
metrics are generically applicable for all types of music, and
not just those defined by note-level encoding.

A. pdia

TABLE I
pdia (%) OF DATASET (DS) AND OUTPUTS FROM 5 MODES

DS Orig DIA SPI TRI MIX

C 8.9 6.6 11.7 8.6 6.2 10.8
D 7.8 6.4 12.1 7.9 4.9 9.4
E 9.1 7.5 14.5 9.2 7.8 11.7
F 7.6 7.3 8.2 7.9 7.4 7.4
G 7.0 5.2 10.0 7.3 5.0 8.3
A 6.6 5.4 9.8 7.1 4.7 8.5
B 8.0 7.5 8.6 8.1 6.9 7.9

Total (pdia) 54.8 45.9 75.0 56.1 42.9 64.0

Our results show that music generated in the DIA mode
indeed possess significantly more notes adhering to the dia-
tonic scale. From Table I, which displays the percentages of
each of the seven tones in C major diatonic scale, pdia is
29.1 percentage points higher in the DIA mode than in Orig,
where the DIA grammar rules have not been applied. Indeed
the DIA GA method can significantly decrease the occurence
of chromatic notes, even if the original dataset contain key
changes and depart significantly from the original diatonic
scale (as seen from its relatively low pdia). Incidentally,
the tonic note C is observed to have one of the highest
occurrences, in line with expectations from more advanced
music theory beyond the GA rules.

B. pSPI

TABLE II
1− pSPI (%) OF DATASET (DS) AND OUTPUTS FROM 5 MODES

DS Orig DIA SPI TRI MIX

1− pSPI 12.9 14.2 12.3 9.4 13.2 10.2

In Table II, we tabulate the percentage of pitch intervals
within an octave for all the various mode outputs. A high
pSPI percentage corresponds to a more lyrical composition.
Evidently, the SPI and MIX modes produces music with the
highest pSPI , such that there are about 30 percent fewer pitch
jumps larger than one octave than that of Orig mode, whose
data was generated before any GA rule has been applied.

C. ptri

TABLE III
ptri (%) OF DATASET (DS) AND OUTPUTS FROM 5 MODES

DS Orig DIA SPI TRI MIX

Major 2.3 2.2 2.3 2.4 7.9 5.8
Minor 2.1 2.0 2.3 2.1 7.7 5.6

Augmented 0.0 0.1 0.1 0.2 0.5 0.4
Diminished 0.2 0.3 0.4 0.5 1.3 1.1

Total (ptri) 4.6 4.6 5.1 5.3 17.4 12.9

Our results in Table III show that the music composed in the
TRI and MIX modes indeed contain more triads than the other
modes. ptri, the percentage of triads, is computed by counting
the total proportion of 3 consecutive notes assuming one of
the four types of triads. The TRI mode, in particular, generates
music within an almost fourfold increase in the number of
triads.

Note that the music composed in MIX mode perform well
under all three metrics. This suggests that the three GA rules
are not conflicting, but rather are complementary ingredients
for lyrical music. In addition, the MIX mode music has higher
pdia, pSPI and ptri than DS music. The high percentage of
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Fig. 3. An approximately 100-note segment of the machine’s composition. It was generated in MIX mode, which encompasses all three GA rules.

amended data (15.9%) can account for this result and we will
discuss it in future work. We emphasize that although some of
the training data satisfy these metrics perfectly by construction,
the final output music is generated purely by machine learning,
and without human intervention.

V. CONCLUSION

By themselves, simple LSTM neural networks cannot gen-
erate music that are appealing from the standpoint of music
theory. We addressed this problem through grammar argu-
mented method. Since the GA filters are applied to the training
data and not directly to the output, the latter is still generated
by a completely bona-fide machine learning approach. Our
note-level encoding method also allows a more authentic
emulation of human composers, as well as provide a natural
platform for implementing our grammar argumented method.
The generated music generally adhere well to music theory
according to the three major criteria we proposed.
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