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Abstract—This paper establishes a fully data-driven online
estimation method of Gaussian kernel parameters for a kernel
logistic regression. The kernel logistic regression is a nonlinear
classification model that effectively uses kernel methods, which
are one of the techniques to construct effective nonlinear systems
with a reproducing kernel Hilbert space (RKHS) induced from a
positive semi-definite kernel. Since a performance of the kernel
logistic regression with RKHS depends on the kernels to build the
model, it is important to select appropriate kernel parameters.
In this paper, we propose a method to optimize the precisions
(the preciprocal of the variance) at learning for the kernel
logistic regression using Gaussian kernels. In addition, the kernel
means are also updated to increase the generalization ability.
For up to date method of kernel coefficients, we introduce
ℓ1-regularization to supress the number of support vectors. A
numerical experiment supports the validity of the proposed
method.

I. INTRODUCTION

Machine learning is a technology for classifying or pre-
dicting unknown data based on observed data. In particular,
supervised learning is a method for estimating labels from
unknown data using pairs of an example data and the cor-
responding label. There are numerous research results on
supervised learning. A representative example of machine
learning method is the RBF support vector vachine (RBF-
SVM) [1] using the kernel method [2]. The potential advantage
of kernel method is that a linear method can be directly applied
to a nonlnear mapping of an input signal. Thus, innner product
on hish-dimensional space to which this mapping belongs to
cannnot be calculated explicitly, however, it can be calculated
with a kernel function by transferring high-dimensional space
to a reproducing kernel Hilbert space (RKHS). It is known
that Gaussian kernel, which is one of the representative
kernel functions, can express continuous functions with high
accuracy [3]. RBF-SVM achieves high estimation performance
by expressing ability of nonlinear identification boundary and
generalization ability based on geometric margin maximization
[4], [5], [6], [7]. However RBF-SVM has a problem that the
posterior probability of the class can not be obtained, and it
can be used for two-class problems by nature.

On the other hand, a classical method which is widely
used as a binary classifier is Logistic Regression (LR) [8].
It has been reported [9] that the kernel logistic regression
(KLR) combining LR with a kernel function has the same
discrimination performance as SVM. It is thus a powerful and
flexible nonlinear classification model [10], [11], [12], [13]. As
well as LR, KLR has the advantage of obtaining the posterior

probability of the class, and it is easy to extend to multiple
classes.

The composition of kernel logistic regression is expressed
by the sum of weighted kernels corresponding to feature
vectors of the training set. Therefore, since the discrimination
performance for the training set is strengthened, they arises a
problem of causing over learning. To solve this problem, many
KLRs use an ℓ2-regularization to suppress over-learning [10],
[11], [12]. Moreover, using an ℓ1-regularization, it is possible
to construct a more sparse model [14].

In order to improve the estimation ability, selection of
kernel parameters is one of the important issues. The Gaussian
kernel is a widely used powerful kernel function for the
KLR. The parameters of the Gaussian kernel is the kernel
precision and mean. When using the Gaussian kernel for the
kernel function of KLR, the kernel precision and the kernel
mean are parameters. In the conventional KLR, the kernel
precision is treated as a hyper parameter, and the kernel
mean is identical to a sample in the training data [10]. In
the classification problem, the kernel precision is generally
determined by grid search. In the context of kernel adaptive
regression, a method of updating the kernel precision [15] and
a method of updating the kernel mean [16], [17], [18] have
been proposed. Furthermore, a method of integrating these
methods and simultaneously optimizing both the precision and
the mean of the kernel has been proposed [19]. These methods
are fully data-driven, and thus, the search in a finite set of
points in the grid is no longer necessary. However, this method
is applied only to on-line learning in regression models, and
application methods to classification models have not been
established.

In this paper, we propose a fully data-driven method for
learning parameters of the Gaussial kernel in the KLR. In
addition, to update the kernel coefficients, we use an ℓ1-
regularization and prevent over-learning by constructing a
sparse model. Numerical experiments support the efficacy of
the proposed method. For the experiment, we use 18 datasets
of binary classification available in UCI Machine Learning
Repository [20]. We verify the effectiveness of the proposed
kernel optimization method by comparing the classification
performance of RBF-SVM and the proposed method.
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TABLE I
DEFINITIONS OF SYMBOLS

N Number of training set
i Index for element of training set
j Index for element of support vectors that constitute a

model
k Number of current learning iteration
x∈Rm m-dimensional feature vector
y∈{0,1} True value of the class label to which the feature vector

x belongs
ŷ∈{0,1} Predicted value of the class label to which the feature

vector x belongs
f(·) Sum of weighted feature vectors or weighted kernels
h Kernel coefficient
ϕ(·) Activation function
K(·,x) Kernel function

II. KERNEL LOGISTIC REGRESSION AND SUPPORT
VECTORS

In this section, we describe the kernel logistic regression
and a construction method of support vectors using ℓ1-
regularization for describing the proposed method. Table I
shows definitions of symbols used for explanation.

A. Kernel logistic regression in RKHS

Kernel logistic regression is a model extended by introduc-
ing the kernel method [2], [21] into LR in order to solve
nonlinear classification problem. In the construction of LR,
the following sigmoid function:

ϕ(f(x))=
1

1+exp(−f(x))
(1)

is defined as an activation function, where f(x) is expressed
by the inner product of the feature vector and the weight vector
w as:

f(x)=w⊤x. (2)

Let the f(x) be the elements in RKHS when extending LR
to KLR. By representer theorem [2], f(x) is described as:

f(x)=
N∑
i=1

h(i)K
(
x,x(i)

)
. (3)

In KLR, the output of Eq. (1) is regarded as the probability
P (y=0|x) that the feature vector x is classified to the class
label y=0. Therefore, the probability P (y=0|x) is given by:

P (y=0|x)= 1

1+exp(−f(x))
. (4)

On the other hand, the probability P (y=1|x) is given by:

P (y=1|x)=1−P (y=0|x)

=
exp(−f(x))

1+exp(−f(x))
. (5)

These probabilities are the model outputs of KLR. Thus, KLR
is a model that inputs a feature vector and outputs classification
probabilities. In this paper, we define the following classifica-
tion rules to treat KLR as classifier:

ŷ=argmax
l∈{0,1}

P (y=l|x). (6)

By using Eq. (6)as a model predicted value of class label,
KLR can be applied in the binary classification.

For parameter learning of KLR, cross-entropy which is the
log-likelihood of the Bernoulli distribution is adopted as cost
function:

J=− 1

N

N∑
i=1

[
y(i)log(ϕ(f(x)))+(1−y(i))log(1−ϕ(f(x)))

]
.

(7)
The fitting of KLR is equivalent to the minimization problem
of the cost function [22]. In this case, the kernel coefficient h
is a updated parameter.

B. Construction method of support vectors using ℓ1-
regularization

As can be seen in Eq. (3), the input of the activation function
is expressed as the sum of the kernels determined by the
feature vectors of all the training data. It means that larger
the number N of training set is, the higher the calculation
cost is. Therefore, a method of constructing a sparse model
by deleting unimportant terms in the sum of the kernels has
been proposed. Here we call the kernel functions that construct
the model as support vectors and describe construction method
using ℓ1-regularization for the support vectors.

Define the data index set of the support vectors as:

J :={j1,j2,...,jr}⊂{0,1,...,N−1}, (8)

the support vectors are a set of kernel functions expressed as{
K(·,x(j))

}
j∈J

. Therefore, Eq. (3) can be expressed as:

f(x)=
∑
j∈J

h(j)K
(
x,x(j)

)
. (9)

In the [14], an ℓ1-regularization term is added into the cost
function to promote the sparsity. The cost function in this case
is given as:

Jℓ1=J+λ
∑
j∈J

∣∣∣h(j)
∣∣∣, (10)

where λ is the regularization parameter. To minimizing this
cost function, we can apply the foward-backward splitting
method (FOBOS) [14], since Eq. (10) is a convex function.
The update rule is then given as:

h
(j)
k+1=sign

(
α
(j)
k

)[∣∣∣α(j)
k

∣∣∣−ληh]
+
, (11)

where

α
(j)
k =h

(j)
k −ηh

∂J(h)

∂h

∣∣∣∣
h=h

(j)
k

.

Also, ηh is a learning rate for the kernel coefficient h and k is a
number of current learning iteration, respectively. If h(j)

k+1=0,
K(·,x(j)) is removed from the set of support vectors.
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16WELCOME PRESENTATION /

提案手法によるパラメータ更新
カーネル幅更新の課題 
LMS を用いて直接     を更新すると 
制約条件を満たせない可能性がある 

解決方法 
現在のカーネル幅     による正規化を伴う全単射 
により制約条件下で更新できる

10

h, ⇣, c

カーネル幅は正の実数でなければならない

⇠ = log (⇣/⇣k)⇣k

⇠

⇠k

⇠k+1

1.      を      に変換 
2.      を         に更新 
3.         を逆変換し        を取得

⇣k ⇠k

⇠k ⇠k+1

⇠k+1 ⇣k+1

[Wada et al., APSIPA, 2017]

⇣

⇣k ⇠ = log (⇣/⇣k)

⇠

⇠k

⇠k+1

⇣k+1

⇣k ⇣
⇣k ⇠k

⇠k ⇠k+1

⇠k+1 ⇣k+1

0

⇠ = log

⇣

⇣k

Fig. 1. Update image of ζ in R+ by variable transformation. Transform ζk
to ξk and update it to ξk+1. Then inverse transform ξk+1 to ζk+1.

III. OPTIMIZATION OF KERNEL PARAMETERS FOR KLR
FITTING

A widely-used kernel funciton is the Gaussian kernel which
is a celebrated example of positive semi-definite kernels. With
the Gaussian kernel, a set of support vectors is represented for
j∈J as:

K
(
·,x(j)

)
=exp

(
−ζ
∥∥∥·−x(j)

∥∥∥2), (12)

where ζ and x(j) are the parameters called the precision
and the mean of the Gaussian kernel function, respectively.
In this section, we propose a method to optimize both the
precisions and the means at fitting the KLR using the Gaussian
kernel. By the proposed method, the precisions and the means
are optimized simultaneously when the update of the kernel
coefficients to increase the generalization ability. For learning
of kernel coefficients, we introduce an ℓ1-regularization to
reduce the number of support vectors.

In the proposed fitting method, the kernel mean is updated.
Therefore, the kernel mean represented as Eq. (12) can be
different from the feature vector x of the training set. Fur-
thermore, in the proposed method, the kernel precision of the
support vector is regarded as a variable. Therefore, in the
proposed method, the sum f(x) of kernel functions can be
expressed as:

f(x)=
∑
j∈J

h(j)K
(
x,x(j);ζ

(j)
k

)
=
∑
j∈J

h(j)exp

(
−ζ(j)k

∥∥∥x−c(j)k

∥∥∥2), (13)

where ζ
(j)
k and c

(j)
k are the kernel precision and kernel mean

regarded as variables, respectively.

A. Updating the kernel precisions

The kernel precision ζ must be an element of a manifold of
the positive real numbers, which is denoted by R+. When
applying the steepest descent (SD) method [23] which is
an algorithm for optimization problem directly, the kernel

precision is updated in R. In order to avoid this constraint,
the proposed method converts to an optimization problem in
R given by:

ξ(ζ)=log
ζ

ζk
, (14)

where ζk is the current estimate value at the kth update
[19]. Fig. 1 shows the updating procedure by the variable
transformation. After the transformation, by the SD method,
the update rule for ξ is given for j∈J as:

ξ
(j)
k+1=ξ

(
ζ
(j)
k

)
−ηξ

∂J(ζ)

∂ξ

∣∣∣∣
h=h

(j)
k ,c=c

(j)
k ,ζ=ζ

(j)
k

=log

(
ζ
(j)
k

ζ
(j)
k

)
︸ ︷︷ ︸

=0

−ηξ
∂J(ζ)

∂ξ

∣∣∣∣
h=h

(j)
k ,c=c

(j)
k ,ζ=ζ

(j)
k

=−ηξζ(j)k

∂J(ζ)

∂ζ

∣∣∣∣
h=h

(j)
k ,c=c

(j)
k ,ζ=ζ

(j)
k

, (15)

where

∂J(ζ)

∂ζ

∣∣∣∣
h=h

(j)
k ,c=c

(j)
k ,ζ=ζ

(j)
k

=

1

N

N−1∑
i=0

[
y(i)−ϕ

(
f(x(i))

)]
h
(j)
k K(x

(i),c
(j)
k ;ζ

(j)
k )
∥∥x(i)−c(j)k

∥∥2,
(16)

and ηξ is a learning rate for ξ. By the normalization, ξ=0 is
the reference point for updating ηξ. Therefore, ζ can be update
stably even if it is small. By the inverse transformation given
as ζ(ξ)

∣∣∣ξ=ξ
(j)
k+1

=ζ
(j)
k+1, the update rule for ζ is obtained as:

ζ
(j)
k+1=ζ

(j)
k exp

(
ξ
(j)
k+1

)
. (17)

B. Updating the kernel means

The kernel mean c of each support vector is updated to
minimize the cost function as Eq. (7). By the SD method, the
update rule for c is obtained for j∈J as:

c
(j)
k+1=c

(j)
k −ηc

∂J(c)

∂c

∣∣∣∣
h=h

(j)
k ,c=c

(j)
k ,ζ=ζ

(j)
k

, (18)

where

∂J(c)

∂c

∣∣∣∣
h=h

(j)
k ,c=c

(j)
k ,ζ=ζ

(j)
k

=

− 2

N

N−1∑
i=0

[
y(i)−ϕ

(
f(x(i))

)]
h
(j)
k ζ

(j)
k K(x

(i),c
(j)
k ;ζ

(j)
k )(x(i)−c(j)k ),

(19)

and ηc is a learning rate for c.
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Algorithm 1 Model fitting of the KLR-PM

Input: Training set {(x(i),y(i))}i∈{0,1,···,N−1}
Output: Support vectors {K(·,c(j);ζ(j))}j∈J and corre-

sponding coefficients {h(j)}j∈J and
// Set
ℓ1-regularization parameter λ;
Learning rate for coefficient ηh, for kernel precision after
transformation ηξ and for kernel mean ηc;
Number of maximum learning epoch kmax;
// Initialize
J0←{0,1,···,N−1};{
c
(j)
0

}
j∈J0

←{x(i)}i={0,1,···,N−1};{
ζ
(j)
0

}
j∈J0

←{1,···,1};{
h
(j)
0

}
j∈J0

←{1,···,1};
// Learn
k←0
while k ̸=kmax do

Update
{
ζ
(j)
k

}
j∈Jk

to
{
ζ
(j)
k+1

}
j∈Jk

by (15), (17);

Update
{
c
(j)
k

}
j∈Jk

to
{
c
(j)
k+1

}
j∈Jk

by (18);

Update
{
h
(j)
k

}
j∈Jk

to
{
h
(j)
k+1

}
j∈Jk

by (22);

Jk+1←{};
for j∗∈Jk do

if h(j∗)
k+1=0 then

Remove ζ
(j∗)
k+1 from

{
ζ
(j)
k+1

}
j∈Jk

;

Remove c
(j∗)
k+1 from

{
c
(j)
k+1

}
j∈Jk

;

Remove h
(j∗)
k+1 from

{
h
(j)
k+1

}
j∈Jk

;

else
Jk+1←Jk+1∪{|Jk+1|};

end if
end for
k←k+1;

end while
Output Support vectors {K(·,c(j);ζ(j))}j∈Jk−1

and corre-
sponding coefficients {h(j)}j∈Jk−1

C. Fitting the KLR

Before starting the process, the proposed method constructs
a set of support vectors based on the feature vectors of training
set for j∈J0 as follows:

K
(
·,c(j)0 ;ζ

(j)
0

)
=K
(
·,x(j);ζ

(j)
0

)
, (20)

where
J0={0,1,...,N−1}. (21)

In the fitting of KLR, we combine the update methods for
the parameters in III-A and III-B into the kernel coefficient
update method with the ℓ1-regularization described in II-B.
It is possible to reduce the number of support vectors and

TABLE II
THE LIST OF DATASETS FOR THE EXPERIMENT

Dataset features samples ratio of labels
Australian Credit Approval 14 690 383:307
Breast Cancer Wisconsin 9 683 444:239
Climate Model Simulation
Crashes

18 540 46:494

Cryotherapy [24], [25] 6 90 42:48
Diabetic Retinopathy Debre-
cen

19 1151 540:611

German Credit Data 24 1000 700:300
Haberman’s Survival 3 306 225:81
Heart 13 270 150:120
Immunotherapy [24], [25] 7 90 19:71
Ionosphere 34 351 225:126
MONK’s-1 6 432 216:216
MONK’s-2 6 432 290:142
MONK’s-3 6 432 204:228
Parkinsons 22 195 48:147
Sonar, Mines vs. Rocks 60 208 97:111
SPECT Heart 22 267 55:212
SPECTF Heart 44 267 55:213
Blood Transfusion Service
Center

4 748 570:178

optimize the kernel parameters. The support vectors and the
kernel coefficients are constructed for j∈J as follows:

h
(j)
k+1=sign

(
α
(j)
k

)[∣∣∣α(j)
k

∣∣∣−ληh]
+
, (22)

where

α
(j)
k =h

(j)
k +ηh

∂J(h)

∂h

∣∣∣∣
h=h

(j)
k ,c=c

(j)
k ,ζ=ζ

(j)
k

=h
(j)
k +ηh

1

N

N−1∑
i=0

[
y(i)−ϕ

(
f
(
x(i)

))]
K
(
x(i),c

(j)
k ;ζ

(j)
k

)
.

When h
(j)
k+1≈0, remove K

(
·,c(j)k+1;ζ

(j)
k+1

)
from the set of sup-

port vectors. The KLR which is applied these update methods
is named KLR-PM. The all of procedures are summarized in
Algorithm 1.

IV. NUMERICAL EXPERIMENTS

In order to verify the effectiveness of the proposed method,
a numerical experiment is presented by using 18 datasets
of binary classification published by UCI Machine Learning
Repository [20]. Table II shows the datasets used for the
experiment. For each dataset, half of the dataset are randomly
selected for training and the rest are for test. And each
dimension of the feature vector is normalized in the range
of [0, 1] using the minimum value and the maximum value of
the training set.

The models to be compared are the RBF-SVM [1], the LR
[8] using an ℓ2-regularization and the proposed KLR-PM. The
ℓ1-regularization parameter λ of KLR-PM is set as λ = 0.005
in all datasets. On the other hand, the kernel precision γ in the
Gaussian kernel, the trade-off parameter C in RBF-SVM and
the ℓ2-regularization parameter in LR are respectively tuned
by grid search over the range {0.0001, 0.001, 0.01, 0.1, 1, 10}.
For adjusting the grid search, the five-fold cross validation
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TABLE III
ACCURACIES AND SPARSITIES OF (MEAN ± STD.) OF EACH COMPARED MODEL. THE BEST ACCURACIES AND SPARSITIES ARE HIGHLIGHTED.

Accuracy ± STD. Sparsity ± STD.
Dataset KLR-PM RBF-SVM LR KLR-PM RBF-SVM
Australian Credit Approval 0.854± 0.0170 0.840± 0.0179 0.747± 0.0746 0.787± 0.0165 0.341± 0.146
Breast Cancer Wisconsin 0.969± 0.00859 0.965± 0.00745 0.970± 0.0108 0.657± 0.0225 0.790± 0.0972
Climate Model Simulation Crashes 0.917± 0.0138 0.950± 0.0159 0.917± 0.0131 0.922± 0.00777 0.763± 0.105
Cryotherapy 0.86± 0.027 0.86± 0.043 0.57± 0.12 0.26± 0.052 0.50± 0.086
Diabetic Retinopathy Debrecen 0.678± 0.0284 0.701± 0.0202 0.532± 0.0122 0.942± 0.00798 0.315± 0.0147
German Credit Data 0.728± 0.0202 0.749± 0.0145 0.700± 0.0166 0.977± 0.0044 0.409± 0.0306
Haberman’s Survival 0.736± 0.0359 0.734± 0.0319 0.737± 0.0312 0.873± 0.0252 0.445± 0.078
Heart 0.817± 0.0261 0.822± 0.0254 0.619± 0.139 0.647± 0.0169 0.470± 0.0727
Immunotherapy 0.80± 0.036 0.79± 0.045 0.80± 0.033 0.43± 0.17 0.49± 0.11
Ionosphere 0.933± 0.0245 0.940± 0.0102 0.646± 0.0347 0.514± 0.0198 0.429± 0.0334
MONK’s-1 0.822± 0.0272 0.846± 0.0445 0.610± 0.0805 0.694± 0.0258 0.467± 0.027
MONK’s-2 0.675± 0.0228 0.757± 0.0235 0.663± 0.0178 0.888± 0.015 0.215± 0.215
MONK’s-3 0.946± 0.0128 0.962± 0.0117 0.621± 0.0982 0.620± 0.0173 0.517± 0.0927
Parkinsons 0.89± 0.033 0.89± 0.025 0.75± 0.018 0.53± 0.036 0.39± 0.24
Sonar, Mines vs. Rocks 0.809± 0.0508 0.803± 0.0669 0.536± 0.0509 0.603± 0.0295 0.251± 0.184
SPECT Heart 0.832± 0.0229 0.828± 0.0251 0.800± 0.0245 0.886± 0.0120 0.193± 0.211
SPECTF Heart 0.792± 0.0246 0.791± 0.0269 0.796± 0.0254 0.841± 0.0699 0.491± 0.107
Blood Transfusion Service Center 0.766± 0.0205 0.768± 0.0251 0.754± 0.0162 0.944± 0.0153 0.499± 0.0214
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Fig. 2. Accuracies and sparsities shown in Table III are displayed as bar graphs. And STDs are indicated by error bars.

with two subsets is used. One subset is used for validation and
the remaining subset is used for training For the evaluation, a
mean accuracy and a mean sparsity by taking an average over
10 independent realizations are adopted. The accuracy and the
sparsity are calculated by:

Accuracy = 1− 1

Ntest

Ntest∑
i=1

y(i) ⊕ ŷ(i), (23)

Sparsity = 1− nsup

N
, (24)

where ⊕ is the operator that describes the exclusive-OR
(XOR). Also, Ntest and nsup are a number of test set and
a number of support vectors, respectively.

Table III and Fig. 2 show the results of experiment. It can
be seen in Table III and Fig. 2(a) that the accuracies of the
KLR-PM achieved almost comparable accuracies to the RBF-
SVM, which had parameter tuning using grid search. However,
it should be emphasized that the sparsities of the KLR-PM are

mostly higher than those of the ohter method in most datasets,
as confirmed in Table III and Fig. 2(b). Therefore, KLR-PM
can construct a classifier which has generalization performance
as high as RBF-SVM with a small number of support vectors.

V. CONCLUSION

We proposed a new kernel optimization method for Kernel
logistic regression. Our proposal method updated not only the
kernel coefficients, but also the kernel precisions and the kernel
means from training set. By using the ℓ1-regularization for
update of the kernel coefficients, it is possible to constitute a
sparse model. The numerical experiment for various datasets
demonstrated the effectiveness of the proposed method.
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