
 

 

Abstract— This paper proposes the use of deep learning 

classification for acoustic monitoring of an industrial process. 

Specifically, the application is to process sound recordings to detect 

when additional air leaks through gaps between grate bars lining 

the bottom of the sinter strand pallets, caused by thermal cycling, 

aging and deterioration. Detecting holes is not possible visually as 

the hole is usually small and covered with a granular bed of 

sinter/blend material. Acoustic signals from normal operation and 

periods of air leakage are fed into the basic supervised 

classification methods (SVM and J48) and the deep learning 

networks, to learn and distinguish the differences. Results suggest 

that the applied deep learning approach can effectively detect the 

acoustic emissions from holes time segments with a minimum 79% 

of accuracy.  

Index Terms—Acoustic monitoring, Deep learning, Supervised 

machine learning, Sintering plant 

I. INTRODUCTION 

Acoustic monitoring has a wide range of applications from 

whale migration tracking [1], to intrusion detection [2] and 

health assessment [3] due to its non-intrusive nature and the 

limitations of the other types of signals such as video and 

thermal signals under particular circumstances. Industrial 

applications of acoustic monitoring also cover a wide range of 

machineries and environments, from agricultural cutting 

machinery [4], to corrosion and aging monitoring of valves and 

pipes [5].  It is said that acoustic condition monitoring is one of 

the most efficient strategies for identifying maintenance 

requirements in industry [6].  

Continuous monitoring of industrial machinery and 

detecting, or predicting, associated faults and hazards, can 

significantly decrease maintenance and operational costs. 

Acoustic monitoring is used in the steel industry for applications 

such as temperature monitoring of slide gate plates, monitoring 

of the temperature inside a lining of a metallurgical vessel and 

Radio Frequency IDentification (RFID) tagging of slag ladles 

[7]. In this study, the application of acoustic monitoring within 

an iron ore sintering plant is proposed and evaluated using deep 

learning methods. 

Iron ore sintering is a thermal agglomeration process, 

utilising a blend of fine materials (iron ores, fluxes, solid fuels, 

etc) to produce sinter of specified metallurgical quality and 

strength.  Sinter is one of the main burden materials charges into 

a blast furnace.  

The sinter blend is distributed onto a travelling grate made up 

of steel pallets (Figure 1), the bottom consisting of steel grate 

bars. The top surface of the granular bed is ignited and air drawn 

downwards, under suction. As the solid fuel combusts and the 

air pulls the reaction zone (or flame front) down through the bed, 

the energy generated partially melts the sinter blend, which in 

turn, helps to bond the constituent materials together. Under 

normal conditions, this air generates a stationary and relatively 

low frequency (2-5 kHz) noise. However, as the travelling 

pallets (and grate bars) undergo repeated heating and cooling, it 

is difficult to maintain the tight gap tolerances between bars. As 

gaps between bars increase, additional air is drawn through 

them, generating a slightly high-pitched whistle sound (6-8 

kHz).  

 
a) 

 

b) 

 

Figure 1: a) Sinter strand, with two spare pallets on the side b) Detail showing 

strand made up of individual pallets. Each pallet has two sets of two wheels on 
each side, identified by a unique number. 
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Detection of this condition (and additional air leakage) is 

crucial for process control and energy efficiency.  As the grate 

bars are covered with material, they are not visually accessible; 

hence, this deformation monitoring is very challenging and 

image processing techniques are not applicable. 

In this paper a deep learning approach is proposed and 

compared with the standard machine learning approaches, 

which are based on feature extraction, training and supervised 

classification. Raw, short-term, time-frequency signals are fed 

into a Recurrent Neural Network (RNN) [8] as the applied deep 

learning tool. Support Vector Machine (SVM) [9] and J48 [10] 

pruned decision tree classifiers are also applied to the derived 

features as basic machine learning methods. 

The remainder of this paper is organised as follows. Section 

II describes the main blocks to a supervised acoustic monitoring 

system. Section III and Section IV are dedicated to the process 

of the feature extraction from the raw signals (where needed). 

The classification results are presented in Section V and the 

paper is concluded in Section VI. 

II. SUPERVISED CLASSIFICATION OF SINTER PLANT NOISE 

 

The classic process of acoustic classification consists of three 

main stages: Data collection (sinter plant recordings); feature 

extraction; and supervised classification using a trained 

classifier [11]. To train the classifier, a hand-labelled database 

of recorded signals for each class (e.g. “W” for Whistle and “R” 

for Regular) is required. A fraction (e.g. 50%) of the data are 

used as the training set to produce the trained classifier as shown 

in Figure 2.  

The recorded signal 𝑥(𝑛), is mathematically modeled as 

𝑥(𝑛) = 𝑎(𝑛) + 𝑤(𝑛) + 𝑣(𝑛),                              (1) 

where 𝑛 denotes the discrete time index,  𝑎(𝑛) is the stationary 

air noise and 𝑤(𝑛) and 𝑣(𝑛) represent the air-leakage (whistle) 

and the background noise respectively. The time-frequency 

domain representation of the signal is 

𝑥(𝑛, 𝑘) = 𝑎(𝑛, 𝑘) + 𝑤(𝑛, 𝑘) + 𝑣(𝑛, 𝑘),                              (2) 

where 𝑛, 𝑘 are the time and frequency indices, 𝑎(𝑛, 𝑘) is the 

time-frequency representation of the stationary air noise, 

𝑤(𝑛, 𝑘) is the occasionally occurring whistle noise and 𝑣(𝑛, 𝑘) 

is the background noise consisting of the mechanical noise and 

other process related sounds.  

 

 
Figure 2: Supervised classification 

 
a) 

 
b) 

 
 

Figure 3: Preliminary signal analysis: a) Magnitude spectrum of the regular air 
noise (two minutes) b) Magnitude spectrum of the whistle noise (two minutes), 

NFFT=1024,𝑓𝑠=44100 . 

Here, the deep learning classifier is trained on time-frequency 

representations of the sintering plant noise (𝑥(𝑛, 𝑘)) and the 

extracted acoustic features of the recorded signal (𝑥(𝑛)).  The 

(2) is obtained using a Fast Fourier Transform (FFT) applied to 

rectangular windowed time frames of length 𝑁𝐹𝐹𝑇.  

As it was observed through preliminary experiments (Figure 

3), the air leakage noise (the whistle) results in higher amplitude 

peaks in the magnitude spectrum of (2) around 6 to 8 kHz 

(Figure 3(b)) compared to the magnitude spectrum of regular air 

noise (Figure 3(a)). It can also be observed that the magnitude 

spectrum of the whistle noise generally has a number of 

additional peaks compared to the regular air noise. These 

differences indicate the potential to detect the presence of the 

whistle, based on classifying the spectra or derived features.    

It was also observed that the process air and air leakage noises 

do not have constant absolute amplitudes; depending on the 

material laid on the pallets, temperature and the pallets 

conditions, the whistle and the regular air noise may change (in 

terms of the amplitude and the frequency). However this change 

is not sudden and happens slowly.  

III. DISCRIMINATIVE FEATURES OF SINTER PLANT 

RECORDINGS 

Based on the observations of Section II, two classification 

approaches are considered. First, using the ratio of the power 

corresponding to the whistle band (6 - 8 kHz) to the power of 

the full band signal (0 kHz- 22 kHz) as a discriminative feature 

[12] within machine learning-based classifiers. 

Frame i Classifier Frame i Label i 

Training 
set 
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Figure 4: Band-power feature over time (2000 frames) of a whistle and a 

regular noise 

Second, using the raw time-frequency spectrograms as input to 

the deep learning classifiers (RNN). In other words the deep 

learning classifier is applied to distinguish and learn the 

differences between the two classes of signals. 

 

 Band-Power Ratios  

The band-power features (3) [12] are applied as the 

discriminative feature in order to detect the time-segments with 

unusual power distribution.  

 

𝐹 =
∑ |𝑋(𝑛, 𝑙)|2𝑙∈𝑤𝑖

∑ |𝑋(𝑛, 𝑘)|2𝑁−1
𝑘=0

, 
(3) 

 

where 𝑤𝑖  is the set of power spectrum samples belonging to the 

i-th band within the whistle frequency range. In this study, the 

target band (𝑤𝑖) from (2) is 6 - 8 kHz, the total band width is 22 

kHz and (3) is calculated once per time frame (1024 samples). 

Figure 4 shows the band-power feature extracted for one whistle 

and one regular recording. The band-power is calculated for 

every 1024 samples (one window length) at 44100 sampling 

rate. As shown, the power of the target band increases 

significantly (up to 0.2) when there is air leakage whereas in 

normal (regular) situations, the band-power of the target band 

(6 - 8 kHz) is a lower value (around 0.02). 

 

 Time-Frequency Spectrograms 

Rather than deriving features for each time-frame, the 

spectrogram can be used as the input to a classifier, as used in 

other acoustic scene classification applications [13]. The 

spectrogram is formed from the sequence of frame-based 

magnitude spectra calculated in (2). Figure 5 shows the 

spectrogram derived for one minute of a whistle and non-whistle 

(regular) recording at the sinter plant.  

a) 

 
b) 

 
Figure 5: a) Spectrogram of one segment of the regular signal, b) Spectrogram 

of one segment of the whistle signal 

 

In order to apply a deep learning method on the raw time-

frequency signals, the FFT (4) of each window is calculated and 

the vector of 𝑁𝐹𝐹𝑇  real values are applied as the feature for each 

frame. 

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑒−𝑖𝜔𝑘𝑛𝑁𝐹𝐹𝑇−1
𝑛=0                                          (4) 

where 𝜔 =
2𝜋𝑘

𝑁𝐹𝐹𝑇
 for 𝑘 = 0,1, … , 𝑁𝐹𝐹𝑇 − 1. The feature vector 

for each frame Figure 5 is the magnitude of  

{𝑋(0), . . , 𝑋(𝑘), …𝑋(𝑁𝐹𝐹𝑇 − 1)} from (4). The FFT vectors are 

then averaged (5) and hand-labelled across time for each 

segment 𝑇𝑗 (one minute) of the recording to obtain one vector. 

This decision making interval (one minute) is chosen based on 

the pallet movement speed and the monitoring requirements 

advised by the industrial experts familiar with the sintering 

process. 

�̅�(𝑗) = ∑
𝑋(𝑘)

𝑇𝑗
.

𝑇𝑗

 

 

 

 

 

   (5) 
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IV. APPLIED MACHINE LEARNING TECHNIQUES 

 

The following machine leaning techniques are applied to the 

extracted features and signals described in Section III. The goal 

is to obtain the classification results for each classifier-feature 

combination for the same dataset and compare the effectiveness 

of the methods and features. 

 Support Vector Machine 

A Support Vector Machine (SVM) [9] is applied as the basic 

binary classifier. The problem is modeled as  

 

G⃗⃗ . x⃗ − b = ±1   for two classes,                         (6) 

where G⃗⃗ . x⃗ − b = ±1   represents two hyperplanes covering two 

classes and G⃗⃗  is the weightings. The vector x⃗  is the feature vector 

from (3) and    (5). It is noteworthy in the case of using the band-

power as the feature that the two hyperplanes are actually two 

half-lines and the margin between the two classes is a point 

picked by the algorithm based on the data distribution (simply a 

threshold).  

 J48 pruned decision tree 

J48 (also referred to as  C4.5) [10] data mining algorithm uses 

the training set to build decision trees based on information 

entropy. A J48 tree is built similar to any other decision tree by 

finding the best splitting attribute however in order to address 

the outliers and overfitting issues a pruning process is added. 

Pruning is carried out from the leaves to the root. The J48 

method is briefly explained in Figure 6. 

 Deep learning for spectrogram classification 

Recurrent Neural Network (RNN) with a large number (more 

than 100) of hidden layers is applied as deep learning tool. The 

RNN considers the current input and the past state of the hidden 

layer for decision making (classification). In other words the 

hidden layer (state) at each time, 𝑡 is a function of the current 

input and the past state. 

 

ℎ(𝑡) = ∅(𝑉 × 𝑖(𝑡) + 𝑈 × ℎ(𝑡 − 1)).                              (7) 

where ℎ(𝑡) is the current state of the hidden network, ∅(. ) is the 

logistic sigmoid function and describes the dynamic to adjust 

the significance of the current input and the past state [14] 

characteristics of the RNN, 𝑥(𝑡)  the current input and ℎ(𝑡 − 1) 

the previous hidden state. 𝑊 and 𝑈 are the applied weightings 

as illustrated in Figure 7 and Table 1.  

 

J48 algorithm 

1. The potential information is calculated for every attribute 

2. The best attribute resulting in the highest gain in information 

is chosen for branching 

3. The tree is generalised by removing the specialised branches 

caused by the training set 

Figure 6: J48 algorithm 

 
Figure 7: RNN recurrent hidden layer 

Table 1 

RNN network architecture 

Quantity Value/Method 

Number of the hidden layers 150 

Maximum number of training 

iteration 

1000 

Deep learning algorithm 

 

Levenberg-Marquardt 

Adaption learning function Gradient descent with 

momentum weight and bias 

 

Neural network transfer 
function 

Hyperbolic tangent 
sigmoid transfer function 

Table 2 

Experimental setup 

Symbol Quantity Value/Method 

T Segment length 60 s 

𝑓𝑠 Recording Sampling 

frequency 

44100 

𝑁𝐹𝐹𝑇 Number of the frequency 
bins 

1024 

W Window length 1024 samples 

23ms 

 Window type Rectangular 

𝑁𝑂𝑣 Overlap 50% 

512 samples 

V. EXPERIMENTAL STUDIES 

In this section the recorded signal, feature extraction, training 

and evaluation process are described. The classification results 

are presented for each classifier and feature. Deep learning 

method (RNN) is applied to learn the difference between the 

raw time-frequency signals and distinguish the whistle and 

regular segments. 

 Experimental setup 

132 minutes (Figure 8), 341085 window lengths of the 

sintering plant noise is recorded by a 130A24 PCB water and 

dust resistant microphone [15]. The spectrograms and the band-

power features calculated for each window (1024 samples  

 

i 

o 

h V 

U 
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a) 

 
b) 

 
Figure 8: Spectrum data set for each class. a) 40 whistle segments b) 92 

regular segments 

which translates to 23ms at 44100 kHz sampling rate) are 

calculated and stored. As the noise is stationary and changes do 

not occur suddenly, the spectrograms and the band-power 

features are averaged for each segment (one minute worth of 

signal) and hand labelled. 50% (66 minutes) of the labelled 

segments are randomly chosen and used for training a J48 

pruned decision tree, an SVM classifier and a deep learning 

RNN with 150 hidden layers (Table 1 and Table 2). The other 

50% of the data are unseen by the classifiers and are applied for 

evaluation (25% for validation and 25% for testing). This 

process is repeated 10 times (in order to cancel the effect of the 

randomly chosen training and evaluation sets) and the averaged 

results are presented in this section. 

 Classification results 

Having a confusion matrix as: 

 

[
 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 "𝑅" 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 "𝑊"

𝑇𝑟𝑢𝑒 𝑐𝑙𝑎𝑠𝑠 "𝑅" 𝑇𝑁 𝐹𝑃
𝑇𝑟𝑢𝑒 𝑐𝑙𝑎𝑠𝑠 "𝑊" 𝐹𝑁 𝑇𝑃

]      (8) 

 

(“R” for regular and “W” for whistle) the following 

classification evaluation measurements (9)-(14) are applied [16] 

where True Positive Rate (TPR) shows how accurately the 

whistle frames are detected and False Positive Rate (FPR) 

shows how often a “regular” frame is labelled as a “whistle” 

frame.  Precision, Recall, Accuracy and the F-score indicate the 

overall success rate of the classifier in distinguishing between 

the “whistle” and “regular” frames. 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(9) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 

(10) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(11) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(12) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

(13) 

𝐹𝑠𝑐𝑜𝑟𝑒 =
2. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

 

(14) 

 

     
Figure 9: RNN training evaluation 

1807

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



 

Table 3 
CLASSIFICATION ACCURACY-BAND-POWER FEATURE 

Applied 

feature 

Applied 

classifier 

Classification 

accuracy 

Band-power RNN 79.55% 

Band-power J48 74.24% 

Band-power SVM 67.42% 

 

Table 4 
CLASSIFICATION ACCURACY –DEEP LEARNING 

Applied 
feature 

Applied 
classifier 

Classification 
accuracy 

Spectrogram RNN 81.80% 

Spectrogram J48 75.00% 

Spectrogram SVM 73.67% 
   

Table 5 

CONFUSION MATRIX-J48 (BAND-POWER) 

Class Whistle Regular 

TP rate 0.79 0.71 

FP rate 0.28 0.20 

Precision 0.57 0.87 

Recall 0.79 0.71 

F-score 0.66 0.79 

ROC area 0.54 0.84 

Table 6 
CONFUSION MATRIX-RNN (SPECTROGRAM)  

Class Whistle Regular 

TP rate 0.77 0.83 
FP rate 0.22 0.16 

 

Table 7 

CONFUSION MATRIX-RNN (BAND-POWER)  

Class Whistle Regular 

TP rate 0.75 0.81 

FP rate 0.25 0.19 

 

Figure 9 shows the RNN training status and the mean square 

error after 82 epochs (iterations) where the cost function 

optimisation criteria is met. The classification results for the 

applied classifiers (Section IV) are presented in Table 3 and 4. 

It is shown that RNN outperforms the J48 and SVM classifiers 

where the classifiers are applied under the same training and 

evaluation policy. It is also shown that the RNN applied to the 

raw, time-frequency signals yields the highest level of accuracy 

(81.8%) (Table 4). 

Table 5 shows the classification accuracy measurements for 

a J48 decision tree. It is shown the trained tree can effectively 

detect the whistle segments in 79% and the Regular segments in 

71% of the times. Table 6 and 7 indicate how accurately the 

applied RNN is able to classify each class of the input data 

whereas Table 3 and  

Table 4 show the overall accuracy across the two classes. 

Figure 10  is the RNN Receiver Operator Characteristic (ROC) 

for training, validation, testing and the overall ROC with the 

ROC area of 0.91.  

Experimental studies of this research show that the classifiers 

provide stable, accurate air-leakage detection results. However 

the SVM classifier when applied to the raw time-frequency 

signals does not provide stable results and the accuracy changes 

from 63% to 80% depending on the training and the testing set. 

 
Figure 10: RNN ROC-Spectrogram 

The spectrogram features outperform the band-power feature 

as they contain information from all the frequency bands 

whereas the band-power ratios only rely on the relative power 

of the whistle band. As it was shown in Figure 8 the first 100 

(out of 513 bins) frequency bins and the last 100 bins of both 

classes are similar and the main difference is in the middle band 

frequency bins. 

VI. CONCLUSION 

 

Deep learning and basic supervised classifiers are 

successfully applied to the task of acoustic condition monitoring 

of the sintering plant. The proposed deep learning approach 

successfully detects the presence of irregular leakage noise 

(whistle) associated with pallet faults. The Results suggest that 

the band-power feature is an effective feature for baseline 

machine learning methods (SVM and J48) however the raw 

spectrogram pattern of the air-leakage noise is also learnt and 

recognized accurately by the deep learning method (81.8% 

accuracy). It is concluded that deep learning neural network 

method (RNN) outperforms the J48 pruned decision tree and 

SVM binary classifier.  Future work will focus on applying 

unsupervised machine learning techniques to the problem of 

detecting the unusual condition at the sintering plant.  
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