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Abstract—To advance the state of the art of image foren-
sics technologies, a new formulation of splicing localization
is proposed, which aims to obtain the masks for both the
query and donor images for a pair of query(probe) image and
potential donor image if a region of the donor image was
spliced into the probe. The former Deep Matching and Validation
Network(DMVN) addresses the problem with a novel end-to-end
learning based solution. Inheriting the deep dense matching layer,
we propose Feature Pyramid Deep Matching and Localization
Network(FPLN), whose contributions are three folds. Firstly, in-
stead of using just one feature map as in DMVN, FPLN utilizes a
pyramid of feature maps with different resolutions w.r.t. the input
image to achieve better localization performance, especially for
small objects. Secondly, we add a fusion layer that fuses together
all the features after deep dense matching layer, which not only
takes full advantage of the correlation information between those
features, but is also able to integrate two pathways in DMVN into
just one simple pathway, simplifying the subsequent architecture.
Lastly, we employ focal loss to address the imbalance problem, as
the foreground area is usually much smaller than the background
area. The experiments demonstrate the superior performance of
our proposed method in detection accuracy and in localizing small
tempered regions.

I. INTRODUCTION

With the rapid growth of social networks and the wide
use of digital cameras, image and video content have been
ubiquitous. At the same time, the easy access to advanced im-
age processing softwares like Photoshop and Gimp has made
manipulating and editing digital images become increasingly
handy. Therefore seeing is no longer believing. Meanwhile,
detecting and localizing image forgeries, at a large scale, is
becoming increasingly more difficult for new processionals,
forensic experts, and legal prosecutors, which necessitates
developing novel and scalable image forensics technologies[1].

Splicing detection ordinarily denotes copying one or more
regions of an image and pasting them onto a target image.
Image splicing and copy-move are often considered as two
close problems, which have been studied a lot in the literature.
In the pixel level, forged images can be detected by analysing
the artefacts left by cloning[2], re-sizing[3], or non-linear
filtering[4]. Inconsistencies in chromatic aberrations[5], color
filter array interpolation[6] or sensor noise[7] can also be
utilized as evidence of image forgery. On the scene level,
inconsistencies in lighting[8], shadows[9] or reflections[10] are
used as clues to reveal manipulations. It’s worth noting that
all methods mentioned above are only applicable to a single

image. Furthermore, they share a strong assumption that one
or more of these artefacts must be present in a spliced image,
which is not always valid.

In the recent Nimble 2018 Challenge from National In-
stitute of Standards and Technology1, there is a new formu-
lation of splicing detection and localization, that is: for a
query(probe) image and a potential donor image, its goal is
to estimate the probability that a region of the donor image
was spliced into the probe, and if so obtain the masks for
both the probe and donor images, i.e. segmenting the spliced
regions(s) in both the donor and the query image, which is the
main focus of this work. Following [1], we also refer to it as
the constrained image splicing detection(CISD) problem. As
shown in Fig. 1, Q denotes the query image, P the potential
donor image, Qm the ground truth mask for the query image,
and Pm the ground truth mask for the potential donor image.

Such a splicing formulation can be rendered as a copy-
move detection by combining both the query and donor images
as one. However, traditional copy-move algorithms use hand-
crafted features that are vulnerable to image transformations
such as noise, compression and geometric transformation.
Besides, they are usually performed stage by stage instead of
jointly. To address these problems, Wu et al.[1] propose Deep
Matching and Validation Network(DMVN) — an end-to-end
optimized neural network that is able to extract robust features
and perform splicing detection and localization, unlike recent
deep learning based forgery detection algorithms that only use
a deep learning module to extract features[11,12,13,14].

We denote by output stride the ratio of input image
spatial resolution to final output resolution[15]. The feature
response used for deep dense matching in DMVN[1] is
16 times smaller than the input image dimension and thus
output stride = 16. Whereas we facilitate a pyramid of
feature responses, one having a output stride = 16 and
another having a output stride = 8. To some extent, the
larger the output stride, the coarser the feature response, so
the latter feature response with smaller output stride contains
finer details of the input image that is helpful for detecting and
localizing small objects, as evidenced by later experiments.
There are two pathways in DMVN[1] to separately handle two
sets of features after deep dense matching layer, in which case
the correlation information between the two sets of features
are ignored and the architecture is more complex, whereas

1https://www.nist.gov/itl/iad/mig/media-forensics-challenge-2018
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Fig. 1. Constrained image splicing detection problem, where true spliced
pixels are labeled as white. P and Q are donor and probe images respectively;
Pm and Qm are their corresponding masks. The 1st row represents a positive
sample, while the 2nd row a negative sample.

we propose to add a fusion layer that fuses together two sets
of feature responses of different sizes, thus makes full use
of their correlation information, and simplifies the design of
subsequent structure. Further more, the problem of predicting
masks can be seen as many binary classification problems.
Since the spliced object is usually quite small compared with
the background, the number of negative samples are much
larger than the positive ones if we deem foreground pixel as
positive and background pixel as negative. Therefore, besides
Binary Cross Entropy Loss, we also explore the effect of focal
loss[16] to address the imbalance problem as well.

In summary, our contributions are three folds: 1)we facili-
tate a pyramid of feature maps to capture fine-grained features
so as to better localize small tempered objects. 2)we design a
new fusion layer to utilize the correlation information between
multi-level feature maps, and redesign the mask decoder that
greatly simplifies the architecture. 3)we employ focal loss[16]
to address the imbalance problem.

The remainder of this paper is organized as follows.
Section 2 describes the proposed FPLN and the training proce-
dure. Section 3 presents experimental results and comparisons
against state-of-the-art methods. In section 4, conclusions are
drawn.

II. FEATURE PYRAMID DEEP MATCHING AND
LOCALIZATION NETWORK

Given a query image Q and a potential donor image P, the
goal of the method is essentially to segment the similar regions
in Q and P, if existed. Shown in Fig. 2 is the architecture of
FPLN whose steps consist of feature pyramid extraction, deep
dense matching, feature fusion, feature refinement, and mask
decoder. we’ll detail each of the steps as following.

A. Feature Pyramid Extraction

In the original DMVN model[1], only one feature map, the
output of the fourth convolutional block of VGG16, is used
as the block-wise learned representations of the input images.
Yet, its output stride = 16, which might hinder the model’s
ability to localize small tempered regions as claimed in [1]. In
order to tackle the issue, our proposed FPLN, however, extracts
a pyramid of feature responses from multi-level convolutional
blocks of VGG16 (other CNNs like ResNet, DenseNet should

work as well) that contain much more fine-grained information,
as shown in Fig. 2.

B. Deep Dense Matching

Following the footsteps of [1], we also adopt the deep dense
matching module which is made up of two steps: deep feature
correlation and correspondence match pooling. For the sake
of completeness, we will describe it here again. The purpose
of Deep Dense Matching is to find possible matching regions
between representations.

Deep feature correlation. Matching response using cross-
correlation are exhaustively computed over all possible trans-
lations as in (1)

corr(Pf , Qf )[x, y, i,j] =

trans(Pf , x, y)[:, i, j] ·Qf [:, i, j]
(1)

where Pf and Qf are extracted feature map, · is the dot product
operator, and trans(Zf , x, y) circularly translates Zf w.r.t.
(x, y) pixels, as defined in Eq. (2)

trans(Zf , x, y)[:,i, j] =

Zf [:,mod(i+ x,W ),mod(j + y,H)]
(2)

where W and H are the width and height of the feature map
being calculated.

Correspondence match pooling. In this step, meaningful
response maps is extracted using three types of pooling:
average pooling, max pooling and argsort pooling as defined
in Eq.(3), (4), (5) respectively:

avgPool(corr(Pf , Qf ))[i, j] =
W∑
x=0

H∑
y=0

corr(Pf , Qf )[x, y, i, j]/WH
(3)

maxPool(corr(Pf , Qf ))[i, j] =

max
x,y
{corr(Pf , Qf )[x, y, i, j]} (4)

argsortPool(corr(Pf , Qf ))[k] =

corr(Pf , Qf )[kx, ky, i, j]
(5)

where (kx, ky) in Eq. (5) is determined by the k-th maximum
response over all translations. The final dense matching re-
sponse RPQ between Pf and Qf is obtained by concatenating
one average, one max and the top few(dependent on what level
of feature are being used) argsort response along the feature
dimension. RQQ, RQP and RPP can, by the same formulation,
be obtained as well.

C. Feature Fusion and Refinement block

Different from [1] that uses two pathways to separately
learn two sets of features after deep dense matching, ignoring
the fact that the two sets of features correlate with each other
whose information when used together can probably boost
performance. Therefore, we fuse all the features after deep
dense matching before later processing. In this way, not only is
the correlation information utilized, but the structure thereafter
can also be greatly simplified to be just one pathway instead of
two as in [1]. It’s worth noting that when dealing with multi-
level features from different scales with different feature map
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Fig. 2. The architecture of FPLN. It consists of feature pyramid extraction, deep dense matching, feature fusion, feature refinement, and mask decoder.
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Fig. 3. (a)A ResNet block architecture. (b) The architecture of mask decoder.

sizes, the subsequent dense matching responses vary in size, so
in order to align all the features to have the same size before
fusion(concatenation), we upsample(by transpose convolution)
the features with smaller sizes without losing information by
compression as down sampling the features with larger sizes
would.

Right after feature fusion, A refinement block is used to
further refine the features after fusion. It is composed of several
ResNet blocks[17] which is well known for its suitability
to build very deep neural networks. Fig. 3(a) illustrates the
components of a ResNet block, where Conv3 × 3 − BN
means convolution with kernel size of 3, followed by batch
normalization.

D. Mask Decoder

Fig. 3(b) shows the structure of mask decoder responsible
for producing two masks for the probe and donor images.
In the figure, deConv means a transpose convolution(also
known as de-convolution), ResBlock a ResNet block, Conv a
convolution operation, and Sigmoid the sigmoid operation. The

key difference between our mask decoder and that in [1] lies
in the fact that our mask decoder directly decodes two masks
whereas there are two mask decoders in[1], each responsible
for decoding one mask. Another difference is that rather than
using upsampling layers as in [1] to calculate feature maps,
we employ learnable transpose convolution with stride of 2,
ensuring that every pixel contributes and the adjacent pixels
transform in a synergistic manner[15].

E. Training Data and Strategy

Since no existing dataset is available for directly training
the proposed FPLN, we use the SUN397 dataset[18] and the
MS COCO dataset[19] to generate training samples according
to the unsupervised generation process described in [20].
Briefly, a random image X with polygon-based object annota-
tions and an random object in X are selected, then randomly
transform this object and paste it to another randomly selected
image Y to generate a resulting composite image Z. Different
from [1], we only harvest no more than two(one positive
and one negative) training samples for each unsupervised data
generation, because we mainly care about foreground instances
rather than the background appearing in both the probe and
donor images. For instance, Fig. 1 gives a set of two training
samples of this type.

More specifically, when generating data samples, we ran-
domly pick an image and an object, and apply a random scale
in U(0.5, 2), a random rotation in U(−15, 15), a random lumi-
nance change in U(0.8, 1.2), and a random shift and translation
as long as it doesn’t transcend the image. In this way, we are
able to generate as many samples as needed to train the end-
to-end network. We finally generate 100k(thousand), 10k, and
10k synthesized samples for training, validation, and testing
respectively. Our dataset is smaller than that in [1] due to
hardware and speed concerns. It’s also worth noting that we
exclude those samples whose mask regions are spread sparsely
and that we also apply erosion and dilation operation to wipe
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out very tiny regions, because we find it might undermine
training the network. In addition, we also observe that the
performance for probe and donor images are quite different,
and that the model is essentially trying to locate similar regions
in probe and donor images, so we randomly exchange the
position of probe image and donor image as data augmentation
to address this problem.

The proposed FPLN is implemented using PyTorch deep
learning framework. Our model is trained with Adam optimizer
w.r.t. log loss(binary cross entropy loss or focal loss). we set
beta1 to be 0.5, beta2 0.99, and initial learning 1e-3. The
learning rate strategy is to decay itself by a factor of 0.2 if
the validation loss stops decreasing for several(three in our
experiments) epochs, and the minimum learning rate is 1e-
5. It’s worth noting that when training FPLN, we first set
the learning rate for the pre-trained vgg network to be zero,
and gradually increase its learning rate to be 1e-6, with the
intention to smooth the transition when vgg is suddenly being
finetuned with a relatively large learning rate.

III. EXPERIMENTS

A. Baseline Methods and Test Settings

Since DMVN model[1] outperforms the classic block
matching-based approach[21], the classic Zernike moments-
based block matching[22] with nearest-neighbor search, the
SURF feature-base keypoint matching[23] and the dense field
matching[24], it’s a quite state-of-the-art approach by the CISD
formulation which is completely new and thus we consider it
as the baseline method, as will denoted by dmvn-loc thereafter.
Our FPLN model is run on Nividia TitanX GPU.

B. Dataset

We conduct evaluation experiments on two large
dataset:1)the generated test set, 2)the NIST-provided Nimble
2018 image splicing detection dataset, as will be denoted by
NIST set.

The generated test set. As described in II-E, it contains
10k image pairs, with 5k positive pairs and 5k negative pairs.
Keep in mind that for generating each positive pair, random
scale, random shift, random translation, and random luminance
are applied.

The NIST set. It is provided by NIST and designed for
the CISD task. It is very large containing more than half a
million samples. The manipulations applied are sophisticated
including image impainting and seam-carving etc. And the
ratio of negative samples to positive samples is extremely huge,
mimicking the real application scenario.

It is worth emphasizing that 1) for better comparison, we,
following [1], also directly test the FPLN model trained by our
synthetic data without any finetuning, and that 2)ground truth
splicing masks are available for the generated test set but not
always accurate for the NIST dataset, so we didn’t perform
pixel level evaluation on it.

C. Evaluation Metrics

Image level evaluation. We consider the metrics of preci-
sion, recall, f-score, ROC curve and the area under the ROC

TN

FN

FPTP

TN

Reference mask Output mask Mask regions

Fig. 4. Definitions of TP, TN, FP and FN for pixel level evaluation.

Fig. 5. ROCs of different methods on the generated test set and NIST set.

curve(AUC). We denote by TP true positive i.e. correctly de-
tected as spliced, FN false negative i.e. incorrectly detected
as not-spliced, FP false positive i.e. incorrectly detected as
spliced and TN true negative i.e. correctly detected as not-
spliced. Precision, recall and f-score are defined as follows:

precision = TP / (TP + FP ) (6)

recall = TP / (TP + FN) (7)

f − score = 2TP / (2TP + FN + FP ) (8)

ROC curve is determined as the function of true positive
rate(TPR) in terms of false positive rate(FPR), where TPR
and FPR are defined as Eqs.(9) and (10). AUC quantifies the
overall ability of the system to discriminate between two class,
which is also the only official metric used by NIST.

TPR = TP / (TP + FN) (9)

FPR = FP / (TN + FP ) (10)

Pixel level evaluation. Metrics of Intersection over
Union(IoU), NMM, and The Matthews Correlation Coefficient
(MCC) are considered. IoU, NMM and MCC are all used to
measure the accuracy of a system output mask. The NMM is
invariant to translation, rotation, resizing, and cropping (under
certain conditions). If MCC = 1, there is perfect correlation
between the target and system output masks. If MCC = 0,
there is no correlation between the target and system output
masks. If MCC = -1, there is perfect anticorrelation between
the target and system output masks. IoU, NMM and MCC are
defined as following:

IoU = TP / (TP + FP + FN) (11)
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Fig. 6. Qualitative evaluation on positive samples in the generated test set.

TABLE I. EXPERIMENTS ON THE GENERATED TEST SET.

Method Precision Recall F-score IoU NMM MCC
dmvn-loc 0.790 0.940 0.859 0.516 0.035 0.635

FPLN bce N1 0.858 0.922 0.889 0.505 0.016 0.638
FPLN bce N2 0.817 0.968 0.886 0.592 0.193 0.719

FPLN focal N2 0.894 0.932 0.913 0.535 0.076 0.664

NMM = max{TP − FN − FP

TP + FN
,−1} (12)

MCC =

TP ∗ TN − FP ∗ FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(13)

where TP, TN, FP, FN are defined as Fig. 4 shows.

D. Results

Image level and pixel level evaluation on the generated
test set. Following [1], we deem a sample (a pair of images)
as positive if any pixel in a predicted splicing mask is positive,
as shown in Table.I. We consider three settings for FPLN
model. FPLN bce N1(denoted by FP-B1) is trained with
binary cross entropy(BCE) loss using one level of feature map.
FPLN bce N2(denoted by FP-B2) is trained with BCE loss
using two levels of feature maps(feature pyramid). FPLN focal

TABLE II. EXPERIMENTS ON NIST DATASET.

Method Precision Recall F-score
dmvn loc 0.414 0.715 0.525

FPLN bce N1 0.6436 0.419 0.507
FPLN bce N2 0.5252 0.541 0.533

FPLN focal N2 0.5301 0.564 0.546

( a ) ( b )

( c ) ( d )

( e ) ( f )

( g ) ( h )

( i ) ( j )

donor & probe DMVN FPLN donor & probe DMVN FPLN

Fig. 7. Qualitative evaluation on negative samples in the generated test set.

N2(denoted by FP-F2) is trained with focal loss using two
levels of feature maps.

For the image level metrics, all three settings of FPLN
outperform dmvn-loc[1] by a moderate margin in terms of f-
score(3% or higher). Specifically, the baseline dmvn-loc has
relatively low precision but a high recall, yet FP-B1 and FP-
F2 outperform dmvn-loc in terms of F-score, the reason of
which, as can be seen in Table.I, comes from large precision
gains. Whereas FP-B2 surpasses dmvn-loc by precision, recall
and F-score.

The left diagram in Fig. 5 compares ROC and AUC scores
for different methods on the generated test set, where the
threshold used to obtain TPR and FPR is based on the positive
pixel percentage in a resulting mask. More specifically, FP-
B1 has comparable performance than the baseline dmvn-loc,
which is outperformed by FP-B2 and FP-F2 regardless of the
loss used, demonstrating the effectiveness of feature pyramid
mechanism.

For the pixel level quantitative evaluation, the baseline
dmvn-loc achieves 0.516, 0.035 and 0.635 for IoU, NMM
and MCC respectively. FP-b1 achieves comparable scores on
these metrics, while both FP-B2 and FP-F2 outperform the
baseline method, indicating their stronger ability to localize
the tempered regions. It’s worth noting that FP-F2 behaves
a little worse than FP-B2, but as will be shown later, FP-F2
generalizes better on the NIST set.

Image level evaluation on NIST dataset. Similar to the
performance on the generated test set, the baseline dmvn-loc
achieves a F-score of 0.525, with a relatively low precision
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Fig. 8. Qualitative evaluation on positive samples in the NIST set.

of 0.414 and a relatively high recall of 0.715, as shown
in Table.II. All three setting of FPLN surpass the baseline
dmvn-loc in terms of precision by a large margin, but are
inferior to the baseline dmvn-loc by recall. However, as for the
more comprehensive metric of F-score, both FP-B2 and FP-F2
outperform the baseline method. It’s worth noting that FP-F2
outperforms FP-B2 in terms of all three metrics, indicating a
better generalization ability of FP-F2 than FP-B2.

The right diagram in Fig. 5 compares ROC and AUC
scores for different methods on the NIST set. The baseline
dmvn-loc performs better than FP-B1, comparable with FP-
B2, and inferior to FP-F2. It’s worth noting that there’s a
large discrepancy between the training data size, where there
are 1.5 million training samples for the baseline model, which

is 15 times larger than our training dataset containing only
100 thousand training samples. Thus there is still room for
improvement for FP-F2 if trained with more samples, given
that it already outperforms the baseline method based on a
much smaller training set. The qualitative evaluations in the
following are compared between dmvn-loc(later denoted as
DMVN) and FP-F2(later denoted as FPLN).

Qualitative evaluation on the generated testset. Fig. 6
shows the qualitative results on positive samples, where the
1st column is the (donor, probe) pair, the 2nd column the
ground truth masks, the 3rd column the predicted masks of
DMVN, and the 4th column the predicted masks of FPLN.
(c), (d), (g), and (h) show comparable localization performance
between the baseline DMVN and FPLN. But FPLN covers
more ground truth regions than DMVN in terms of (a), (e),
(i), indicating better performance. In addition, for (b) and
(f), FPLN achieving better performance in localizes the small
regions, which we contribute to the pyramid features utilized.
We see that for (j), DMVN predicts no tempered mask for
the donor image at all, and it might due to the bias between
probe and donor images, because DMVN is always trained
with (probe, donor) pair, whereas our FPLN is trained with
(probe, donor) with probability of 0.5, and with (donor, probe)
pair of probability of 0.5 as well, which helps mitigate the bias.

Fig. 7 shows the qualitative results on negative samples.
Except (a), (c), (f), (h) and (j) where DMVN incorrectly
predicts masks for negative samples, the DMVN and FPLN
perform comparably well on other negative samples.

Qualitative evaluation on the NIST set. Fig. 8 shows
the qualitative results on positive samples. For (a) and (b),
FPLN predicts the masks quite well whereas DMVN miss the
correct mask for the donor image. If you watch closely, the
probe image in (b) chromatically differs from that in (a), which
suggests that FPLN is robust to chromatic alteration. Similarly
goes (c) and (d) where FPLN is robust to the color change of
the central flower while the predicted masks output by DMVN
changes dramatically which also fails to localize the butterfly.
For (e) and (f), the predicted masks by FPLN shows much
less extraneous artefacts than DMVN’s, indicating a better
performance of FPLN. For (g) and (h), FPLN scales quite well
as the ground truth mask for the probe image scales, though
the predicted masks are not very accurate. For (i) and (j), it’s
obvious that the output masks by FPLN preserves better shape
information than that by DMVN. For (k) and (l), DMVN is
sensitive to the slight change of the probe image, while FPLN
is much more robust to it. For (m) and (n), FPLN successfully
localize the small tempered regions, while DMVN fails. We
contribute it to the feature pyramid architecture of FPLN. For
(o) and (p), FPLN is able to handle symmetry, while DMVN
can not.

IV. CONCLUSIONS

In this paper, we propose the FPLN, a end-to-end network,
for the image splicing localization and detection problems.
We show that the FPLN that facilitates a pyramid of feature
responses is superior in detecting and localizing small spliced
regions than DMVN[1]. We fuse together all the feature re-
sponses after deep dense matching layer to take full advantage
of their correlation information. Based on that, we design
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our network that integrates two pathways of producing two
separate masks into one pathway, which greatly simplifies
the structure. In addition, we also propose to employ focal
loss to tackle the imbalance problem between the foreground
area and background area that achieves desirable effects. The
experiments also demonstrate the robustness against DMVN.
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