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Abstract—The detection of a weak signal from noisy data is
an important task in many signal processing applications such
as radar communication, biomedical engineering etc. However,
the amplitude of the known signal plays a big role in terms of
complexity and performance of the detector. In other words, de-
tection of the weak signal is a big challenge. Here, we investigate
approximated fractional integrator (AFI) based detector.

The proposed method has been employed for detection of DC
signal which is present in the Gaussian noise. Our proposed
method has been compared with some state-of-the-art methods
in terms of probability of detection (PD) for a constant value
of probability of false alarm (PFA). The PD has been plotted
for varying signal-to-noise ratio (SNR) at a constant value of
PFA. Furthermore, we apply the proposed method for watermark
application. The outcomes of the proposed method are convincing
and it suggests that the proposed method works better or
comparable to some state-of-the-art methods.

I. INTRODUCTION

Signal processing techniques play an important role in
various applications particularly in solving real-life problems.
When the receiver receives the signal, the strength of the
received signal depends upon the surrounding environment and
it may degrade as it is affected by so many noise sources at
different stages. The detection of the known low-frequency
weak signal is a scientific challenge in many science and
engineering fields such as communication, signal and image
processing [1] etc. It is sometimes quite difficult to detect the
original signal present in noise (A <<< σ), where A and σ
are the magnitude of the known signal and standard deviation
of noise respectively. Therefore, for detecting the known weak
signal in the presence of noise, a novel detector is required to
be investigated.

In recent years, the fractional operator has been advocated
as an important mathematical tool [2], [3], [4] and it has
been utilized in many signal [5], [6] and image processing
applications. In general, the fractional operator has explored
from an integer step to fractional step. Depending upon the
value of fractional order, fractional operator can be divided
into fractional differential operator (0 < q < 1) and fractional
integrator (approximated fractional integrator (AFI)) (−1 <
q < 0) [7], [8]. It has been demonstrated by scientific findings
that fractional order approach is best suited to many natural
phenomena discussed in Ref. [9]. Applying fractional operator
for signal analyzing and processing [10], [11] and an image
processing [12] is a challenging task. There are evidences
which show that fractional order based algorithms are powerful
approaches in many applications [13] due to its non-linear

behaviour. In addition, the fractional operator has also been
used in enhancing complex fractal-like texture details non-
linearly.

Key contribution of the paper: The key contribution of
the paper is to use the AFI for weak signal detection. To the
authors’ knowledge, AFI has not been previously employed
for signal detection in literature. The negative fractional order
plays a key role in boosting the signal and suppressing the
noise. Thereafter, a watermark detection application has also
been exhibited using the concept of AFI.

Organization of the paper: Section II deals with the basic
mathematics of detection theory and fractional integrator. The
proposed method is presented in Section III. However, the
proposed theory has been applied in watermark detection and
has been discussed in Section IV. Results have been discussed
in Section V. Finally, the conclusion has been presented in
Section VI.

II. BASIC MATHEMATICS

In this section, we review the basic theory of signal detec-
tion and fractional integrator in brief.

A. Detection Theory

The detection of a known weak signal present in noisy data
is a practical problem for different applications. The detection
problem can be modelled by the discrete equation which is
given below. {

H0 : x(i) = w(i)

H1 : x(i) = s(i) + w(i),
(1)

where i = 0, . . . , (N − 1) and s is known signal. Here,w(i)
represents independent and identically distributed (iid) Gaus-
sian noise. x(i) is put under the category of H0 or H1, when
it is compared with a threshold.

B. Fractional Integrator

The fractional integral of function f(t) ∈ C(I), I = [0, T ]
with order q is defined as follows [14].

Iq0,tf(t) =
1

Γ(−q)

∫ t

0

(t− r)−q−1f(r)dr, q < 0 (2)

where r is dummy variable and Γ is gamma function. Eq. 2
is approximated by the following form
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[
Iq0,tf(t)

]
t=tn

≈
n−1∑
k=0

bn−k−1f(tk), (3)

where

bk =
(∆t)−q

Γ(−q + 1)

[
(k + 1)−q − k−q

]
, (4)

k = 0, 1, . . . , (N−1). Eq. 3 is called the fractional rectangular
formula for the fractional integrator and is also termed as AFI.
In our case, we assume ∆t = 1.

Remark 1: Convergence order of this method discussed in
Eq. 3 is O(∆t) for q < 0. If q = −1, this formula reduces to
the classical integral formula.

Remark 2: Eq. 3 is valid for all integer or fractional order
for q > 0 or q < 0.

Remark 3: The AFI behaves as a non-linear low pass filter.
Remark 4: The coefficients of Eq. 4 are used to design the

filter for a particular value of fractional order q (−1 < q < 0).

III. PROPOSED METHOD

Here, we discuss the working of our proposed method,
which is shown in Fig. 1.

Fig. 1: Flow chart of the proposed method.

When the AFI based filter is convolved with x, it gives y
which is written as follows.

y(i) = Iq

{
w(i), No signal present

s(i) + w(i), Signal present.
(5)

Here, in this paper, we assume w and s as Gaussian noise and
some known signal respectively. Applying Neyman-Pearson
criteria, it produces the following test statistics.

T q(y) =
1

N

N−1∑
i=0

s[i]y[i] (6)

Under different hypotheses, the distribution of the test
statistics for s(i) = A can be written as follows.

T q(y) ∼=

{
N(0,

σ2
new

N ) under H0

N(Aµnew,
σ2
new

N ), under H1

(7)

where

µnew =

N−1∑
i=0

(−1)i (qCi) (8)

and

σ2
new = σ2

N−1∑
i=0

(−1)(2i) (qCi)
2
. (9)

The probability of false alarm is

PFA = Prob (T (y) > γ′;H0) (10)

PFA = Q

 γ′√
σ2
new

N

 (11)

Similarly, the probability of detection (PD) can be written
as follows.

PD = Q

(
Q−1(PFA)−

√
NA2µ2

new

σ2
new

)
. (12)

The Fig. 2, Fig. 3 and Fig. 4 show the performance of
the proposed detector and a comparison with some known
methods.

Fig. 2: Probability of detection, PD versus PFA at A = 0.1,
N = 100 and σ = 1.

Fig. 3: Probability of detection, PD versus signal-to-noise ratio
at PFA = 0.1, N=100 and σ = 1.

IV. WATERMARKING APPLICATION

We traditionally store our data such as text, audio, still
images, animation, video, or interactive content forms, music,
etc., in the storage like compact disc or films. Technological
revolution helps in the digitization of the data in the sequence
of 1s and 0s, which ultimately helps in storage, distribu-
tion, processing etc. But at the same time, the technological
advancement has also added us a brand problem due to
illegal reproduction and redistribution. The watermarking [15]
ensures the communication between two authorized user i.e.,
the sender and the receiver. A watermark is defined to be
something that is added into the cover materials.
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Fig. 4: Comparison study of the different methods. Probability
of detection, PD is drawn against PFA at A = 0.1, N = 100
and σ = 1.

The important steps of the digital watermarking are (a)
Embedding and (b) Extraction. The embedding [16] signifies
withholding any private signature (audio, picture, signal or any
random sequence) into the original image. Actually, embed-
ding is done in three ways (a) Spatial domain watermarking
(b) Transform domain watermarking (c) Hybrid domain wa-
termarking. Here, we embed in the spatial domain. In digital
image watermarking method, the watermark signal is inserted
into the pixel values directly in the spatial domain or it can
be added in the transform domain [17]. Mathematically, it is
written as follows.

Ywm = Lori + αiWi, (13)

where ‘Lori’ shows the ‘Lena’ image, ‘αi’ exhibits the
strength of the watermark signal and Wi represents the water-
mark signal. Here, in our experiment, we have embedded in
the spatial domain and obtain the watermarked image. It can
be observed in Fig. 5a, Fig. 5b and Fig. 5c. Fig. 5c is attacked
by Gaussian noise to get Fig. 5d. Let us assume this image
as YA. Thereafter, noisy watermark image Zi can be obtained
by the following formula.

Zi = YA − Lori, (14)
where Zi is noisy watermark signal. During watermark ex-
traction process, we first formulate the watermark extraction
problem as a binary signal detection problem. Watermark
detection means that we have to find the absence or presence
of the signal in noisy watermark image Zi. The detection of
watermark is mathematically modelled as follows.{

H0 : Zi = 0 +Wi

H1 : Zi = 1 +Wi,
(15)

where 0 and 1 represent the known signal and Wi indicates the
noise which is already incorporated in the signal. Here, Zi is
attacked watermark image. We model this detection problem
for 0 and 1 because the watermark image carries 0 and 1 only.
Now, we calculate the threshold value which causes the correct
detection of the weak signal i.e., detection is carried out in the
Neyman-Pearson criteria. The threshold value [18] is given as
follows.

th = erfc−1(2PFA)
√

2σ2
new + µ0, (16)

where PFA, σ2
new and µ0 are probability of false alarm (which

is actually known constant value), variance after AFI stage and
mean after AFI stage under H0 hypothesis respectively. The
σnew is approximated by Eq. 9.

V. RESULT & DESCRIPTION

Here, the results of the proposed method for detection
theory and watermark application have been discussed. For
simulation, we chose MATLAB 2014b.

A. Results of detection theory

Fig. 2 is the receiver operating characteristic (ROC) curve
of the proposed filter at different orders, q at A = 0.1,
N = 100 and σ = 1. q = 0 represents the MF [1]. The
outcomes suggest that our proposed method with q = −0.9
performs better than all other orders. Similarly, the Fig. 3 is
the plot of PD for different value of SNR (SNR = 20 log A2

σ2 ).
The outcomes suggest that our proposed method performs
better than the optimum matched filter detector [1]. However,
the comparison of the proposed method with state-of-the-art
methods is shown in Fig. 4. Our proposed method works far
better when q < −0.1, however, for q = −0.1, it works better
than MF [1] and ED [6] but suffers with compare to Guo et
al. [5].

(a) (b)

(c) (d)

(e)

Fig. 5: The images are (a) Original, Lena (Lori)(b) Watermark,
Wi (c) Watermarked, Ywm (d) Attacked Watermarked (e)
Extracted using AFI with q = 0. The dimension of Lori and
Wi are 256× 256. The α = 0.1 has been chosen.
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TABLE I: MEAN SQUARE ERROR (MSE) AT DIFFERENT NEGATIVE ORDERS FOR DISTINCT ATTACKS (DIFFER-
ENT VALUES OF VARIANCE OF GAUSSIAN NOISE). CONSIDER PFA = 0.01.

MSE at PFA = 0.01
Attack (var), q (→) 0 −0.1 −0.2 −0.3 −0.4 −0.5 −0.6 −0.7 −0.8 −0.9
Gaussian (0.1) 0.3891 0.3176 0.0124 0.0053 0.0040 0.0036 0.0034 0.0034 0.0035 0.0036
Gaussian (0.5) 0.4023 0.2998 0.1806 0.0969 0.0547 0.0334 0.0234 0.0183 0.0159 0.0145
Gaussian (0.9) 0.4096 0.3178 0.2459 0.1890 0.1492 0.1241 0.1089 0.0987 0.0923 0.0883

Fig. 6: Attack of (var = 0.9). Images recovered at different order, q (a) 0 (b) −0.1 (c) −0.2 (d) −0.3 (e) −0.4 (f) −0.5 (g)
−0.6 (h) −0.7 (i) −0.8 (j) −0.9

B. Results of watermark detection

For the detection of the watermark signal [19], we apply
the fractional integrator based filter [20]. Thereafter, we need
a threshold th, which can be calculated using the formula
discussed in Eq. 16. We recover the watermark signal with
the help of AFI based filter and attacked watermarked image.
It has been shown in Fig. 6. For the comparison, we show the
mean square error (MSE).

In Table I, we can see how the MSE is decreasing by the use
of fractional order integrator. We consider var = 0.1, 0.5, 0.9
for the attack of Gaussian noise.

The MSE = 0.0040 at q = −0.4, MSE = 0.0036 at
q = −0.5 and MSE = 0.0034 at q = −0.6 are obtained
when the watermarked image is attacked with Gaussian noise
with var = 0.1. It clearly mentions that detection capability
of the proposed detector at the different fractional order, q.
However, MSE gets reduced from 0.4023 at q = 0 to 0.0145
at q = −0.9, when the attack of var = 0.5 is considered.
It clearly exhibits that as the order goes to −0.9, it produces
the least MSE. At the same time, if we observe the MSE at
some constant value of q, it results in more error as variance
increases. It can be studied for the same column in Table I. It
suggests that MSE is more for the high value of attack (var)
at constant q.

Fig. 6 is the set of recovered images at distinct fractional
orders (q) when the watermark image is attacked by Gaussian
noise (var = 0.9). Fig 6(j) gives the image with the least MSE
as supported by Table I i.e., MSE = 0.0883 at q = −0.9
when the watermarked image is attacked by var = 0.9. The
image Fig. 6(j) offers much visibility among all, as supported
by the Table I. This justifies that the performance of the
proposed detector gets boosted, as the value of MSE gets
lowered down when fractional order (q) goes towards −0, 9.
It concludes that the AFI based filter enhances the detection
performance.

VI. CONCLUSION

This paper proposes the weak signal detector which is based
on low pass fractional integrator filter. The proposed results
suggest that the proposed detector outperforms than the state-
of-the-art methods. For A = 0.1, N = 100, σ = 1, the
increment in PD = (0.9 − 0.4) = 0.5 at PFA = 0.1 and
q = −0.9. The proposed method has also been employed for
watermark detection. The significant decrement in MSE shows
the robustness of the proposed detector. Our future work is to
design the detector which is robust and performs well in non-
Gaussian noise such as Gaussian mixed, generalized Gaussian,
Laplacian noise etc.
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