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Abstract—Speech emotion recognition is a challenging task for
three main reasons: 1) human emotion is abstract, which means
it is hard to distinguish; 2) in general, human emotion can only
be detected in some specific moments during a long utterance;
3) speech data with emotional labeling is usually limited. In this
paper, we present a novel attention based fully convolutional
network for speech emotion recognition. We employ fully convo-
lutional network as it is able to handle variable-length speech,
free of the demand of segmentation to keep critical information
not lost. The proposed attention mechanism can make our model
be aware of which time-frequency region of speech spectrogram
is more emotion-relevant. Considering limited data, the transfer
learning is also adapted to improve the accuracy. Especially, it’s
interesting to observe obvious improvement obtained with natural
scene image based pre-trained model. Validated on the publicly
available IEMOCAP corpus, the proposed model outperformed
the state-of-the-art methods with a weighted accuracy of 70.4%
and an unweighted accuracy of 63.9% respectively.

I. INTRODUCTION

Emotions play an important role in human communica-
tions [1] and successfully detecting the emotion states is help-
ful to improve the efficiency of human-computer interaction.
For instance, in call centers, tracking customers’ emotion
states can be useful for quality measurement [2] and the calls
from angry customers can therefore be assigned to experi-
enced agents. Speech is one of the communication channels
that emotions could have serious influence on. Technically,
emotions affect both the voice characteristics and linguistic
content. In this study, we focus on the change of voice
characteristics to recognize the underlying emotions in speech.

Fig. 1. The traditional speech emotion recognition system.

Speech emotion recognition (SER) has been an active

research field for decades [3], [4], [5], [6]. We demonstrate
the architecture of traditional approaches for SER in Figure 1.
First, acoustic features which are believed to incorporate the
information of human emotions are extracted from raw speech
waveform frame by frame. The features include pitch, voicing
probability, energy, etc. Then various statistical functions (e.g.
mean, max, linear regression coefficients, etc.) are applied to
the frame-level features. And the outputs are concatenated as
a feature vector to represent the whole utterance. Finally, the
utterance feature vector is fed to the classifier. There are many
classification models that have been used [3], [4], [5], [6], with
support vector machine (SVM) being one of the most popular
choices.

Recently, deep learning methods have been introduced to
this field. In [7], deep neural network (DNN) was used on
the top of traditional utterance-level features and achieved
a significant improvement on the accuracy compared with
conventional classifiers. [8] used DNN to learn the short-term
acoustic features, followed by traditional statistical functions
to construct utterance-level features and the extreme learning
machine (ELM) was used as the classifier. In [9], the state-
of-the-art result was reported by using both convolutional and
recurrent layers to directly learn the mapping from speech
spectrogram to the corresponding emotion state. In [9], the
speech spectrogram must be segmented into pieces or zero-
padded to a fixed size to satisfy the requirement of the
convolutional neural network (CNN). Each sub-utterance was
assigned the emotion label of the corresponding whole ut-
terance. And during the testing procedure, the prediction of
the whole utterance was evaluated by averaging the posterior
probabilities of all sub-utterances. However, it is not quite
reasonable to assume that each sub-sentence within a whole
sentence represents the overall emotion. In addition, the speech
continuity could be destroyed by segmentation which may
cause the system more difficult to catch the whole process
of emotion changing from rise to fall.

To solve this problem, in this study, the fully convolutional
neural network (FCN) is adopted to handle variable-length
speech, free of the demand of segmentation to keep critical in-
formation not lost. In addition, attention mechanism has shown
its efficiency especially in encoder-decoder models [10], [11],
[12], which is employed to guide the decoder to know which
parts of the outputs of the encoder are more important. Specific
to classification models, a self-attention mechanism has been
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proposed and it is designed to tell the classifier which parts
of the input are more relevant to the output classes. In [13],
[14], the self-attention was used to extract sentence embedding
for semantic analysis. In [15], the authors used the self-
attention mechanism on SER, enabling the network to focus on
emotional salient of an utterance. The encoder they adopted is
long short-term memory (LSTM). Considering many irrelevant
signals are mixed with speech signals, we adopt attention
mechanism with FCN to achieve 2D attention visualization
on top of spectrograms rather than 1D attention visualization
only on the time axis in [15].

Another problem is that speech data with emotional labeling
is usually hard to collect. Transfer learning is a useful method
to solve the current task with the help of the knowledge
obtained from related problems [10], which can be operated
as finetuning the parameters of network from a pre-trained
model, It has been widely used when the training data is
insufficient [16], [17], [18], [19], especially when the model
is based on CNN. In this paper, we present an interesting
observation, i.e., an obvious improvement on SER can be
obtained with natural scene image based pre-trained model. It
worth noting that speech signal is very different from image.

The remainder of the paper is organized as follows. In
Section 2, we first introduce the proposed architecture. In
Section 3, we report and analyze experiment results. Finally
we summarize our work and present conclusions in Section 4.

II. THE PROPOSED ARCHITECTURE

Fig. 2. The overall architecture of an attention based fully convolutional neural
network.

In this paper, we propose a novel attention based fully
convolutional neural network. The input of the model is also
the spectrogram. But inherently unlike [9], we do not need
to segment spectrograms into pieces or pad them to a fixed
shape. The FCN is able to handle spectrogram with variable
sizes. The overall architecture is shown in Figure 2. The
FCN encodes the spectrogram into a high-level representation
while the attention mechanism impels the remaining sub-layers
of the model to focus on specific time-frequency regions of
the input spectrogram. All components of the system can be
optimized jointly.

Fig. 3. The AlexNet based FCN configurations. The convolutional layer
parameters are denoted as “Conv(kernel size)-[stride size]-[number of chan-
nels]”. The maxpooling layer parameters are denoted as “Maxpool-[kernel
size]-[stride size]”. For brevity, the local response normalization layer and
ReLU activation function is not shown.

A. Fully convolutional network

CNN has been widely used for deep learning, which does
not require traditional handcrafted feature extraction and it has
been proved that CNN based system can obtain a comparable
or even better accuracy compared with the traditional systems
on the SER task [15], [20], [21]. The basic components
of CNN are convolution, pooling and activation layers. The
convolutional layer is determined by the number of input
channels, the number of output feature maps, the kernel size
and stride. Each kernel can be considered as a filter whose
size is usually much smaller than the input. Hence, a kernel
operates on a local region of input rather than the whole feature
map. The locations that connect to higher layers are called
receptive fields. On a given feature map, the kernel weights
are shared to detect certain feature in different locations and to
reduce the complexity of network. The pooling layers usually
conduct an average or max pooling operation to remove noise
and extract robust features. The activation layers are actually
element-wise nonlinear functions [12].

The typical CNNs, including AlexNet [22], Oxford VGGNet
[23], and ResNet [24] take fixed-size input. Inspired by [18],
we turn the AlexNet into a fully convolutional network by
simply removing its fully connected layers. And then it is used
as our encoder, which is shown in Figure 3. All the convolution
layers are followed by a ReLU activation function, and the
first two convolution layers are equipped with a local response
normalization layer. We also directly adapt the VGGnet to
classify emotion states, but it yields a lower accuracy than
AlexNet due to the limited training data.

Assuming that the output of FCN encoder is a 3-dimensional
array of size F × T × C,where the F and T correspond to
the frequency and time domains of spectrogram and C is
channel size. We can consider the output as a variable-length
grid of L elements, L = F × T . Each of the elements is
a C-dimensional vector corresponding to a region of speech
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spectrogram, represented as ai.

A = {a1, · · · ,aL},ai ∈ RC (1)

B. Attention layer

Intuitively, not all time-frequency units contribute equally
to the emotion state of the whole utterance, i.e., not all the
element vectors of set A contribute equally to the emotion
state. Hence, we introduce attention mechanism to extract the
elements that are important to the emotion of the utterance and
aggregate those element arrays to form an utterance emotion
vector. We use the following formulas to realize this idea:

ei = uT tanh(Wai + b) (2)

αi =
exp(λei)∑L

k=1 exp(λek)
(3)

c =
L∑

i=1

αiai (4)

That is, first we feed the annotation ai through a multi-
layer-perceptron (MLP) layer with the tanh as the non-linear
activation function to obtain a new representation of ai. Then
we measure the importance weight, ei, of the ai by the inner
product between this new vector and the learnable vector u.
After that, the normalized importance weight αi is calculated
through the softmax function. Finally, the utterance emotion
vector c is computed as the weighted sum of set A with
importance weights. λ is a scale factor which controls the
uniformity of the importance weights of the annotation vectors.
λ ranges between 0 and 1. If λ = 1, the scaled-softmax
becomes the commonly used softmax function. If λ = 0, the
importance weights will be a uniform distribution on the set
A, which means all the time-frequency units have the same
importance weights for the final utterance emotion vector. In
this study, λ = 0.3 is used according to the performance on
validation set.

III. EXPERIMENTS

A. Database and feature extraction

We validate our systems on the IEMOCAP database [25],
one of the widely used databases on speech emotion recog-
nition. The IEMOCAP corpus comprises five sessions, each
of which includes labeled emotional speech utterances from
recordings of dialogs between two actors. There is no actor
overlapping between these sessions. To be comparable with
[9], we utilize the database in the same way:

• The IEMOCAP database contains scripted and impro-
vised dialogs. We only use improvised data.

• We use the speech utterances from four emotion cate-
gories, i.e., happy, sad, angry and neutral.

• We implement a five-fold cross validation. In each fold,
the data from four sessions is used for model training,
and the data from the remaining session is splited: we
randomly choose one actor for validation and the other
one as the testing set. We calculate the mean of accuracies
of five folds as the system accuracy.

TABLE I
THE ACCURACY COMPARISON OF ALEXNET AND VGGNET-16 WITH

RANDOM INITIALIZATION OR FINETUNING.

System Weighted
Accuracy

Unweighted
Accuracy

AlexNet Random-init 66.5% 54.8%
AlexNet Finetuning 67.9% 57.3%
VGGNet-16 Random-init 65.3% 54.8%
VGGNet-16 Finetuning 66.8% 56.7%

The experiments only apply the raw spectrogram as the
input, the spectrogram extraction process is consistent with
[9]: First, a sequence of overlapping Hamming windows are
applied to the speech waveform, with window shift set to 10
msec, and window size set to 40 msec. Then, for each frame
we calculate a discrete Fourier transform (DFT) of length
800. Finally the 200-dimensional low-frequency part of the
spectrogram is used as the input. Please note that in [9], the
Hamming window size of 20 msec is used, and the authors
concluded that the size of 20 msec is better. In our study, we
set the window size to 40 msec and achieve a higher accuracy.

B. Evaluation metric

The IEMOCAP database is imbalanced with respect to the
emotional classes. So we adopt both the weighted accuracy
(WA) and the unweighted accuracy (UA) as the metric:

• Weighted accuracy - the overall accuracy across all utter-
ances of the testing set.

• Unweighted accuracy - the average of accuracies across
all the classes.

C. Experiment results and analysis

First, we directly adapt AlexNet and VGGNet-16 to classify.
The only difference is that there are 4 nodes in softmax
layer. The utterances are split or padded to fixed-length sub-
utterances by using the same method in [9]. During the testing
procedure, the posterior probabilities are the average of the all
sub-utterances respectively. Considering the limited data, we
compare the networks with random initialization and the pre-
trained networks based on ImageNet dataset [26].

Table I summarizes the results of AlexNet and VGGNet-
16 with different initializations. It’s interesting to observe the
pre-trained neural networks (NNs) always outperform the NNs
with random initialization. It’s worth noting that the speech
signal is very different from image. The only explanation is
the pre-trained NNs have been empowered to detect some
certain structures so that they can be more easily trained.
By comparing the first row and third row (or comparing the
second row and fourth row), we demonstrate that the AlexNet
outperforms the VGGNet-16 on this task. We think the lack of
sufficient training speech data is one main reason. Based on
these results, our FCN model directly uses AlexNet, excluding
its full connected layers. And we initialize FCN by using the
pre-trained parameters.

The published state-of-the-art results using the IEMOCAP
corpus are given in [9]. We list their two best models, i.e.,
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Fig. 4. The 2D-attention weights of FCN model for 4 examples in different emotion categories. Top: The spectrogram. Bottom: The 2D-attention weights
figure of spectrogram. Each point of the figure corresponds to the point of spectrogram in the same location and the brighter color represents the larger weight.

TABLE II
THE ACCURACY COMPARISON BETWEEN FCN BASED ATTENTION MODEL

AND THE OTHER SYSTEMS.

System Weighted
Accuracy

Unweighted
Accuracy

Our FCN+Attention 70.4% 63.9%
CNN+LSTM Model1 in [9] 68.8% 59.4%
CNN+LSTM Model2 in [9] 67.3% 62.0%

CNN+LSTM Model1 and CNN+LSTM Model2 in Table II.
Model1 is a CNN-LSTM model while Model2 is trained based
on Model1 in order to improve the unweighted accuracy. The
attention based FCN model is trained just by one step. And
compared with the best results in both Model1 and Model2,
our attention based FCN model achieves 1.6% and 1.9%
absolute improvements on WA and UA, respectively.

To explain why the improvement can be gained from our
proposed approach, we plot the 2D-attention weights of FCN
model for 4 test examples of different emotion categories in
Figure 4. The Figure 4 illustrates that the attention weights
of the non-speech frames are quite small which indicates
that the voice activation detection is implicitly implemented
and the information from non-speech frames are ignored by
the attention mechanism automatically. Besides, the time-
frequency units of spectrogram are assigned different weights
based on the degrees they are relevant to emotion states. That
explains why the attention weights are also small on parts
of the voice frames. And the attention weights always have
small values in high frequency areas, which is consistent with

the common sense that the information of speech is mainly
contained in the low frequency area. Actually, the bright area
extends from low frequency to high frequency with a decreas-
ing brightness. This indicates our 2D-attention mechanism
has detected the emotional segment successfully and assigned
decreasing weights from low to high frequency bands. The
2D-attention mechanism is able to scan the spectrogram not
only in the time domain but also in the frequency domain.

IV. CONCLUSIONS

We demonstrated that the CNN architectures designed for
visual recognition can be directly adapted for speech emo-
tion recognition. Besides, it’s interesting to see the transfer
learning can build a solid bridge between natural image and
speech signal. Finally, we proposed an attention based FCN
model. Our model is able to handle utterances with variable
lengths and the attention mechanism empowers the network
to focus on emotionally salient regions of spectrogram. Our
system achieves beyond the state-of-the-art accuracy on the
benchmark dataset IEMOCAP.
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