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Abstract—Speaker verification has been known to be a tough
task especially under the condition of short utterances. Based
on the observation that actual voice commands are composed
of a few repeated words, we propose an effective approach for
building and training a deep neural network to extract features
with properties appropriate for tackling such condition. We
demonstrate the effectiveness through experiments independently
designed for each property. Our proposed approach achieves
5.89% equal error rate on word scale commands shorter than 1
second, and with a linear discriminative analysis, it decreases to
3.43%.
Index Terms: speaker verification, short utterance,
text-constrained, voice commands

I. INTRODUCTION

As electronic devices are extensively using voice for their
control, Speaker Verification (SV) has become an interesting
topic to numerous researchers. Unfortunately, however, it does
not seem as robust as classical verification (e.g., text-password
verification) because the voice signature of a person is
very likely to have variability coming from both recording
environment and utterances’ lexical contents. Formally, SV
is a task to verify whether the speaker has been enrolled
or not by analyzing his or her voice input. SV systems are
usually categorized into two classes in terms of flexibility of
phrase choice and lexical variability. One is Text-Dependent
Speaker Verification (TD-SV). Given a set of predefined
pass-phrases (e.g., Ok Google or Hey Siri), it tries to verify
not only speaker identity but also whether the speaker is
uttering the correct pass-phrase. TD-SV system benefits from
constrained lexical variability while having little flexibility
in choosing pass-phrases. The other is Text-Independent
Speaker Verification (TI-SV), where only the speaker identity
is considered. However, it generally needs a more complex
model and dataset to train the TI-SV system as it must deal
with much wider lexical variability of the speakers’ voice
inputs. Also, TI-SV systems require the inputs to be relatively
longer to obtain consistent performance [1].

For commercial products, they currently have a restricted
command set which is supported by the products such
as registering the schedules and alarms, sending a text
message, and making a phone-call. Although actual commands
are not identical to each other, there are common words
occurring repeatedly in commands since they share the
structure of sentence; examples of such common words include
interrogatives, digits, and date. Accordingly, Text-Constrained

SV (TC-SV) can be another condition where SV allows
lexical variability to some extent but is constrained to a
limited vocabulary. With this condition, TC-SV could obtain
consistent and better performance with relatively simple model
and dataset compared to TI-SV. At the same time, it acquires
better flexibility in lexical variability than TD-SV. Some
previous works [2][3] tried to improve SV performance in this
condition and we focus on TC-SV in this paper.

Typical voice commands are not designed to have long
duration (e.g., a few reserved keywords, commands (verbs),
digit passwords). Poddar et el. [4] interpreted this condition
as a trade-off between user convenience and SV performance.
Therefore, short utterances (i.e., short commands) are worthy
to be considered for SV. However, that incurs severe
performance degradation in TI-SV [1] due to their insufficient
phonetic information. Li et al. [5] handled it by clustering
speech units and synthesizing the model for unseen speech
unit classes to cover insufficient phonetic information in short
utterances. Unlike it, we mitigate this problem by changing the
condition to the text-constrained condition, which alleviates
the insufficient phonetic information problem in the short
utterances and maximally exploit the trade-off.

Probabilistic model-based approaches have been widely
used and proven their effectiveness on SV. Gaussian Mixture
Model - Universal Background Model (GMM-UBM) [6]
represents the speaker and channel independent attributes over
their Gaussian components. Therefore, the speaker-dependent
model can be acquired via MAP adaptation from GMM-UBM.
The Joint Factor Analysis (JFA) model [7] factorizes
GMM-UBM supervector into the channel, speaker, and
residual factors to deal with non-speaker related factors
independently. The i-vector model [8] is a simplified one but
outperforms the existing models. It trains the total variability
matrix where the channel and speaker variabilities are
compressed into low dimensions. The Linear Discriminative
Analysis (LDA) and Probabilistic LDA (PLDA) are used to
improve i-vector to discriminate speakers by reducing the
within-class variation such as channel effect. The i-vector
model has been known as the state-of-the-art model for SV.
However, it suffers from sensitivity to lexical variability for
short utterances [4]. In addition, Li et al. [9] demonstrated in
detail that i-vector experiences dramatic performance drops for
short utterances. Zhong et al. [2] also studied that problem and
achieved a better result with reduced senone sets constrained

1766

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

978-988-14768-5-2 ©2018 APSIPA APSIPA-ASC 2018



to digits. They utilized deep neural networks (DNNs) just to
take an assistant role for selecting the senones and augmenting
the input feature with a bottleneck feature. That looks similar
to our work in a sense that we also utilize intrinsic properties
of the features from a DNN model, but we use it primary
features.

In the past few years, DNNs have shown great
accomplishments on SV. DNNs have replaced some
components of existing approaches based on probabilistic
models. For example, Lei et al. [10] replaced the GMM
which produces frame alignments with a DNN to calculate
the sufficient statistics for training i-vector extractor. Due
to its more precise and robust frame alignments, DNNs
enable i-vector model to show a better performance
than before. Instead of being a part of the existing
processes, some approaches [9][11][12] use DNNs as the
speaker-discriminative feature extractor (the feature vector
is called d-vector in contrast to the i-vector). Heigold et
al. [13] extend its role to classifier. They trained a DNN
model end-to-end through the back-propagation algorithm.
Li et al. [9] showed that d-vector can produce high-quality
speaker features even with a very short utterance about
0.3 seconds and concluded that speaker traits are a kind
of short time patterns that can be extracted in a short
utterance. However, they used the model with a lot of
parameters and a large dataset including 95,167 utterances
of 5,000 speakers to achieve reasonable performance for
text-independent scenario. Li et el. [3] alleviated the lexical
variability from text-independent to text-constrained condition
and they proposed phone-dependent training to handle it;
they simply concatenated phone posteriors with acoustic
feature. Unfortunately, however, it showed only a marginal
improvement. In this paper, we investigate and exploit the
potential of d-vector for SV with very short utterances under
text-constrained condition, we then propose effective ways of
extracting the d-vector under this condition.

II. SPEAKER VERIFICATION BASED ON THE D-VECTOR

Short context

Lo
ss

Parameter update

Acoustic feature of an utterance

sd-DNN

d-vector

Fig. 1. Training process of the sd-DNN model. Note that the activations of
the last layer make a d-vector.

To obtain d-vectors, Speaker-Discriminant DNN (sd-DNN)
model should be trained first. DNN models can be trained to
map inputs to a space where the target classes are discriminant,
which is called representation learning [14]. As shown in
Fig. 1, the sd-DNN model is trained to reduce cross-entropy
loss which quantifies errors in classifying the speaker identities
based on the presented utterances. After the training reaches
a convergence, the activations of the last hidden layer are
treated as the speaker-discriminative feature which is called
the d-vector.

Before running the SV on test utterances, each speaker who
wants to be enrolled should present several utterances during
the enrollment stage like sign up process. Then all d-vectors of
the presented utterances are averaged to make a speaker model
(i.e., speaker id) belonging to the corresponding speaker. After
enrollment stage is done, a test utterance is also transformed
to a d-vector, and then the cosine distance of the test d-vector
is measured with respect to the speaker model. Only when the
measured distance exceeds a predefined threshold, an utterance
is authenticated as the one from the enrolled speaker.

III. D-VECTOR PROPERTIES

A. Local Pattern

Convolutional Neural Networks (CNNs) do not need
hand-crafted features, instead, take raw input data and
extract optimal features for classification. Therefore, they
are trained to extract the most discriminative features
specialized for the classification objective. For acoustic inputs,
Mel-Frequency Cepstral Coefficients (MFCC) or Mel-scaled
energy Filter banks (Fbank) are typically used and shaped into
a single-channel 2D image-like data. Therefore, the superiority
of CNNs [15] is still valid for such acoustic inputs [16]. In
CNN models for SV, the filters extract different types of local
patterns while sliding the filter windows over the inputs, and
then they are transformed into more abstract features enough
to represent the speaker identity. Note that the state-of-the-art
CNN model is constructed with small sized filters [17] that
effectively capture informative local patterns.

Unlike The probabilistic-model-based approaches [6][8]
where the model extracts statistics frame by frame and then
computes the utterance-level feature based on the statistical
model such as Gaussian mixture model, the sd-DNN model
does not have an explicit statistical model. Instead, it merely
averages frame level features to generate an utterance-level
feature. That property makes d-vector superior to i-vector for
short utterances where the statistics can be easily biased [9].

B. Lexical Invariant Feature

As mentioned in Section II, the sd-DNN model is trained
to correctly classify speakers without considering lexical
variability of utterance; lexical variability is considered as
noise during training. Wang et al. [18] evaluated various
features for SV including d-vector. In their experiment, the
use of d-vector failed for tasks that require lexical information
such as detecting spoken terms and classifying word orders,
but it showed the best performance for tasks that require
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speaker-discriminative information. That means d-vector is
somewhat invariant to lexical variability. Therefore, it is
expected that d-vector is tolerable to lexical mismatch caused
by the very short length of utterance. Of course, it is not
always true; if an utterance is too short, it is not possible
to discriminate the speakers due to its invalid local patterns.

IV. TRAINING STRATEGIES FOR THE
SPEAKER-DISCRIMINATIVE DNN

The loss used to train the sd-DNN model is not designed
specifically for speaker verification since it does not fully
represent the SV process explained in Section II. Therefore,
even they have a positive correlation, the lower loss is not
directly connected to the better SV performance. In short,
we figure out that SV performance is closely related to
the generalization performance which is opposite sign to
overfitting. Because speakers seen during sd-DNN model
training and speakers in SV process are different (i.e.,
Zero-shot learning). In that perspective, we propose training
strategy for sd-DNN model.

There are many options for granularity of d-vector from
a frame to entire frames of an utterance. We figure out
that when the input granularity is excessively big, it can
induce overfitting. Because with stacked layers of the sd-DNN
model, their receptive fields are wider as the layer is deeper
and eventually cover all portion of input at the penultimate
layer where d-vectors are extracted. In that case, the sd-DNN
model tends to overfit utterance-level feature especially seen
in the training. As a result, utterances from the same speaker
would not be verified to the same identity due to their
lexical variability, thus resulting generalization performance
degradation. Therefore, we propose to use a few frames (called
short context) as a granularity of d-vector so, the sd-DNN
model is trained to extract the feature from short context,
which means the speaker traits are less dependent to lexical
variability and length of utterance. Note that our sd-DNN
model has the advantage of extracting local pattern due to
their convolutional layers.

Another control knob that we must set is how to make
a batch for training. According to [19], generating batch is
a crucial part of feature vector quality (d-vector in here).
There are two options; one is to change the selected utterances
after a short context of each utterance is randomly batched,
the other is to change the utterances after all short contexts
are processed. We call the former “random-splice batch”
and the latter “full-splice batch”. The main difference is
that the full-splice batch makes the sd-DNN update their
parameters for the utterances (i.e., the speakers) continuously
but the random-splice batch do it discretely. Of course, it is
expected that the result of random-splice batch training will
converge to that of full-splice batch after enough epochs.
However, we figure out that random-splice batch incurs
overfitting during training, which is not recovered shortly or
permanently. Opposite to [20] where the context size is 3
seconds and random-splice batch helps avoid overfitting, it
rather makes model parameters updated with insufficient or

biased acoustic feature in case of short context size less than
0.5 seconds. Thus, we adopt the “full-splice batch” for the
better generalization performance.

V. TEXT-CONSTRAINED

Since the text independence condition requires the model
to cover wide lexical variability, the model must be
large and complex (i.e., deep and wide neural network)
and dataset for training the model should be large to
cover wide lexical variability as in [20]. However, in the
text-constrained condition, the model can focus on dealing
with limited vocabulary, so it can perform well while keeping
their structure less complex and more compact thereby
reducing the computing resource requirements. Note that our
text-constrained condition does not mean all utterances should
contain only the words in the vocabulary. Instead we assume
that the majority of words in the utterances is included in
the vocabulary. And it also does not mean that our sd-DNN
model cannot handle out-of-vocabulary problem at all. As we
stated in Subsection III-B, our model has the lexical invariant
property, and thus it can handle that problem to some extent
as shown in Section VI.

VI. EXPERIMENTS

TABLE I
DATASET STATISTICS USED FOR EXPERIMENTS.

speakers words utterance

Speech commands 1, 881 30 65, 000
Development1 1, 766 203 37, 148
Evaluation2 102 30 11, 220

1 For sd-DNN training 2 For SV evaluation 3 Seen words

A. Dataset

To validate our proposed idea that DNN-based SV is
feasible for very short utterances composed of constrained
vocabulary, we perform some experiments. The dataset we
used in our experiments is Speech Command [21], which was
released in August 2017 by Google Inc. The dataset contains
65,000 one-second long utterances uttering one of 30 short
words by over a thousand different people. Although it was
originally intended to evaluate keyword recognition, it has
short duration and limited vocabulary that fit well with our
target conditions (i.e., text-constrained and short utterance).
Table I summarizes the dataset statistics. We split this dataset
into two parts so that the first one is used to train our sd-DNN
model (Development Set) and the other is used to evaluate
the SV performance (Evaluation Set). They do not share any
speaker. As the dataset provider did, we consider 20 words
including ‘yes’, ‘no’, digits, and words for directions as seen
words and the other 10 words as unseen words. We select
102 speakers for SV and each of them has 110 utterances
consisting of 100 out of seen words and 10 out of unseen
words. Next, 30 people are randomly sampled to be enrolled
speakers and for each speaker, 40 utterances (2 per 20 seen
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words) are picked as enrollment utterances. The other 72
speakers are considered as imposters.

Our input feature is the 40-dimensional Fbank, which is
the intermediate result before DCT is applied in the way to
generate MFCC. It is known to better keep local patterns intact
than the MFCC because of the absence of DCT [22]. We use
window length of 30ms and shift 10ms along the time. And we
eliminate non-speech frames of utterances in the development
set by Voice Activity Detection (VAD).

TABLE II
EQUAL ERROR RATE (EER, %) ACROSS DIFFERENT BATCH METHODS

Batch Sampling cosine distance w/ LDA

Full-Splice 5.89 3.43
Random-Splice 6.19 3.84

B. Model and Training

As we stated in Section V, the text-constrained condition
alleviates the requirement of a complex model. Therefore, we
decide to exploit a simple model, composed of only 4 blocks
each of which contains a convolutional layer followed by batch
normalization, ReLU activation, and max-pooling layers. The
output neurons correspond to the speaker labels whose size is
1,766, which is the number of speakers in the development set
used to train the model. For sd-DNN model training, we use
the stochastic gradient descent algorithm with 0.9 momentum
and 10−6 weight decay, and our learning rate and batch size
are set to 0.01 and 64 respectively. We train it until there is no
more improvement in validation accuracy. And we apply the
two different batch methods (full-splice and random-slice). As
shown in Table II, full-splice batch shows better equal error
rate (EER)1 values as we stated in Section IV. Our simple
model archives 5.89% EER by cosine distance and it decreases
to 3.43% when we apply the LDA on d-vectors.

C. Context size and Utterance Duration Scalability

TABLE III
EQUAL ERROR RATE (EER, %) AND SPEAKER IDENTIFICATION

ACCURACY (SI ACC., %) ACROSS THE DIFFERENT CONTEXT SIZES AND
NUMBERS OF WORDS IN AN UTTERANCE

Number of Words
Context size SI Acc. 1 2 3 4

100ms 19.35% 5.89 2.66 1.33 0.84
200ms 30.65% 5.95 2.68 1.43 0.90
500ms 67.48% 10.62 5.31 3.19 2.21

We train the model while sweeping the context size for
a d-vector. The result in Table III verifies our claim that
training the sd-DNN model with short context helps avoid
overfitting. Consequently, we use 100ms as the context size
for all experiments if there is no explanation.

Until now, we have evaluated SV performance on word
scale utterances. However, the duration of utterances can vary

1Error rate at the point where false positive and false negative rate are equal

according to the number of words (i.e., complexity) in voice
commands. To take this into account, we synthesize longer
utterances by concatenating several words. Of course, it is not
identical to the utterance recorded at a time, but it is still
useful to estimate how increasing utterance duration affects
the SV performance. We sweep the number of words from
one to four. The results presented in Table III show that the
extension of utterance duration improves the SV performance
a lot. This experiment demonstrates that shortness of utterance
is one of harsh obstacles for the SV and our model has the
great scalability to utterance duration.

TABLE IV
EQUAL ERROR RATE (EER, %) WITH DIFFERENT FEATURES AND

NUMBERS OF WORDS IN AN UTTERANCE

Number of Words
Feature 1 2 3 4

i-vector (cosine distance) 6.51 2.78 1.46 0.66
d-vector (cosine distance) 5.89 2.66 1.33 0.84

i-vector (w/ LDA) 7.70 3.99 2.36 1.14
d-vector (w/ LDA) 3.43 1.88 1.19 0.79

D. i-vector vs d-vector

In the i-vector model used for the experiment, the
GMM-UBM has 1024 Gaussians and i-vector dimension is
256. We use the same development set for the training of the
i-vector model and the same evaluation set for SV performance
comparison. However, we use MFCC for the input feature,
unlike the d-vector. The result is shown in Table IV. The
d-vector shows better performance compared to i-vector in
cases with fewer words (i.e., shorter utterances). However, in
the four words case, i-vector shows better performance. As
a result, we can conclude that d-vector is more suitable than
i-vector for short utterances as we stated in Subsection III-A.
When we apply LDA to both, the performance gap becomes
larger. For i-vector, LDA does not seem to be helpful under
short utterance condition.

TABLE V
EQUAL ERROR RATE (EER, %) ACROSS TEST UTTERANCES COMPOSED

OF SEEN, UNSEEN, AND MIXED WORD SET INDEPENDENTLY

word set Seen Unseen Mixed

cosine distance 5.75 6.75 5.89

TABLE VI
EQUAL ERROR RATE (EER, %) VARIATION ACCORDING TO SPEAKER

MODEL CONFIGURATIONS

(kind of words, # of each word)
(2, 2) (4, 1) (10, 2) (20, 1) (20, 2)

cosine distance 8.38 7.41 6.64 6.38 5.89
w/ LDA 6.37 4.93 4.29 3.60 3.43
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E. Tolerance to lexical variability and Mismatch

As we mentioned in Table I, We reserve 10 words as unseen
words, which are not included in the development set, thus
our sd-DNN model has not seen those words during training.
Therefore, SV on unseen words examines the tolerance of
our model to the lexical variability. In Table V, The ‘Seen’
and ‘Unseen’ mean utterances are composed of only seen
and unseen words, respectively and the ‘Mixed’ means no
restriction on words. The results in Table V show a little worse
EER for the unseen word set and nearly unchanged EER for
the mixed word set with compared to seen words set. Note
that the mixed word set is the most common case for real-life
usages.

In addition, we also consider a case where speakers do
not provide enough lexical variability during enrollment,
which incurs lexical mismatch during testing. To evaluate
SV performance for that case, we restrict the enrollment in
two ways; one is the kind of words and the other is the
number of each word. The kind of words determines the
level of lexical mismatch between the speaker model and
test utterances. As shown in able VI, as the total number
of utterances increases, the quality of the speaker model
improve accordingly. Although the larger total number of
utterances consistently make the EER better, the kind of words
is more sensitive factor given the same number of words. In
particular, it becomes severe in the case of small amount of
enrollment utterances. However, our model still works with
(4,1) configuration (4 utterances). There is only 1.5%p drop
compared to (20,2) configuration (40 utterances).

Those two experiments shows our model tolerates the
lexical variability and the features from the model has
tolerance to lexical mismatch between the speaker model and
test utterances.

VII. CONCLUSIONS

We have shown that a DNN can generate powerful
speaker-discriminative features from short utterances under the
text-constrained condition. We have also proposed an effective
way to train the model and extract the features applicable
to our target conditions. The generalization performance of
the model is the most important factor in the sd-DNN
model training for speaker verification. To achieve this,
we propose to use short context granularity and full-splice
batch training. According to our extensive experiments, our
model successfully learns to extract latent local patterns from
short contexts in an utterance and shows better EER than
the state-of-the-art technique using i-vector. Our proposed
approach also shows tolerance to lexical variability and
mismatch caused by unseen words and insufficient enrollment
utterances.
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