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Abstract—We propose a set of new accurate spectral
envelope recovery methods for speech sounds generated by
periodic excitation based on a set of interference-free power
spectrum representations. The proposed methods outperform our
previous spectral recovery models used in legacy-STRAIGHT,
TANDEM-STRAIGHT and WORLD VOCODERs. We introduce
several design procedures of paired time widows which remove
interferences caused by signal periodicity in the time domain
or in both time and frequency domains. In addition to
this interference-free representation, we introduce post and
pre-processing to improve recovery accuracy around spectral
peak regions. We conducted a set of evaluation tests using
voice production simulator and natural speech samples. Finally,
we discuss the application of the proposed method on revising
high-quality VOCODERs.

I. INTRODUCTION

Spectral envelope recovery (or estimation depending
on applications) from observed speech signals is a
crucial problem in speech processing applications. We
have developed VOCODERs (legacy-STRAIGHT[1],
TANDEM-STRAIGHT[2], and WORLD[3]) based on power
spectral representations, which remove interferences caused
by signal periodicity. We refer to these as “interference-free”
representations afterward. We introduce a new set of spectral
envelope recovery algorithms by revisiting interference-free
power spectrum representations of periodic signals. The
proposed algorithms outperform our previous ones for
extracting interference-free representations in the accuracy of
recovery and tolerance to errors in system parameters.

II. BACKGROUND AND RELATED WORK

Spectral envelope recovery from observed speech signals
has been an important research topic in speech science.
The source-filter model of speech production[4] provides a
forward model which is a reasonable and straightforward
approximation of non-linear and complex mechanism[5].
VOCODERs use this simple model for solving the inverse
problem of parametric representation of speech sounds and
generate sounds using the forward model. LPC[6], [7]
and homomorphic filtering (cepstrum)[8] are representative
examples.

Contrary to the general belief on waveform-coding’s
supremacy over VOCODERs several decades ago[9], [10],
legacy-STRAIGHT introduced an example that VOCODER
without approximating original waveform can provide

high-quality synthetic speech sounds. It interpreted the
periodic excitation in voiced sounds a strategy to convey
the underlying smooth time-frequency surface by systematic
sampling and tried to design procedure to recover the original
surface[1]. In a retrospective view, spectral envelope recovery
used in legacy-STRAIGHT applied the concept behind the
consistent sampling theory[11], [12]. TANDEM-STRAIGHT
also uses the same concept for designing the procedure[2],
[12]. The interference-free representation of WORLD uses a
unique condition associated with Hann window to reduce the
computational demand significantly[13].

Sinusoidal models[14], [15] and their recent versions[16],
[17] also provide high-quality synthetic speech sounds.
Although they are essentially waveform-based (phase
conscious) models, spectral envelope recovery is important
for flexible manipulations[18]. Usually, the spectral envelope
for sinusoidal models uses the true envelope method[19]
based on mel-cepstrum representation. However, as far as
the spectral model is for flexible manipulation, STRAIGHT,
WORLD, LPC, and refined LPC (for example, DAP takes
periodicity into account in parameter estimation[20]) spectra
apply to sinusoidal models.

Introduction of WaveNet[21] and huge success in various
speech processing problem[22], [23], [24] seems to make
VOCODERs outdated. Flexible audio manipulation using
latent variables based on WaveNet is also a significant
contribution[25]. However, we believe that filling the gap
between these latent representations and simple source-filter
models will significantly facilitate flexibility and visibility of
speech processing applications.1

Reliable spectral representations have critical importance
to make this gap-filling approach successful. The spectral
envelope recovery algorithms used in current VOCODERs
use heuristics in their infrastructure, algorithms to extract
interference-free representations[1], [2], [12], [13]. Strongly
parameterized representations, such as LPC, LPC-cepstrum,
and true-envelope models[6], [7], [8], [19], introduce errors
due to model mismatch.

In this respect, the proposed procedures are hybrid of
model-based ones and non-parametric ones. We are going to

1The first author learned a lot from making an interactive speech
production simulator of an education and research tools for speech science
(SparkNG)[26]. He also was inspired by a very intuitive and instructive voice
production simulator[27].
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revise VOCODER-based flexible speech processing tools[28],
[29], [30] by replacing the critical infrastructure, spectral
envelope recovery procedures, with the proposed procedures.

III. PROBLEMS TO BE SOLVED

Our goal is to develop algorithms to recover the (preferably
smooth) time-frequency surface P (f, t) from generated
signals. The signal can be a sum of harmonic sinusoids with
instantaneous amplitudes read from the surface. It can also be
a response to a repetitive excitation of the time-varying filter
made from the surface[1]. A spectrogram calculated using
short-term Fourier transform has periodic interferences caused
by the periodicity. Removing these interferences is the first
goal.

Our second goal is to apply interference-free representations
to voiced speech. The underlying surface of voiced speech
production has constraints on the spectral shape[4]. It
also consists of complex effects caused by non-linear and
acoustic-mechanical interactions in phonation mechanisms[5].

We introduce two different methods to attain the first
goal. The first one is an interference-free representation
both in time and frequency using one staged algorithm.
It uses a pair of windowing functions made from series
of trigonometric functions and numerical optimization.
The second one is a two-stage algorithm. It calculates
the temporally interference-free representation and removes
interference in the frequency domain. The analysis parameters
of this approach do not require numerical optimization. We
provided closed-form solutions for parameter setting.

We propose an analysis pipeline to attain the second
goal. First, spectrum whitening filter based on autoregressive
spectral model equalizes the input signal. Then, the two staged
procedure calculates the interference-free representation of the
preprocessed input signal. Finally, combining the time-varying
whitening filter shape and the calculated interference-free
representations yields the time-frequency surface specialized
for voiced speech sounds.

The organization of this paper is as follows. First, we
introduce interference-free representations which attain the
first goal. It describes the one-stage algorithm followed by
the two-stage algorithm. It also introduces numerical behavior
of these methods. Second, we introduce the pipeline which
attains the second goal. It presents examples using natural
speech analyses, followed by preliminary evaluation results
comparing with our previous methods, legacy-STRAIGHT,
TANDEM-STRAIGHT, and WORLD. Finally, we discuss the
application of the proposed representations and future issues.

IV. INTERFERENCE-FREE REPRESENTATIONS

In this section, we first simplify the requirement for the
interference-free representations, as follows. Let fo and to
represent the fundamental frequency and the fundamental
period. We impose constraints on the deviation of the
estimated/recovered spectral envelope from the truth.

1) Deviation has to be minimum in a time-frequency patch
(nto < t < (n + 1)to) and (kfo < f < (k + 1)fo),
where t represents time and f represents frequency.

2) Deviation has to be insensitive to relative phase
differences between harmonic components.

We do not directly set criteria for side-lobe levels and the
time and the frequency resolution of the window functions.
The requirement above implicitly embodies these criteria.

A. Interference-free in both time and frequency domain
Power spectra of a periodic pulse train calculated using

a Hann window and a window consisting of one cycle
of sinusoid yield a constant-valued power spectrum when
added together. However, this pair does not behave well
for periodic signals with random phase and random level
harmonic components. In this section, we introduce a set of
paired windowing functions and optimize them based on the
requirement mentioned before.

1) Pair of windows: The set of windows for calculating
power spectra have the following form:

wr(t) =
K∑

k=0

ak cos(πkt) (1)

wi(t) =
K∑

k=1

bk sin(πkt), (2)

where t represents the normalized time and the support of
the functions wr(t) and wi(t) is [−1, 1].2 We set a0 = 1 to
normalize the following derivation. Their frequency domain
representations Wr(f) and Wi(f) are as follows:

Wr(f) = sinc(f)a0

+
1

2

K∑

k=1

(sinc(f − k) + sinc(f + k))ak (3)

Wi(f) =
1

2j

K∑

k=1

(sinc(f − k)− sinc(f + k))bk, (4)

where we use the following definition.

sinc(x) ≡ sin(πx)

πx
(5)

The spectrogram P (f, t) consisting of interference-free
power spectrum is the power sum of the spectrograms Pr(f, t)
and Pi(f, t) calculated using wr(t) and wi(t) for windowing
respectively.

P (f, t;Θc) = Pr(f, t;Θr) + Pi(f, t;Θi), (6)

where Θc = Θr
⋃

Θi represents the set of parameters which
define windowing functions.

2) Cost function: For the normalized frequency f and
the normalized time t (normalized by the fundamental
frequency fo and the fundamental period to respectively), 3 a
time-frequency domain S = (m < t < m+1, k < f < k+1)
defines the area to evaluate the cost. Without losing generality,
we set m = 0 and k = 0. In the following evaluation, we use

2We normalized the time axis to make the window length 2 to simplify
the equations. The length of the window in the actual time domain depends
on the order K and the fundamental period to. The actual window length is
(K + 1)to.

3We use fo instead of using the conventional symbol f0 according to the
recommendation[31].
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the squared deviation of the spectrogram of periodic signals
from its average.

L2(Θ) =

∫

(t,f∈S)

∣∣∣P (f, t;Θ)− P (f, t;Θ)
∣∣∣
2
dfdt, (7)

where the system/signal parameter consists of the following
contents.

Θ =
{
{ak}Kk=1, {bk}Kk=1, fo, fc, {ϕn}N−1

n=−N

}
, (8)

where fc represents the assumed fundamental frequency in the
analysis step. A set of values {ϕn}N−1

n=−N represents the initial
phase values of related harmonic components. The constant
N represents the number of harmonic components considered
in the evaluation of the cost function.

3) Optimization for pulse train: Minimization of the cost
function requires numerical optimization. First, the simplest
case is to use a periodic pulse train as the input and assumes
that the fundamental frequency is known. Then, parameters
to be optimized are {ak}Kk=1, {bk}Kk=1. We used a nonlinear
optimization procedure built-in MATLAB, which does not
require explicitly calculating derivatives of the cost function.

Parameters for K = 1, 2, 3, 4 are as follows.
[a1, b1] = [1.0000, 0.9998],
[a1, a2, b1, b2] = [1.5182, 0.4607, 1.0172, 0.6793],
[a1, a2, a3, b1, b2, b3] =
[1.7983, 0.9999, 0.1852, 0.7202, 1.0002, 0.4622],
[a1, . . . , a4, b1, . . . , b4] =
[1.8470, 1.3733, 0.5980, 0.0770, 0.7385, 1.0896, 0.7539, 0.1925],

Figures 1 shows the shape of the optimized windows. In
each plot, the solid blue line represents wr(t), and the solid
red line represents wi(t) the thin yellow line represents the
envelope, in other words, |wr(t) + jwi(t)|.

Figures 2 shows the gain of the optimized windows. In each
plot, the solid blue line represents gr(f), and the solid red line
represents gi(f) the thin yellow line represents the power sum
of each gain, in other words, |gr(f) + jgi(f)|.

The standard deviation from the target spectrum using the
optimized pair of windows of order 3 is less than 0.01 dB
for randomized initial harmonic phase (uniform distribution in
(0, 2π) range.). However, the preceding and trailing ripples in
the temporal envelope of Fig. 1, especially in order 4 plot, will
be disturbing for audio signals. Because out auditory system
has a wide dynamic range and the ripple level -20 dB is easily
audible. Also, the error in fo assumption introduces spectral
deviations proportional to the amount of error. These motivated
the next alternative strategy. It is the two staged procedure for
deriving interference-free representations.

(Figure 3 is a placeholder. I will find relevant figure.)

B. Interference-free in the time domain and post processing
We introduce two staged algorithms to calculate other

interference-free representations. In the first stage, it calculates
temporally interference-free power spectrum. The second stage
removes periodic variation in the frequency domain. This
method uses one windowing function and frequency derivative
of the short-term Fourier transform using the windowing
function.

In the first stage, the temporally interference-free power
spectrum PTIF(ω) is a weighted sum of a power spectrum

-1 -0.5 0 0.5 1

normalized time

-1

-0.5

0

0.5

1

1.5

2
zero phase, mag:1 terms:2

wr
wi
abs(wr + jwi)

-1.5 -1 -0.5 0 0.5 1 1.5

normalized time

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
zero phase, mag:1 terms:3

wr
wi
abs(wr + jwi)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

normalized time

-2

-1

0

1

2

3

4
zero phase, mag:1 terms:4

wr
wi
abs(wr + jwi)

Fig. 1. The optimized pair of window shapes and the root of the squared sum.
The orders are 2, 3, and 4. The time axis is normalized by the fundamental
period to

P (ω) and a newly introduced power spectrum Pa(ω). The
newly introduced Pa(ω) (we call it associated power spectrum)
behaves complementary to the first power spectrum. Based on
preliminary investigations, we found that the squared absolute
value of (angular) frequency derivative of a short-term Fourier
transform S(ω) provides the desired behavior. The following
equations summarize this:

PTIF(ω) = P (ω) + c2fPa(ω) (9)

= |S(ω)|2 + c2f

∣∣∣∣
dS(ω)

dω

∣∣∣∣
2

, (10)

where c2f represents the mixing weight of power spectra. Note
that this mixing coefficient does not need tuning. We derived
closed-form representations for determining cf for each type
of windowing function.
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Fig. 2. The gain functions of the optimized pari of windows. The orders are
2, 3, and 4.

We selected two types of windowing functions for
this approach. One is B-spline functions. The other is
a combination of a trigonometric function and B-spline
functions. We designed these functions to have zeros at
harmonic frequencies.

1) B-spline based functions[32]: The B-spline expansion
of s(x) is defined below:

s(x) =
∑

k∈N
c(k)βn(x− k), (11)

where N represents the set of natural number and β(n)(x)
represents the n-th B-splines.

0.9 1 1.1 1.2

fc/fo

10-3

10-2

10-1

100

R
M

S
 S

D
 o

f 
sp

e
ct

ro
g

ra
m

 (
d

B
)

fo error effects: zero phase, known fo mag:1.2

2
3
4
5

Fig. 3. RMS standard deviation error on assumed fo error. Left plot shows
the optimized parameters for regular pulse train analysis. The right plot shows
that for fully scanned harmonic signals.

The n-th B-spline is defined as an extension of the 0-th
spline.

β0(x) =

⎧
⎨

⎩

1, − 1
2 < x < 1

2
1
2 , |x| = 1

2
0, otherwise

(12)

β(n)(x) = β0 ∗ β0 ∗ · · · ∗ β0(x)︸ ︷︷ ︸
(n+1) times

. (13)

The Fourier transform of B-splines are as follows:

β̂(n)(ω) =

(
sin
(
ω
2

)

ω
2

)n+1

(14)

In the first order approximation, the interfering component is
from the neighboring harmonic component. This interference
in the power spectrum varies sinusoidally. Using the identity
sin2 θ + cos2 θ = 1 removes this temporal variation. Because
the level in the middle of harmonic component is the sum
of both contribution, in other words, the sum of complex
exponentials, the slope at that point provides orthogonal
variation. The frequency derivative of the gain function is
what we need. By using Fourier transform theories, it is
equivalent using an associated window which is the product
of the original window and the time axis t.

dF [g(t)]

dω
= tg(t) (15)

It also has the following form:

d

dω

⎡

⎣
(
sin
(
ω
2

)

ω
2

)n+1
⎤

⎦ =

(n+ 1)(ω2 cot(ω2 )− 1)

(
sin(ω

2 )
ω
2

)n+1

ω

(16)

By adjusting the gain at ω/2 = π/2 to that of the original
B-splines, the sum of power spectra calculated using these
windows temporally static.

Table I provides the gain and the calibration coefficients to
make the sum of the power spectra temporally static. Note
that the frequency derivative can be calculated numerically
from the Fourier transform of the original B-splines.
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2) Combination of a trigonometric function and B-spline
functions: The next useful set of functions starts from a
half-cycle of the trigonometric function.

v(0)(x) =

{
cos(πx) − 1

2 ≤ x ≤ 1
2

0, |x| > 1
2

(17)

v(n)(x) = v(0)(x) ∗ β0 ∗ β0 ∗ · · · ∗ β0(x)︸ ︷︷ ︸
n times

(18)

The frequency domain representations of these are as
follows.

v̂(n)(ω) =
2π cos(ω2 )

π2 − ω2

(
sin
(
ω
2

)

ω
2

)n

(19)

For later use, it is convenient to have gain 1 at frequency
zero. It yields the following:

v̂(n)(ω) =
π2 cos(ω2 )

π2 − ω2

(
sin
(
ω
2

)

ω
2

)n

(20)

The sum of power spectra calculated using the original
and the associated windowing functions provides a temporally
static power spectral representation. This summation needs the
appropriate mixing coefficients.

The following equation shows the frequency derivative of
the gain of the associated windowing function:

dv̂(n)(ω)

dω
=

d

dω

[
π2 cos(ω2 )

π2 − ω2

(
sin
(
ω
2

)

ω
2

)n]

=

π22n−1

(
sin(ω

2 )
ω

)n+1 (
n
(
π2 − ω2

)
ω cot2

(
ω
2

)
+
(
2nω2 − 2π2n+ 4ω2

)
cot
(
ω
2

)
+ ω3 − π2ω

)

(π2 − ω2)2
(21)

TABLE I
CALIBRATION TABLE FOR MAKING SUM OF POWER SPECTRA

TEMPORALLY STATIC. THE GAINS ARE AT ω = π. NOTE THAT THE ORDER
n REPRESENTS THE ORDER OF B-SPLINE AND DOES NOT REPRESENTS THE

EXPONENT.

order(n) β(n)(π)
dβ(n)(ω)

dω

∣∣∣∣∣
ω=π

cf (n)

0 -3.9224 -13.8654 9.9430
1 -7.8448 -11.7672 3.9224
2 -11.7672 -12.1678 0.4006
3 -15.6896 -13.5914 -2.0982

(gain: dB)

TABLE II
CALIBRATION TABLE FOR MAKING SUM OF POWER SPECTRA

TEMPORALLY STATIC FOR THE CONVOLUTION OF TRIGONOMETRIC
FUNCTION AND 0-TH B-SPLINES. THE GAINS ARE AT ω = π.

order(n) v̂(n)(π)
dv̂(n)(ω)

dω

∣∣∣∣∣
ω=π

cf (n)

0 -2.0982 -18.0618 15.9636
1 -6.0207 -12.4418 6.4211
2 -9.9431 -11.9273 1.9841
3 -13.8656 -12.9271 -0.9384

(gain: dB)

This equation provides the calibration coefficients to make
the sum of the power spectra temporally static. Table II shows
the resulted coefficients.

3) Removing frequency domain interference: These
temporally static power spectral representations have periodic
variation in the frequency domain. Using convolution with
the 0-th spline of the width of the fundamental frequency fo

removes this periodic variation in the frequency domain.

P (n)
TFIF(ω) =

1

ωo

∫ ωo/2

−ωo/2
P (n)
TIF(ω + ν)dν (22)

=
1

ωo

(
U (n)
TIF(ω + ωo/2)− U (n)

TIF(ω − ωo/2)
)

(23)

U (n)
TIF(ω) ≡

∫ ω

−ωo

P (n)
TIF(ν)dν (24)

This smoothing operation has a side effect, over-smoothing.
A digital filter on the discrete frequency axis compensates
for this over-smoothing, based on the consistent sampling
theory[11].

4) Numerical results: This section illustrates the behavior
of the algorithms for B-spline based method and the method
using the combination of a trigonometric function and B-spline
functions (trigo-splines afterward)

Figure 4 shows the standard deviation of the spectrogram
from the target spectrogram. The test signal is a periodic signal
with initial phase randomization of each harmonic component.
The horizontal axis shows the order of the function. The upper
plot shows the results without post-processing of frequency
domain smoothing. The lower plot shows that with the
post-processing. These plots reveal the needs and effectiveness
of the post-processing. It is also interesting to note that for the
order 1, the trigo-spline function provides good performance
even without the post-processing.

Figure 5 shows the standard deviation caused by the error of
the assumed fo. These results indicate that the B-spline-based
method and the convolution of trigonometric and B-splines are
relatively tolerant using order 2 functions.

Figure 6 shows the systematic error due to the harmonic
level difference. In this simulation, a uniform distribution
(in dB) gave each harmonic level. The results suggest
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Fig. 4. Standard deviation of the spectrograms in the time-frequency plane,
as a function of the order n. The test signal is a periodic signal with initial
phase randomization of each harmonic component. The black lines represent
the results of B-splines and the red lines represent the results of trigo-splines.
The upper plot shows the results without frequency domain processing. The
lower plot shows that with post processing.

that by equalizing harmonic levels before calculating
the interference-free representations, the digital filter for
compensating over-smoothing effect is not needed at least for
the 2nd and 3rd order windowing functions. By adding back
the amount of equalization to the resulted interference-free
representations yields the desired representation. This
equalization and adding back for pre- and post-processing
is the main idea to attain the second goal mentioned in the
beginning.

V. INTERFERENCE-FREE REPRESENTATION FOR VOICED
SOUNDS

Application of these interference-free representations for
voiced sounds needs further refinement. The one-stage method
behaves as interpolation of harmonic levels using sinc function
and its exponentials. The two-stage method behaves like
the nearest neighbor interpolation of harmonic levels with
smoothing. When the underlying target representation is flat
in the time, and the frequency domain, procedures introduced
in the previous sections section behave similarly well.
However, the underlying spectral envelope of voiced sounds
has sharp peaks at vocal tract resonance frequencies. Direct
application of the procedures for calculating interference-free
representations smears out these peak shapes and this
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Fig. 5. Tolerance to assumed fo error. Left plot shows results using B-splines.
Right plot shows results using the convolution of trigonometric function and
B-splines.

spectral smearing results in quality degradation when used in
VOCODERs[12], [33].

As mentioned in the last section, pre-whitening of
the speech signal before calculating interference-free
representations and adding back afterward alleviates this
discrepancy. This pipeline procedure is the answer to the
second goal. We introduce the lattice type pre-whitening filter
to reduce disturbing transient caused by parameter update for
handling time-varying systems. The lattice filter parameters
are reflection coefficients based on LPC analysis.

VI. NATURAL SPEECH EXAMPLES AND SIMULATION

This section shows analysis examples using natural speech
sounds followed by simulation tests to verify the findings.
The speech spectral envelope recovery from natural speech
example consists of steps described in Appendix A

The test script also shows the magnified spectrograms
and the spectral slice views. The slice consists of the raw
power spectrum, the time-frequency interference-free power
spectrum, and the recovered power spectrum. The NDF
fundamental frequency extractor[34] provided the assumed fo
for each frame.

Figure 7 shows the spectrogram recovered using the pipeline
mentioned before. The signal is a Japanese vowel sequence
/aiueo/ spoken by a male speaker. The sampling frequency is
22,050 Hz and 16 bit quantization.
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B-splines. Right plot shows results using the convolution of trigonometric
function and B-splines.
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Fig. 7. Recovered spectrogram using the pipeline.

To illustrate the role of each procedure, we prepared
magnified views of the beginning part of the spectrogram.
Figure 8 shows the magnified view of the recovered
spectrogram.

Figure 9 shows several illustrative representations with
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Fig. 8. Magnified view of the recovered spectrogram. The image shows the
initial low frequency part.
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Fig. 9. Illustrative spectrogram with magnified view.

magnified view. The top image shows the raw spectrogram
calculated using only the main window. The regular
dots are the result of interferences between adjacent
harmonic components. The second image shows the directly
derived interference-free representation. Note that the formant
trajectories look broader by smearing caused by the mismatch
of interpolation behavior.

Figure 10 shows spectral slices of these representations.
The raw power spectrum is shown using the blue line. The
finally recovered spectral envelope is shown using the orange
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Fig. 10. Spectral slice of several representations. Slice positions from top-left,
top-right to bottom-right: 180 ms, and 540 ms.

line. The directly applied interference-free representation
is shown using the yellow line. These examples are
worst-case examples. In these spectral slices, the first and the
second formant frequencies are between adjacent harmonic
components. It made the direct interference-free representation
have flattened peak shape. The pre-whitening procedure and
the recovery post-processing recover the proper spectral peak
shape.

A. Simulated evaluation by fo modification
We conducted recovery accuracy evaluation by using the

recovered interference-free representation as the ground truth
surface. We generated synthetic speech signals using converted
fo trajectories by multiplying the modification coefficient cm.
We set the instantaneous amplitude of each modified harmonic
component by reading from the surface and added together
to generate the test signals. We tested the proposed method
using the trigo-spline function with and without pipeline
procedure and compared recovered spectral envelope using
legacy-STRAIGHT, TANDEM-STRAIGHT, and WORLD.
Figure 11 shows the results. The horizontal axis represents
the amount of fo modification cm. The vertical axis represents
the RMS average of the dB distance between the ground truth
and the calculated spectral envelope. The upper plot shows
the results using the Japanese vowel sequence used in the
previous section. The lower plot shows the results using a file
(arctic_a0023.wav of speaker bdl) in the CMU arctic
database[35]. Note that the latter sample was downsampled
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Fig. 11. Simulated fo conversion and spectral recovery accuracy.

to 16 kHz before analysis. These results illustrates that
the interference-free representation calculated using pipeline
processing outperforms in the spectral envelope recovery
accuracy.

B. Evaluation by speech production simulator

We tested spectral envelope recovery accuracy using a
speech production simulator in SparkNG[26]. The simulator
consists of a one-dimensional vocal tract and the anti-aliased
L-F model[36] for the glottal excitation source. This setting
enables to evaluate spectral distortion objectively because
the simulator provides the ground truth. We prepared twelve
Swedish vowels as the reference points using the first three
formant frequencies and band widths[37]. Then introduced
perturbation to the formant frequencies and bandwidths and
added higher formant information by assuming the sampling
frequency 22,050 Hz with 17.0 cm vocal tract length.

Figure 12 shows the spectral distortion as the function of the
fundamental frequency. Evaluation of the spectral distortion
used the frequency range from the fundamental frequency
to 4,000 Hz The results indicate that the proposed pipeline
procedure provides the best performance. We tested using
three voice quality types (modal, breathy, creaky)[38]. For all
conditions, the proposed pipeline procedure provided the best
performance.
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VII. DISCUSSION AND FUTURE WORK

We introduced two types of procedures for calculating
interference-free representations of periodic sounds. They
are generally applicable to periodic sound analysis. The
one-stage procedure yields the best performance when the
actual value of the fundamental frequency is known. When
the assumed fundamental frequency consists of errors, the
two-stage procedure is more tolerant to the errors. This
tolerance to errors suggests that the one-stage procedure is
suitable for measurements where the fundamental frequency
of the test signal is known. We recently introduced a signal
called frequency domain velvet noise (FVN)[39], which is
a variant of the velvet noise[40], [41]. Application of FVN
enables a novel set of procedures for acoustic impulse response
measurement[42] which includes musically entertaining test
signals for impulse response. Combination of FVN with this
interference-free representation also introduces an attractive
real-time acoustic measurement application.

It also suggests that the two-stage procedure is preferable
for speech analysis where the estimate of the fundamental
frequency usually consists of errors. In addition to the
two-stage procedure, we proposed a pipeline procedure
specialized for voiced speech analysis. It uses an LPC-based
analysis for pre-whitening equalization of the input signal.
By mixing the LPC-based envelope and the interference-free
representation of the whitened signal yields the refined
spectral envelope. One technical issue of this pipeline
procedure is the pre-processing for LPC-based analysis.
The current implementation uses a simple differentiation
for this pre-processing. This simple procedure has to be
revised by a relevant adaptive procedure for processing
a variety of natural speech materials. This pipeline-based
method can revise the infrastructure of our VOCODERs
and may provide better sounding resynthesized sounds. The
proposed representations may also useful for improving speech
manipulation procedures. However, these are the topics for
further research.

VIII. CONCLUSION

We proposed a set of new accurate spectral envelope
recovery methods for speech sounds generated by periodic
excitation based on a set of interference-free power spectrum
representations. The proposed methods outperform our
previous spectral recovery models used in legacy-STRAIGHT,
TANDEM-STRAIGHT, and WORLD VOCODERs. Our first
goal was to calculate interference-free representations of
periodic sounds. We introduce two methods to attain this
goal. The first one is the one-stage algorithm by using paired
time windows. The other one is the two-stage algorithm using
B-spline functions and a composite of a trigonometric function
and B-spline functions. Our second goal is to apply these
interference-free representations to voiced speech analysis.
We introduce a post and pre-processing to improve recovery
accuracy around spectral peak regions to attain this goal. We
conducted a set of evaluation tests using voice production
simulator and natural speech samples. Finally, we discuss the
application of the proposed method for revising high-quality
VOCODERs. We will make these procedures open-source
because they are useful for analyzing and processing general
periodic signals.
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APPENDIX

Steps to calculate the interference-free representation of
natural speech examples.

Source analysis:
The fundamental frequency extraction is the first step
of the analysis.

Spectrogram: first scan:
The time-frequency interference-free spectrogram
is extracted. This test script also calculates
the usual spectrogram, and temporally static
spectrogram together. Note that the speech signal
is pre-emphasized to compensate the global spectral
tilt. This time, differentiation is applied (as the first
order approximation).

Conversion to the interference-free auto-correlation:
The inverse Fourier transform of the interference-free
spectrogram (power spectrum dimension) yields
autocorrelation. The 0-lag component corresponds to
the power.

LPC analysis: seek for the appropriate order
The linear prediction errors from order 1 to 30
provide the clue to decide the relevant analysis order.
LPC-spectrograms with and without power matching
are calculated.

LPC analysis:
LPC analysis provides the reflection coefficients. The
analysis order was 26, based on the visual inspection
of the prediction errors.

Sample-wise interpolation of the reflection coefficients:
The update rate of the reflection coefficients was
1 ms. This process interpolates the reflection
coefficients at the audio sampling rate.

Whitening of the signal
The LPC-lattice inverse filter whitens the speech
signal and yields the whitened speech signal.

Interference-free spectrogram of the whitened speech signal:
This is the second scan of calculating speech
spectrogram without time-frequency interferences.

Recovery of details:
The LPC-spectrogram and the interference-free
spectrogram of the whitened speech are combined
to yield the recovered spectrogram.
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