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Abstract—We propose to use group-sparsities of the extended
OD (Origin-Destination) flow matrix, expressing time transitions
of traffic matrices, for effective detection and flexible character-
ization of diverse network traffic anomalies. We also formulate
an approximate decomposition problem of an extended OD flow
matrix into a group-sparse and a low-rank temporally-smooth
matrix. Moreover, we present a characterization of typical DDoS
(Distributed Denial of Service) attacks with a certain sparsity
of aggregated traffic volumes per unit time for each group of
OD flows to the same destination. The proposed characterization
is combined with the proposed decomposition problem to estab-
lish a DDoS attack detection scheme. A numerical experiment
demonstrates effectiveness of the proposed DDoS attack detection
scheme.

I. INTRODUCTION

Cyber attacks including DDoS (Distributed Denial of Ser-

vice) attack are immense threats of the internet and detecting

their anomalous traffic is a crucial task to maintain safe and

secure societies. Although this detection problem has been

investigated in a variety of ways, most existing studies need

packet details or introduction of a new protocol [1], which

may cause disadvantages: collecting packet details not only

degrades the network performance but also causes privacy

issues; introducing a new protocol needs much cost.

On the other hand, anomaly detection methods based on

information gathering time-transition of traffic volume per OD

flow over the network are free from these disadvantages. The

OD flow fij is a set consisting of all traffics which enter

the network at the origin node i, and exit the network at the

destination node j (i 6= j).1 To represent the traffic volume

z
(k)
ij of the OD flow fij in certain time k(k = 1, · · · , T ),

we utilize the traffic matrix Z
(k) := [z

(k)
ij ] as used often

in the field of network tomography [2]. The time transition

of the traffic matrix can be expressed as the matrix Z⋆ :=
[ vec(Z(1)) · · · vec(Z(T)) ] ∈ R

F×T which is called as the

extended OD flow matrix in this paper, where the operator

vec(·) converts a matrix to a column vector expression. The

traffic matrix and extended OD flow matrix are widely used for

traffic-engineering [3]–[7]. This is because, unlike the OD flow

1Denote the number of OD flows by F .

fij , they can be inferred through a certain linear model2 and

contain no packet detail. This nature makes anomaly detection

methods based on the extended OD flow matrix free from the

above disadvantages.

Another benefit to use of the extended OD flow matrix

is that its detailed features were known empirically through

analyses of actual measurements of the internet. [10]–[12]

reported that the extended OD flow matrix Z⋆ can be modeled

well as the sum of a smooth diurnal part Zsd
⋆ ∈ R

F×T and a

fluctuation part Zflu
⋆ ∈ R

F×T , i.e.,

Z⋆ = Z
sd
⋆ +Z

flu
⋆ . (1)

Meanwhile, Lakhina et al. [13] reported that the extended OD

flow matrix Z⋆ can be modeled well as the sum of a low-

rank matrix H⋆ ∈ R
F×T consisting of non-anomalous traffic

volume, a matrix A⋆ ∈ R
F×T consisting of anomalous traffic

volumes, and a matrix N⋆ ∈ R
F×T consists of noise-like

fluctuation traffic volumes, i.e.,

Z⋆ = H⋆ +A⋆ +N⋆. (2)

We refer, in this paper, to H⋆, A⋆, and N⋆, respectively, as

normal component, anomalous component, and noise compo-

nent.

The model in (2) is adopted widely in the network to-

mography [7], [14]–[16] and plays a key role in anomaly

detection. Focusing on the low-rankness of H⋆, [17] proposed

an anomaly detection by Principal Component Analysis (PCA)

[18]. Using the low-rankness of H⋆ and the sparsity of

A⋆ simultaneously, [19] proposed an anomaly detection by

the so-called Robust Principal Component Analysis (RPCA)

[20]–[22] which is an approximate decomposition from a

matrix to the sum of a sparse matrix and a low-rank matrix

(see Sec. II-C). Although [19] assumed complete information

of Z⋆, [6] presented RPCA-based anomaly detection from

superpositions of Z⋆ (see Sec. II-D).

However, the existing RPCA-based detection methods [6],

[19] are not necessarily appropriate to detect malicious traf-

fic volumes caused by DDoS attacks. RPCA-based anomaly

2The linear model (5) shows that entries of extended OD flow matrix are
superposition of the traffic volume carried over links (link matrix) and routing
information (routing matrix). The link matrix and routing matrix are available
in practice by Simple Management Protocol (SNMP) [8] and Open Shortest
Path First (OSPF) protocol [9].
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detections adopt a principle to uniformly characterize non-

anomalous traffic volumes by the low-rankness as well as

diverse anomalous ones by the sparsity. In other words, RPCA-

based anomaly detections do not care sufficiently about the

causes of diverse anomalies. For example, in the typical DDoS

attack, a large number of unspecified nodes send numerous

packets to target nodes, which causes group-sparse malicious

traffic volumes in the extended OD flow matrix rather than

sparse ones (Fig. 3(a) below). Moreover, if the DDoS attack

occurs in a periodic fashion (we call this kind of attacks as

periodic DDoS attack), it may cause low-rank (but possibly

nonsmooth) malicious traffic volumes indistinguishable from

the normal component of low-rank. Hence the existing RPCA-

based detection methods may fail to detect group-sparse or

low-rank traffic volumes caused by the DDoS attacks.

In this paper, to resolve the above inappropriateness in use

of the RPCA-based anomaly detections for DDoS attacks,

we propose a use of group-sparsity of A⋆ and temporally

smoothness of H⋆. Use of the group-sparsity in place of

the sparsity realizes a flexible characterization of anomalous

traffic volumes caused by cyber attacks including the typical

DDoS attack. Use of the temporally smoothness realizes a

more accurate characterization of the non-anomalous traffic

volume and is helpful to distinguish the non-anomalous traffic

volume from the anomalous one caused by the periodic DDoS

attack. The use of the temporally smoothness is supported

by two aspects: H⋆ is expected to be temporally smooth

by a simple comparison of the two models (2) and (1),

i.e., (H⋆,A⋆ + N⋆) ≈ (Zsd
⋆ ,Zflu

⋆ ); the periodic DDoS

attack tends to cause non-smooth malicious traffic volumes.

To embody the use of the group-sparsity and the tempo-

rally smoothness, we propose an approximate decomposition

problem of an extended OD flow matrix into a group-sparse

matrix plus a low-rank temporal-smooth matrix (see (20))

and show its solution can be efficiently approximated well

by convex problem solvers (see Sec. III-A). We also present

that the anomalous component due to the DDoS attacks is

characterized as group-sparsity of OD flows grouped according

to the destinations. This grouping is employed in the proposed

decomposition problem to present a DDoS attack detection

(see Sec. III-B). Finally, numerical experiment evaluates the

utility of proposed DDoS attack detection (see Sec. IV).

II. PRELIMINARIES

A. Notation

Denote respectively as R,R+, and N the set of all real

numbers, nonnegative real numbers, and natural numbers. Bold

letters express a vector and a matrix. Denote the identity matrix

by In ∈ R
n×n. We denote the transpose of a vector or matrix

by (·)⊤, the rank of a matrix by rank(·), and the trace of

a square matrix by tr(·). For x := (x1, x2 . . . , xn)
⊤ ∈ R

n,

ℓp-norm (p ≥ 1) is defined by ‖x‖p := (
∑n

i=1 |xi|p)
1/p

. For

X := [xi,j ] ∈ R
m×n, define ‖X0‖ := |{(i, j) | xi,j 6= 0}|

(ℓ0 pseudo-norm), ‖X‖1 :=
∑

i,j |xi,j | (ℓ1-norm), ‖X‖F :=√
tr(XX

⊤) (Frobenius norm), and ‖X‖∗ :=
∑

i σi(X)

(Nuclear norm), where σi(X) denotes the i-th largest singular

value of X .

B. Observation Model of Extended OD Matrix

We model IP network by a directed graph G(N ,L) where

N and L denote, respectively, a set of nodes and a set of

edges. Each node n ∈ N represents a network element that

generates, receives and/or relays network traffic, e.g., an end-

host, an Ethernet switch, an IP router, or a point of presence.

Each edge l ∈ L represents a physical link between two nodes.

For simple notation, we denote N = |N | and L = |L|. We

model the set of traffics traverse from one node to another

by an OD (Origin-Destination) flow. Let F be the set of the

OD flows for every different OD pairs. The number of OD

flows, say F := |F| = N(N − 1), far exceeds the number of

physical links, i.e., F ≫ L. Per OD-flow, single path routing

is considered where in each flow packets traverse a unique

path to reach the destination. Then the routing matrix R :=
[rl,f ] ∈ {0, 1}L×F is defined by

rl,f :=

{
1 if flow f traverses link l,

0 otherwise,
(l, f) ∈ L × F . (3)

We suppose that R is fixed and given. Let z⋆f,t denote the

unknown integrated traffic volume of flow f ∈ F through

time [t, t + 1). Similarly, let yl,t denote the integrated traffic

volume of link l ∈ L through time [t, t + 1). Since the link

traffic volumes arise from the superposition of the flow traffic

volumes, yl,t can be represented by

yl,t =
∑

f∈F

rl,fz
⋆
f,t + ε̃l,t, t ∈ T := {1, . . . , T}, (4)

where the additive noise ε̃l,t ∈ R models packet loss on link

l ∈ L and observation errors. By introducing the link matrix

Y := [yl,k] ∈ R
L×T
+ , the extended OD flow matrix Z⋆ :=

[z⋆f,t] ∈ R
F×T
+ , and the additive noise matrix ε̃ := [ε̃l,t] ∈

R
L×T , we restate (4) as

Y = RZ⋆ + ε̃. (5)

We refer to (5) as the observation model of the extended OD

flow matrix. In addition, combining (5) and Lakhina’s model

(2) yields the observation model

Y = R(H⋆ +A⋆) + ε (6)

of the sum of the normal component and the anomalous

component, where ε := RN⋆ + ε̃. One of the main goals

of anomaly detection is to estimate (H⋆,A⋆) from the link

matrix Y and the routing matrix R. Note that the link

matrix and the routing matrix are often available in practical

situations2 while entire information of all OD flows is hard to

obtain.

Remark 1 (On use of partial flow traffic volumes): In

the real IP network, we can observe traffic volume of partial

OD flows.3 These observable OD flow traffic volumes can be

3Routers that support Netflow [23] obtain flow traffic volumes.
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utilized by replacing the observation models (5) and (6) with

Y
′ = R

′
Z⋆ + ε̃

′, (7)

Y
′ = R

′(H⋆ +A⋆) + ε
′, (8)

where the routing matrix R is replaced by the model matrix

R
′ :=

[
R

I
R

]
∈ {0, 1}(L+FO)×F (9)

(FO is the number of the observable OD flows) with a diagonal

matrix I
R ∈ {0, 1}FO×F to extract traffic volumes of the

observable OD flows, and, accordingly, the observation Y

and the additive noises ε̃, ε are also replaced with Y
′, ε̃

′,

and ε′. Since both models (6) and (8) are of the same form

of the linear model, discussions in Sec. II-C, Sec. II-D, and

Sec. III can be applied to both models while we focus mainly

on the model (6) for simplicity.

C. Robust Principal Component Analysis

The classical PCA problem [18] fits a low-rank matrix

L ∈ R
m1×m2 to a given high-dimensional data matrix

M ∈ R
m1×m2 while trying to minimize the norm of the error

M −L =: S ∈ R
m1×m2 for arbitrarily fixed r ∈ N:

minimize
(L,S)

‖S‖F, s.t. rank(L) ≤ r, M = L+ S. (10)

By the Schmidt-Eckart-Young Theorem [24], the optimal low-

rank matrix L̂ ∈ R
m1×m2 in the minimizer (L̂,M − L̂) ∈

R
m1×m2×R

m1×m2 of problem (10) is given by truncating the

singular value decomposition (SVD) of M , retaining only the

contribution of its r largest singular values.4 If M = L0+S0

originates from a low-rank matrix L0 (rank(L0) ≤ r) and S0

contains Gaussian noise (entries of S0 distributed as N (0, σ2)
with σ2 small), then the truncated SVD will recover a matrix

L̂ ≈ L0. However, if S0 contains very large entries (outliers)

then the truncated SVD will return a matrix that is largely

deviating from L0, even if S0 only affects a small fraction

of the entries of L0. In other words, if S0 models a sparse

error, i.e., it represents a small number of largely corrupted

entries of L0, the truncated SVD will fail to recover L0 (in

most cases).

On the other hand, [20], [21], and [22] showed indepen-

dently from each other that under certain assumptions (on L0

and S0) one can exactly recover the low-rank matrix L0 from

M = L0 + S0, where S0 is a sparse matrix, by solving the

following convex optimization problem:

minimize
(L,S)

‖L‖∗ + λ‖S‖1, s.t. M = L+ S, (11)

where λ ∈ R is a trade-off parameter between the rank of

L and the sparsity of S. We will refer to problem (11) as

4The optimal low-rank matrix is obtained as

L̂ = U diag(σ1, . . . , σr, 0, 0, 0)V
⊤,

where we denote that the SVD of M by M = UΣV
⊤ with orthonormal

matrices U ∈ R
m1×m1 , V ∈ R

m2×m2 and with the diagonal matrix
Σ = diag(σ1, σ2, . . . , σrank(M), 0, . . . , 0) consisting of singular values of
M in nonincreasing order σ1 ≥ σ2 ≥ . . . ≥ σrank(M) > 0.

Principal Component Pursuit (PCP) or as Sparse Plus Low-

Rank decomposition. Problem (11) is a convex relaxation of

minimize
(L,S)

rank(L) + λ‖S‖0, s.t. M = L+ S. (12)

D. Network Anomaly Detection via PCP

Under the assumption that H⋆ is low-rank and A⋆ is sparse,

by following the idea of the PCP (11), the authors in [7]

presented to estimate (H⋆,A⋆) from the observation Y in

(6) by a solution (Ĥ, Â) of the PCP for anomaly detection:

minimize
(H,A)

‖H‖∗ + λ‖A‖1 s.t. Y = R(H +A). (13)

Since ‖ · ‖∗ is a convex relaxation of rank(·), minimization

of the objective function in problem (13) enhances the low-

rankness of Ĥ , which is consistent with the low-rankness of

H⋆.

However, problem (13) adopts a principle to uniformly

characterize anomalous traffic volumes by the sparsity and

does not care sufficiently the causes of diverse anomalies.

Hence, the anomaly detection by Â cannot be expected its

high accuracy in a wide variety of circumstances. We will see

that the anomaly detection by Â fails to identify the malicious

flow traffic volumes due to the DDoS attacks in Figure 3(b),

which demonstrates that the PCP for anomaly detection is not

a general-purpose tool.

III. A GENERALIZED PCP: GROUP-SPARSE PLUS

LOW-RANK TEMPORALLY-SMOOTH DECOMPOSITION

FOR ANOMALY DETECTION

A. Generalized PCP for Anomaly Detection

First, we design a cost function of which suppression en-

hances the group-sparsity of the estimation of A⋆. Let Fj ⊂ F
(j = 1, . . . , J) be nonempty and let Tk ⊂ T (k = 1, . . . ,K).

Then Fj × Tk forms a group w.r.t. OD flows and times. We

introduce G := {Fj × Tk | j = 1, . . . , J, k = 1, . . . ,K}
to characterize anomalous traffic volumes. (note: G forms

possibly overlapping groups). For G ∈ G, define an operator

πG : R
F×T → R

|G| : X(:= [xf,t]) 7→ (xi,j)(i,j)∈G (14)

to extract entries of an extended OD flow matrix belonging to

the group G. Then suppressing

R
F×T → R+ : A →

∑

G∈G

‖πG (A)‖ , (15)

enhances the sparseness of the vector (‖πG (A)‖)G∈G
∈ R

|G|
+

because the function in (15) is nothing but the ℓ1-norm of

the vector (‖πG (A)‖)G∈G
. In other words, suppressing the

function in (15) enhances the group-sparsity of A with the

grouping G.

Second, we design a cost function of which suppression

enhances the temporal smoothness of the estimation of H⋆.

Our cost function is nothing but the high-order total-variation
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[25] where the variation is computed in time direction. Define

Dτ = [(dτ )i,j ] ∈ {−1, 0, 1}τ×(τ−1)

(dτ )i,j :=





−1 if i = j

1 if i+ 1 = j

0 otherwise

(16)

(∀τ ∈ N : τ ≥ 2).5 Then the matrix ZDT ∈ R
F×(T−1)

comprises the differences of temporally adjacent entries of

Z ∈ R
F×T . Furthermore, we recursively define the matrix

for computing the k-th (k ∈ N) order variations

D
(1)
T := DT ∈ {−1, 0, 1}T×(T−1) (17)

D
(k)
T := D

(k−1)
T DT−(k−1) ∈ R

T×(T−k). (18)

Then suppressing the k-th order total variation

R
F×T → R : H 7→ ‖HD

(k)
T ‖1, (19)

i.e., the absolute sum of k-th order variation of H , enhances

the smoothness of H .

Finally, using (15) and (19) and extending the idea of

the PCP for anomaly detection (13), we propose Group-

Sparse Plus Low-Rank Temporally-Smooth Decomposition for

anomaly detection as a generalized PCP for anomaly detec-

tion:

for Y ∈ R
L×T ,R ∈ {0, 1}L×F , nonempty closed convex sets

CH , CA ⊂ R
F×T , and λ1 ≥ 0, λ2 ≥ 0,

minimize
(H,A)

‖H‖∗ + λ1‖HD
(k)
T ‖1 + λ2

∑

G∈G

‖πG (A)‖2 (20)

s.t. Y = R(H +A)

H ∈ CH , A ∈ CA.

Note that CH and CA represent prior knowledge on H and

A. A typical choice is CH = CA = R
F×T
+ to represents

nonnegativity of traffic volumes.

Since problem (20) is convex optimization, its solutions

can be approximated well by the so-called proximal splitting

methods which are iterative algorithms including ADMM [26],

forward-backward splitting [27], and primal-dual splitting

[28]–[30]. Remark that (20) reverts the PCP for anomaly

detection (13) when λ1 = 0 and G = {{f} × {t} | (f, t) ∈
F × T }.

Remark 2 (On use of partial flow traffic volumes in the

generalized PCP for anomaly detection (20)): As mentioned

5

Dτ =





−1 0 · · · · · · 0 0

1 −1
. . . 0 0

0 1
. . .

. . . 0 0
.
.
.

. . .
. . .

. . .
. . .

.

.

.

0 0
. . .

. . . −1 0

0 0
. . . 1 −1

0 0 · · · · · · 0 1





∈ {−1, 0, 1}τ×(τ−1)

in Remark 1, we can introduce the generalized PCP with the

observation model (8), as a counterpart of the generalized

PCP (20) with the observation model (6), by replacing (Y ,R)
in (20) with (Y ′,R′) in (8).

B. Application to DDoS Attack Detection

In case of DDoS attacks, traffics to target nodes increase

abnormally as a large number of unspecified nodes send

numerous packets to target nodes. Focusing this nature, we

introduce groups of OD flow traffic volumes according to the

destinations (and times), i.e.,

GDDoS := {D
(t)
j ⊂ F × T | (j, t) ∈ N × T } (21)

where D
(t)
j := {f ∈ F | des(f) = j} × {t}, (22)

des : F → N : f 7→ (destination node of f ),

to estimate malicious traffic volumes as the solution of the

generalized PCP for anomaly detection (20). Usually, since

the number of the target nodes is relatively small, the vector(
π
D

(t)
j

(A⋆)
)
(j,t)∈N×T

∈ R
NT is expected to be sparse. In

other words, A⋆ is group-sparse with the groups GDDoS.

Using GDDoS in the generalized PCP (20), we also present

a generalized PCP for DDoS attack detection: for Y ∈
R

L×T ,R ∈ {0, 1}L×F , and λ1 ≥ 0, λ2 ≥ 0,

minimize
(H,A)

‖H‖∗ + λ1‖HD
(k)
T ‖1 + λ2

∑

t∈T

∑

j∈N

∥∥∥πD
(t)
j

(A)
∥∥∥
2

s.t. Y = R(H +A) (23)

H ∈ R
F×T
+ , A ∈ R

F×T
+ .

IV. NUMERICAL EXAMPLES

To evaluate the performance of the generalized PCP for

DDoS attack detection (23), we conduct a numerical simula-

tion on a toy example where the partial OD flows are available

and where the DDoS attack and periodic DDoS attack occur.6

Consider the network in Fig. 1 with nodes N = 15 and

links L = 48 (note: the number of flows is F = 210). We

design routing matrix R ∈ R
L×F according to the shortest

path routing algorithm. We suppose that the traffic volume of

20% of all the OD flows is available (i.e. FO = 42), and hence

the model matrix R
′ =

[
R

I
R

]
∈ {0, 1}(L+FO)×F is defined as

in (9). We sample the link and flow traffic volumes T = 200
times.

The measurements are generated by

Y
′ =

[
R

′(H⋆ +A⋆) + ε
′
]
+
, (24)

where [·]+ represents the operation to replace negative entries

by 0 and ε′ is chosen from the Gaussian distribution with

variance σ2 = 10−2(‖R′(H⋆ +A⋆)‖
2
F /(LT + FOT )). Each

6Further experiments involving actual traffic traces will be reported else-
where.
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Fig. 1. Network topology: Dots and lines represent respectively nodes and
links. Compromised nodes which take part in DDoS attacks are also described.

Fig. 2. Visualization of H⋆

entry hf,t of H⋆ = [hf,t] ∈ R
F×T consists of the sum of

h
(m)
f,t (m = 1, . . . , 5)

hf,t =

5∑

m=1

h
(m)
f,t (25)

h
(m)
f,t =A

(m)
f sin

(
2πB

(m)
f t− 2πC

(m)
f

)
+A

(m)
f , (26)

where7 A
(m)
f ∼ U [0.05, 0.5], B

(m)
f ∼ U [0, 7

200 ], and C
(m)
f ∼

U [0, 1] (see Fig. 2 for visualization of H⋆). The anomalous

component A⋆ is generated as follows. Six compromised

nodes are chosen randomly in advance (see Fig. 1) and

participate the typical DDoS attack as well as the periodic

DDoS attack. Target nodes of the periodic DDoS attack are

also randomly selected in advance. Simultaneously, all nodes

are attacked randomly with a probability of 0.5% each time

period. When node j is attacked at time t, each entry of

π
D

(t)
j

(A⋆) (see (14) and (22)) is set to 5 if its corresponding

flow is originated from a compromised node, and set to 0
otherwise. Fig. 3(a) depicts A⋆ employed in this experiment.

We compare the PCP for anomaly detection (13) and the

7For a, b ∈ R : a < b, the symbol U [a, b] denotes the continuous uniform
distribution on [a, b].

generalized PCP for anomaly detection (23). For the gener-

alized PCP (23), k(= 2)nd-order total variation is utilized.

The parameter λ in problem (13) and parameters (λ1, λ2) in

problem (23) are chosen to achieve the best performance. The

approximate solutions of the PCP (13) and the generalized

PCP (23) are obtained by applying ADMM [26].

Figure 3(b) shows the approximate solution of the conven-

tional PCP (13) and clearly demonstrates that the conven-

tional method is inappropriate for the DDoS attack detection.

Meanwhile, Fig. 3(c) shows that the approximate solution

of the generalized PCP (23) succeeds in detecting DDoS

attacks. The comparison between Fig. 3(b) and Fig. 3(c)

clearly demonstrates utility of the generalized PCP (23) for

DDoS attack detection.
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