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ABSTRACT 

The quality of depth map is one key factor contributing to 
the quality of 3D video and virtual reality (VR) rendering. 
In this study, we use RGB-D camera (Microsoft Kinect for 
Windows v2) to capture the color sequences and depth se-
quences as our system inputs. The captured depth map con-
tains various noises and artifacts in addition to the occlu-
sion regions. We use the color sequences in both spatial do-
main and time domain to improve the quality of the depth 
map. Our main contributions are alignment between color 
and depth images and reducing artifacts in the reflection re-
gions. Several techniques are adopted, modified, and re-de-
signed such as moving object compensation, unreliable 
depth pixel detection, and locally adaptive depth pixel re-
finement algorithm. The experimental results show that the 
quality of the depth map is significantly improved.  

Index Terms — Depth map, depth refinement, camera syn-
chronization, backward warping, disocclusion filling, Kinect v2 

1. INTRODUCTION 

Owning to the growing popularity of 3D video and virtual 
reality (VR), there is growing demand for high-quality 
depth map for 3D-video rendering. The current consumer 
depth cameras produce depth maps with various kinds of 
noises and artifacts.  Therefore, a number of depth map en-
hancement algorithms have been developed to improve the 
depth map quality.  Most of them combine the information 
from the color camera or another depth camera to reduce 
the defects of the target depth map. For instance, in [1], it 
combines the disparity maps derived from two color images 
with ToF camera SR4000 to produce high resolution depth 
map. Other similar works are [2] and [3]. 

In this paper, we propose a depth map refinement al-
gorithm to improve the quality of captured depth map se-
quence. We use the Microsoft Kinect v2 to capture color 
and depth sequences. We up-sample the depth map and 
correct the wrong depth pixel, and also fill up the holes 
with the correct depth values. We align the depth map 
with its associated high resolution color image. The over-
all flow diagram of our proposed scheme is shown in Fig-
ure 1. To begin with, we align the raw depth map to the 
color image with proper motion and shift compensation. 
After that, we adopt the method in [4] to detect the occlu-
sion regions, and fill them up with the correct background. 

Then, we identify the unreliable depth pixels and the re-
flection regions and fill in the segmented depth values in 
their neighborhood. At the end, we use a simple bilateral 
filter to smooth out the depth map random noises if neces-
sary. We repeat the same work flow for every frame in an 
RGB-D sequence to construct the final depth map se-
quence. We will elaborate on the key components in our 
algorithm in the following sections. 

 
Figure 1. Overall work flow of proposed method. 

2. ALIGNMENT BETWEEN COLOR IMAGE AND DEPTH 
MAP   

Because the color camera and the depth camera in Kinect 
v2 are not synchronized, they capture the scenes at slightly 
different time instances as shown in Figure 2(a). To align 
the depth map with the corresponding color image, we start 
from the last refined depth frame, which has matched to its 
associated (last) color image. We shift it according to the 
motion vectors [5] derived from the color images to pro-
duce a stitched depth map. We assume the stitched depth 
map is matched to the color image in the spatial domain.  

In the following steps, we shift the moving part in the 
raw depth map to the corresponding location in the 
stitched depth map. Firstly, we use the Scale Invariant 
Feature Transform (SIFT) [6] to find the feature points of 
the two depth maps. Then, we match the feature points of 
the two depth maps. Using the matched feature pairs, we 
calculate a homography matrix transforming one depth 
map to another. However, the two depth maps are not ex-
actly the same scene because they are captured at two time 
instances. As a result, using the homography matrix to 
transform does not give good result. Instead, we use the 
shifting vectors to map the raw depth pixels to the stitched 
map. Because each matched feature pair can provide a 
shifting vector candidate, we need to identify the one that 
is most reliable shifting vectors. After careful evaluation 
on the most reliable shifting vectors, we shift the moving 
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object in the raw depth map by the chosen shifting vector 
as shown in Figure 2(b), which is an aligned depth map. 

 
(a) 

 
   (b) 
Figure 2. The gray gradient of a color image overlaps on its raw 

depth map of the 3rd frame in Person and Bear seq. (a) The 
original depth map. (b) The aligned depth map. [White re-
gions are missing depth pixels due to occlusion and defects.] 

3. UNRELIABLE DEPTH PIXEL AND REFLECTION 
REGION DETECTION  

After the alignment, the occlusion region filling is done us-
ing the approach in [4]. Next, we process the unreliable 
depth pixels. We first identify them. Often, depth pixel er-
ror happens near edges (object boundaries) due to depth 
map upsampling and the spatial transformation in the align-
ment process. Also, there are flicker noises appearing in a 
depth map. To label these depth pixels as unreliable depth 
pixels, we use the information from the color images. There 
are some similar works, which also make use of the color 
image to refine the depth map such as segmentation based 
refinement [7]. However, sometimes an inaccurate segmen-
tation would lead to undesirable result in a region. Hence, 
we do the pixel-by-pixel check to increase accuracy. 

Firstly, we partition a depth map into blocks and pro-
cess each block separately. We divide the depth pixel in 
each block into 2 or 3 groups according to the histogram of 
depth values in the block. This is a locally controlled seg-
mentation. Then, we calculate the average hue and gray val-
ues of each depth group. We also calculate the difference 
of hue and gray values for each depth pixel against the av-
erage ones and determine which pixel should be labeled as 
unreliable depth pixel. The result is shown in Figure 3, in 
which the red-color points are unreliable depth pixels.  

 
Figure 3. Depth map with labeled unreliable depth pixels. 

       The difficult part is the reflection region, where the 
missing depth pixels are due to the reflection surface 
(which interfere with the infrared sensor). These pixels of-
ten have legitimate depth values and are clustered to form 
a sizable region. Thus, we cannot simply use the conven-
tional noise-reduction method to process them. An example 
is shown in Figure 4, the red window in hair is a reflection 
region. The depth values in the hair are wrongly assigned 
by using the background depth. Because the dominant 
depth value may be wrong in the reflection region, we can-
not use the previous unreliable depth pixel detection 
method to detect the reflection region. Hence, we detect the 
reflection region and refine it using a specifically designed 
procedure. 

 
Figure 4. Display of reflection region in depth map. 

Our assumption is that the large hole of depth map is 
due to two main causes, one is occluded region, and the 
other is reflection region. We observe that the hole caused 
by occluded region is often strongly connected (no gap), 
while the hole caused by reflection region is often sparse 
(gaps between pixels). Because sometimes the Kinect re-
ceiver does not detect the correct infrared light and produce 
the correct depth in the reflection region, it results in sparse 
depth holes. The hair in Figure 5(a) is an example of reflec-
tion region. This part is enlarged in Figure 5(b). Thus, our 
first step is to detect these sparse depth holes as shown in 
Figure 6(a). Then, we grow from these seeds to cover the 
entire reflection region based on the color similarity, and 
finally label the reflection region  as shown in Figure 6(b). 

  
(a)                              (b) 

Figure 5. The full depth map is shown in (a) and the enlarged 
part of head is shown in (b). 
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(a) 

 
(b) 

Figure 6. Sparse depth holes in the depth map (a). Final label 
(detection) of reflection region in the depth map (b). 

4. DEPTH REFINEMENT ON THE UNRELIABLE DEPTH 
PIXELS AND HOLES 

After we label all the pixels to be refined, we apply the pro-
posed pixel refinement algorithm to them. The basic as-
sumption is that the depth value of its neighborhood is 
mostly correct. Thus, we use the neighborhood to alter the 
depth value of target pixel based on the information of color, 
distance, and depth pixel reliability. 

First, we set an adaptive window centered at an unre-
liable depth pixel or hole which is the target we like to mod-
ify. Then, we pick up the neighborhood pixels inside the 
window as candidates, and use them to calculate and esti-
mate the correct depth value of the target depth pixel. Next, 
we calculate the weights of the depth candidates and then 
compute the weighted average. The weight is location de-
pendent and is defined by the following formula, 

 weight_location = 𝐞𝐞− 𝒙𝒙_𝒅𝒅𝒅𝒅𝒅𝒅𝟐𝟐+𝒚𝒚_𝒅𝒅𝒅𝒅𝒅𝒅𝟐𝟐
𝟏𝟏𝟏𝟏𝟏𝟏    ,   (1) 

where x_dis is the distance in the x-axis between the depth 
candidate and the target pixel, and similarly, y_dis is the 
distance in the y-axis. And the weight in color similarity is 
defined below, 

weight_color = 𝐞𝐞− (𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅_𝒈𝒈𝒈𝒈𝒈𝒈𝒚𝒚𝟐𝟐
𝟓𝟓𝟏𝟏 +𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅_𝒉𝒉𝒉𝒉𝒉𝒉𝟐𝟐

𝟓𝟓𝟏𝟏 +𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅_𝒅𝒅𝒈𝒈𝒔𝒔𝟐𝟐
𝟒𝟒𝟏𝟏𝟏𝟏 )  ,   (2) 

where diff_gray is the difference in gray intensity between 
the depth candidate and the target depth pixel, diff_hue is 
the difference in hue, and diff_sat is the difference in satu-
ration. The weight of an unreliable depth pixel is defined 
as follows.   

If a depth pixel∈unreliable, weight_reliable =  0.1,  
else = 1.  (3) 

As for the depth candidate in a reflection region, its 
weight is assigned as follows.  

If a depth pixel∈reflection, weight_reflection = 0.3, 
 else = 1. (4)  

Finally, we combine all the weights to form the final 
weight of a depth candidate as follows. 

Weight = weight_location×weight_color×weight_reli-
able×weight_reflection.    
         (5) 

The parameters in the above equations are selected ex-
perimentally and they are fixed constant values for all test 
sequences. The experimental results show that the 
weighting parameter is quite robust. After finishing all the 
weights calculation, we remove the depth candidates of 
weight lower than 0.7 times the average weight. Next, we 
calculate the average depth value using all the remaining 
depth candidates together with their weights and also cal-
culate the depth variance of these candidates. We check 
whether the variance is smaller than a specified threshold. 
If so, we jump to the final decision step; otherwise, we 
come back to remove the unlikely candidates so that the 
depth variance of the candidates is lower than the threshold. 
In the final step, we replace the depth value of the target 
depth pixels by the majority of the surviving depth candi-
dates if the number of surviving candidates is larger than a 
specific threshold. The above process can be described by 
the pseudo codes shown in Figure 7. In Figure 7, D is the 
depth value of depth candidate, WC is the weight of depth 
candidate, Nc is the number of remaining inlier depth can-
didate, and σ2 is variance threshold, set to 200 based on ex-
periments; the threshold value is not very sensitive. 

 
Figure 7. Simplified algorithm of depth pixel refinement. 

5. DEPTH REFINEMENT ON THE REFLECTION 
REGION 

As discussed earlier, we need to refine the depth pixels in 
the reflection region using a special procedure. This pro-
cess is shown in the flowchart of Figure 8. We first compare 
the gray intensity between the current pixel and the back-
ground pixel to check whether it belongs to the background. 
If it is not, we compare the gray intensity between the cur-
rent pixel and the previous frame pixel to check whether it 
is a static pixel. If not, we simply use the process described 

1532

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



in Figure 7 to refine it. But, we make some modifications 
in the weights of depth candidates.  

Our weight_location and weight_color follow the 
same definitions in the last section. The weight_reliable is 
defined by the following formula. 

If a depth pixel∈unreliable, weight_reliable =0.8,     
else  = 1.  (6) 

After refining the unreliable depth pixels in the last section, 
the unreliable depth pixels should become more reliable. 
Therefore, we increase the weight of unreliable depth can-
didates in (6).  

Moreover, we define the weight_background, which 
is associated with the background depth candidate below.  

If a depth pixel∈background,  
weight_background=0.01, else=1.                        (7) 

A depth candidate is background or not is checked by its 
depth value. A pixel is examined whether it is a back-
ground pixel before applying this final refinement step. If 
it belongs to the background depth, we correct its depth 
value directly and will not go to the final refinement step. 
At the final step, we cannot use the background neighbor-
hood to refine a non-background pixel. Hence, we reduce 
the weight of the background depth candidate to 0.01 in 
(7). Similar to eq.(5), we multiply all the weights  associ-
ated with a candidate pixel within a window centered at 
the target pixel. A procedure similar to that in Figure 7 is 
applied to refine the depth pixels in the reflection region.  

After we refine the depth pixels in the reflection re-
gion, we use a simple bilateral filter to smooth the depth 
map. Because most of our operations is pixel-based, we 
reduce the pixel outliers by using a smoothing filter. 

 
Figure 8. Overall process in reflection region refinement. 

6. EXPERIMENTAL RESULTS  

The Microsoft Kinect v2 is used to capture images 
with the depth maps. We use Kinect v2 SDK to warp and 
interpolate the depth map to match the color images in res-
olution and to compensate the base line distance between 
color camera and depth camera.  We took four video se-
quences in our experiments, that is, Person and Bear, Per-
son, Bear Rotation, and Bear Slide. We compare our results 
with the methods proposed in [8] and [9].  

In [8], they also use the color image and depth map 
from Kinect v2 to improve the depth map. But, they mainly 
handle the depth holes and do not correct the wrong depth 
pixels. First, they input all the color frames and depth 

frames to construct the color and depth background. To 
achieve a precise depth map, they use the segmentation of 
color image to assist the refinement of the background 
depth map. Then, they detect the foreground of each frame 
by the color background. After that, they fill up the depth 
holes in the background region with the produced depth 
background. Finally, the remaining depth holes in fore-
ground are filled by the dominant depth value of a neigh-
borhood region inside the foreground.  

In [9], they also use the color image to enhance the 
depth map. But, their process is restricted to one picture ra-
ther than a video sequence. Their algorithm is based on the 
heat diffusion framework. The pixels with known depth 
values are treated as the heat sources to diffuse. The diffu-
sion conductivity is designed based on the color image. It 
will form a linear anisotropic diffusion problem. They case 
it into walk model and solve the sparse linear system. They 
need manually to tag out the region needed to refine so that 
the depth point will be filled up with a known depth value 
from the heat source. Because it needs manually to tag the 
region to be refined on every depth map, and we only pro-
cess a few frame using this algorithm, thus we only com-
pare the results on some  selected frames rather than a video 
sequence. 

We clip our depth map to 1460×1080 in comparison. 
Figure 9 shows the results of the 3rd frame in the Person and 
Bear sequence. We can see that the method in [9] cannot 
fill up all the holes and some refined depth pixels are incor-
rect (Figure 9(d)). From Figure 9(f), we can see that the 
method in [8] can enhance most parts of a depth map cor-
rectly. However, it still suffers from the non-alignment 
problem, and therefore the depth map does not match well 
with the color image as shown in Figure 9(g). Also, it does 
not handle the reflection region well. Our proposed method 
can refine nearly all the pixels correctly as shown in Figure 
9(h) and (i). The difference can be observed more clearly 
on Figure 10. 

 Figures 11 and 12 show the experimental results for 
different dataset. Some processed depth video sequences 
can be found in [10]. Limited by space, we do not include 
the details of all the steps and parameters used in our 
scheme.  

7. CONCLUSIONS 

The depth map generated by Kinect v2 is of low resolu-
tion and has artifacts such as occlusion holes and wrong 
depth pixels. We propose a depth map refinement algo-
rithm using the information of high-resolution color video 
captured by Kinect v2 to enhance the resolution and qual-
ity of depth map. Different from the previous approaches, 
we fix the temporal misalignment problem using the mo-
tion information in a video sequence and also, we use the 
feature matching technique to reduce the minor shift. We 
also construct a background to build the static information 
to assist the refining process. Another contribution of our 
algorithm is handling the reflection region. It consists of 
two steps: reflection region detection and its refinement 
procedure. At the end, we show the visual results of our 
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algorithm. Our scheme can produce a good quality depth 
map, consistent with its associated color image. 

 

 
(a) 

  
(b)         (c) 

  
(d)         (e) 

  
(f)         (g) 

  
  (h)         (i)  

Figure 9. Experimental result of frame 3 of Person and 
Bear sequence. (a) Color image. (b) Initial depth map. (c) Over-
lap (b) with the gradient of (a). (d) Processed depth map using 
[9]. (e) Overlap of (d) with the gradient of (a). (f) Processed 
depth map from [8]. (g) Overlap (f) with the gradient of (a). (h) 
Our processed depth map. (i) Overlap (h) with gradient of (a). 

 

       
  (a)              (b) 
Figure 10. Zoom in of Figure 9. (a) Zoom in view of 

Figure 9(g). (b) Zoom in view of Figure 9(i). 
  

 
 
 
 

 

 
(a) 

  
(b)         (c) 

  
(d)         (e) 

  
(f)         (g) 

  
  (h)         (i)  

Figure 11. Experimental result of  frame 61 of Bear glide 
sequence. (a) Color image. (b) Initial depth map. (c) Overlap (b) 
with the gradient of (a). (d) Processed depth map using [9]. (e) 
Overlap of (d) with the gradient of (a). (f) Processed depth map 
from [8]. (g) Overlap (f) with the gradient of (a). (h) Our pro-
cessed depth map. (i) Overlap (h) with gradient of (a). 
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(a) 

  
(b)         (c) 

  
(d)         (e) 

  
(f)         (g) 

  
  (h)         (i)  

Figure 12. Experimental result of frame 17 of Person se-
quence. (a) Color image. (b) Initial depth map. (c) Overlap (b) 
with the gradient of (a). (d) Processed depth map using [9]. (e) 
Overlap of (d) with the gradient of (a). (f) Processed depth map 
from [8]. (g) Overlap (f) with the gradient of (a). (h) Our pro-
cessed depth map. (i) Overlap (h) with gradient of (a). 
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