
DEPTH MAP ENHANCEMENT ON RGB-D VIDEO CAPTURED BY
KINECT V2

Ke-Yu Lin and Hsueh-Ming Hang

Electrics Inst., ECE College, National Chiao Tung University, Taiwan
Email: mvp9sit@yahoo.com.tw, hmhang@nctu.edu.tw

ABSTRACT

The quality of depth map is one key factor contributing to
the quality of 3D video and virtual reality (VR) rendering.
In this study, we use RGB-D camera (Microsoft Kinect for
Windows v2) to capture the color sequences and depth se-
quences as our system inputs. The captured depth map con-
tains various noises and artifacts in addition to the occlu-
sion regions. We use the color sequences in both spatial do-
main and time domain to improve the quality of the depth
map. Our main contributions are alignment between color
and depth images and reducing artifacts in the reflection re-
gions. Several techniques are adopted, modified, and re-de-
signed such as moving object compensation, unreliable
depth pixel detection, and locally adaptive depth pixel re-
finement algorithm. The experimental results show that the
quality of the depth map is significantly improved.

Index Terms — Depth map, depth refinement, camera syn-
chronization, backward warping, disocclusion filling, Kinect v2

1. INTRODUCTION

Owning to the growing popularity of 3D video and virtual
reality (VR), there is growing demand for high-quality
depth map for 3D-video rendering. The current consumer
depth cameras produce depth maps with various kinds of
noises and artifacts. Therefore, a number of depth map en-
hancement algorithms have been developed to improve the
depth map quality. Most of them combine the information
from the color camera or another depth camera to reduce
the defects of the target depth map. For instance, in [1], it
combines the disparity maps derived from two color images
with ToF camera SR4000 to produce high resolution depth
map. Other similar works are [2] and [3].

In this paper, we propose a depth map refinement al-
gorithm to improve the quality of captured depth map se-
quence. We use the Microsoft Kinect v2 to capture color
and depth sequences. We up-sample the depth map and
correct the wrong depth pixel, and also fill up the holes
with the correct depth values. We align the depth map
with its associated high resolution color image. The over-
all flow diagram of our proposed scheme is shown in Fig-
ure 1. To begin with, we align the raw depth map to the
color image with proper motion and shift compensation.
After that, we adopt the method in [4] to detect the occlu-
sion regions, and fill them up with the correct background.

Then, we identify the unreliable depth pixels and the re-
flection regions and fill in the segmented depth values in
their neighborhood. At the end, we use a simple bilateral
filter to smooth out the depth map random noises if neces-
sary. We repeat the same work flow for every frame in an
RGB-D sequence to construct the final depth map se-
quence. We will elaborate on the key components in our
algorithm in the following sections.

Figure 1. Overall work flow of proposed method.

2. ALIGNMENT BETWEEN COLOR IMAGE AND DEPTH
MAP

Because the color camera and the depth camera in Kinect
v2 are not synchronized, they capture the scenes at slightly
different time instances as shown in Figure 2(a). To align
the depth map with the corresponding color image, we start
from the last refined depth frame, which has matched to its
associated (last) color image. We shift it according to the
motion vectors [5] derived from the color images to pro-
duce a stitched depth map. We assume the stitched depth
map is matched to the color image in the spatial domain.

In the following steps, we shift the moving part in the
raw depth map to the corresponding location in the
stitched depth map. Firstly, we use the Scale Invariant
Feature Transform (SIFT) [6] to find the feature points of
the two depth maps. Then, we match the feature points of
the two depth maps. Using the matched feature pairs, we
calculate a homography matrix transforming one depth
map to another. However, the two depth maps are not ex-
actly the same scene because they are captured at two time
instances. As a result, using the homography matrix to
transform does not give good result. Instead, we use the
shifting vectors to map the raw depth pixels to the stitched
map. Because each matched feature pair can provide a
shifting vector candidate, we need to identify the one that
is most reliable shifting vectors. After careful evaluation
on the most reliable shifting vectors, we shift the moving

1530

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

978-988-14768-5-2 ©2018 APSIPA APSIPA-ASC 2018

object in the raw depth map by the chosen shifting vector
as shown in Figure 2(b), which is an aligned depth map.

(a)

 (b)
Figure 2. The gray gradient of a color image overlaps on its raw

depth map of the 3rd frame in Person and Bear seq. (a) The
original depth map. (b) The aligned depth map. [White re-
gions are missing depth pixels due to occlusion and defects.]

3. UNRELIABLE DEPTH PIXEL AND REFLECTION
REGION DETECTION

After the alignment, the occlusion region filling is done us-
ing the approach in [4]. Next, we process the unreliable
depth pixels. We first identify them. Often, depth pixel er-
ror happens near edges (object boundaries) due to depth
map upsampling and the spatial transformation in the align-
ment process. Also, there are flicker noises appearing in a
depth map. To label these depth pixels as unreliable depth
pixels, we use the information from the color images. There
are some similar works, which also make use of the color
image to refine the depth map such as segmentation based
refinement [7]. However, sometimes an inaccurate segmen-
tation would lead to undesirable result in a region. Hence,
we do the pixel-by-pixel check to increase accuracy.

Firstly, we partition a depth map into blocks and pro-
cess each block separately. We divide the depth pixel in
each block into 2 or 3 groups according to the histogram of
depth values in the block. This is a locally controlled seg-
mentation. Then, we calculate the average hue and gray val-
ues of each depth group. We also calculate the difference
of hue and gray values for each depth pixel against the av-
erage ones and determine which pixel should be labeled as
unreliable depth pixel. The result is shown in Figure 3, in
which the red-color points are unreliable depth pixels.

Figure 3. Depth map with labeled unreliable depth pixels.

 The difficult part is the reflection region, where the
missing depth pixels are due to the reflection surface
(which interfere with the infrared sensor). These pixels of-
ten have legitimate depth values and are clustered to form
a sizable region. Thus, we cannot simply use the conven-
tional noise-reduction method to process them. An example
is shown in Figure 4, the red window in hair is a reflection
region. The depth values in the hair are wrongly assigned
by using the background depth. Because the dominant
depth value may be wrong in the reflection region, we can-
not use the previous unreliable depth pixel detection
method to detect the reflection region. Hence, we detect the
reflection region and refine it using a specifically designed
procedure.

Figure 4. Display of reflection region in depth map.

Our assumption is that the large hole of depth map is
due to two main causes, one is occluded region, and the
other is reflection region. We observe that the hole caused
by occluded region is often strongly connected (no gap),
while the hole caused by reflection region is often sparse
(gaps between pixels). Because sometimes the Kinect re-
ceiver does not detect the correct infrared light and produce
the correct depth in the reflection region, it results in sparse
depth holes. The hair in Figure 5(a) is an example of reflec-
tion region. This part is enlarged in Figure 5(b). Thus, our
first step is to detect these sparse depth holes as shown in
Figure 6(a). Then, we grow from these seeds to cover the
entire reflection region based on the color similarity, and
finally label the reflection region as shown in Figure 6(b).

(a) (b)

Figure 5. The full depth map is shown in (a) and the enlarged
part of head is shown in (b).

1531

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

(a)

(b)

Figure 6. Sparse depth holes in the depth map (a). Final label
(detection) of reflection region in the depth map (b).

4. DEPTH REFINEMENT ON THE UNRELIABLE DEPTH
PIXELS AND HOLES

After we label all the pixels to be refined, we apply the pro-
posed pixel refinement algorithm to them. The basic as-
sumption is that the depth value of its neighborhood is
mostly correct. Thus, we use the neighborhood to alter the
depth value of target pixel based on the information of color,
distance, and depth pixel reliability.

First, we set an adaptive window centered at an unre-
liable depth pixel or hole which is the target we like to mod-
ify. Then, we pick up the neighborhood pixels inside the
window as candidates, and use them to calculate and esti-
mate the correct depth value of the target depth pixel. Next,
we calculate the weights of the depth candidates and then
compute the weighted average. The weight is location de-
pendent and is defined by the following formula,

 weight_location = 𝐞𝐞− 𝒙𝒙_𝒅𝒅𝒅𝒅𝒅𝒅𝟐𝟐+𝒚𝒚_𝒅𝒅𝒅𝒅𝒅𝒅𝟐𝟐
𝟏𝟏𝟏𝟏𝟏𝟏 , (1)

where x_dis is the distance in the x-axis between the depth
candidate and the target pixel, and similarly, y_dis is the
distance in the y-axis. And the weight in color similarity is
defined below,

weight_color = 𝐞𝐞− (𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅_𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝟐𝟐
𝟓𝟓𝟓𝟓 +𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅_𝒉𝒉𝒉𝒉𝒉𝒉𝟐𝟐

𝟓𝟓𝟓𝟓 +𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅_𝒔𝒔𝒔𝒔𝒔𝒔𝟐𝟐
𝟒𝟒𝟒𝟒𝟒𝟒) , (2)

where diff_gray is the difference in gray intensity between
the depth candidate and the target depth pixel, diff_hue is
the difference in hue, and diff_sat is the difference in satu-
ration. The weight of an unreliable depth pixel is defined
as follows.

If a depth pixel∈unreliable, weight_reliable = 0.1,
else = 1. (3)

As for the depth candidate in a reflection region, its
weight is assigned as follows.

If a depth pixel∈reflection, weight_reflection = 0.3,
 else = 1. (4)

Finally, we combine all the weights to form the final
weight of a depth candidate as follows.

Weight = weight_location×weight_color×weight_reli-
able×weight_reflection.
 (5)

The parameters in the above equations are selected ex-
perimentally and they are fixed constant values for all test
sequences. The experimental results show that the
weighting parameter is quite robust. After finishing all the
weights calculation, we remove the depth candidates of
weight lower than 0.7 times the average weight. Next, we
calculate the average depth value using all the remaining
depth candidates together with their weights and also cal-
culate the depth variance of these candidates. We check
whether the variance is smaller than a specified threshold.
If so, we jump to the final decision step; otherwise, we
come back to remove the unlikely candidates so that the
depth variance of the candidates is lower than the threshold.
In the final step, we replace the depth value of the target
depth pixels by the majority of the surviving depth candi-
dates if the number of surviving candidates is larger than a
specific threshold. The above process can be described by
the pseudo codes shown in Figure 7. In Figure 7, D is the
depth value of depth candidate, WC is the weight of depth
candidate, Nc is the number of remaining inlier depth can-
didate, and σ2 is variance threshold, set to 200 based on ex-
periments; the threshold value is not very sensitive.

Figure 7. Simplified algorithm of depth pixel refinement.

5. DEPTH REFINEMENT ON THE REFLECTION
REGION

As discussed earlier, we need to refine the depth pixels in
the reflection region using a special procedure. This pro-
cess is shown in the flowchart of Figure 8. We first compare
the gray intensity between the current pixel and the back-
ground pixel to check whether it belongs to the background.
If it is not, we compare the gray intensity between the cur-
rent pixel and the previous frame pixel to check whether it
is a static pixel. If not, we simply use the process described

1532

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

in Figure 7 to refine it. But, we make some modifications
in the weights of depth candidates.

Our weight_location and weight_color follow the
same definitions in the last section. The weight_reliable is
defined by the following formula.

If a depth pixel∈unreliable, weight_reliable =0.8,
else = 1. (6)

After refining the unreliable depth pixels in the last section,
the unreliable depth pixels should become more reliable.
Therefore, we increase the weight of unreliable depth can-
didates in (6).

Moreover, we define the weight_background, which
is associated with the background depth candidate below.

If a depth pixel∈background,
weight_background=0.01, else=1. (7)

A depth candidate is background or not is checked by its
depth value. A pixel is examined whether it is a back-
ground pixel before applying this final refinement step. If
it belongs to the background depth, we correct its depth
value directly and will not go to the final refinement step.
At the final step, we cannot use the background neighbor-
hood to refine a non-background pixel. Hence, we reduce
the weight of the background depth candidate to 0.01 in
(7). Similar to eq.(5), we multiply all the weights associ-
ated with a candidate pixel within a window centered at
the target pixel. A procedure similar to that in Figure 7 is
applied to refine the depth pixels in the reflection region.

After we refine the depth pixels in the reflection re-
gion, we use a simple bilateral filter to smooth the depth
map. Because most of our operations is pixel-based, we
reduce the pixel outliers by using a smoothing filter.

Figure 8. Overall process in reflection region refinement.

6. EXPERIMENTAL RESULTS

The Microsoft Kinect v2 is used to capture images
with the depth maps. We use Kinect v2 SDK to warp and
interpolate the depth map to match the color images in res-
olution and to compensate the base line distance between
color camera and depth camera. We took four video se-
quences in our experiments, that is, Person and Bear, Per-
son, Bear Rotation, and Bear Slide. We compare our results
with the methods proposed in [8] and [9].

In [8], they also use the color image and depth map
from Kinect v2 to improve the depth map. But, they mainly
handle the depth holes and do not correct the wrong depth
pixels. First, they input all the color frames and depth

frames to construct the color and depth background. To
achieve a precise depth map, they use the segmentation of
color image to assist the refinement of the background
depth map. Then, they detect the foreground of each frame
by the color background. After that, they fill up the depth
holes in the background region with the produced depth
background. Finally, the remaining depth holes in fore-
ground are filled by the dominant depth value of a neigh-
borhood region inside the foreground.

In [9], they also use the color image to enhance the
depth map. But, their process is restricted to one picture ra-
ther than a video sequence. Their algorithm is based on the
heat diffusion framework. The pixels with known depth
values are treated as the heat sources to diffuse. The diffu-
sion conductivity is designed based on the color image. It
will form a linear anisotropic diffusion problem. They case
it into walk model and solve the sparse linear system. They
need manually to tag out the region needed to refine so that
the depth point will be filled up with a known depth value
from the heat source. Because it needs manually to tag the
region to be refined on every depth map, and we only pro-
cess a few frame using this algorithm, thus we only com-
pare the results on some selected frames rather than a video
sequence.

We clip our depth map to 1460×1080 in comparison.
Figure 9 shows the results of the 3rd frame in the Person and
Bear sequence. We can see that the method in [9] cannot
fill up all the holes and some refined depth pixels are incor-
rect (Figure 9(d)). From Figure 9(f), we can see that the
method in [8] can enhance most parts of a depth map cor-
rectly. However, it still suffers from the non-alignment
problem, and therefore the depth map does not match well
with the color image as shown in Figure 9(g). Also, it does
not handle the reflection region well. Our proposed method
can refine nearly all the pixels correctly as shown in Figure
9(h) and (i). The difference can be observed more clearly
on Figure 10.

 Figures 11 and 12 show the experimental results for
different dataset. Some processed depth video sequences
can be found in [10]. Limited by space, we do not include
the details of all the steps and parameters used in our
scheme.

7. CONCLUSIONS

The depth map generated by Kinect v2 is of low resolu-
tion and has artifacts such as occlusion holes and wrong
depth pixels. We propose a depth map refinement algo-
rithm using the information of high-resolution color video
captured by Kinect v2 to enhance the resolution and qual-
ity of depth map. Different from the previous approaches,
we fix the temporal misalignment problem using the mo-
tion information in a video sequence and also, we use the
feature matching technique to reduce the minor shift. We
also construct a background to build the static information
to assist the refining process. Another contribution of our
algorithm is handling the reflection region. It consists of
two steps: reflection region detection and its refinement
procedure. At the end, we show the visual results of our

1533

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

algorithm. Our scheme can produce a good quality depth
map, consistent with its associated color image.

(a)

(b) (c)

(d) (e)

(f) (g)

 (h) (i)

Figure 9. Experimental result of frame 3 of Person and
Bear sequence. (a) Color image. (b) Initial depth map. (c) Over-
lap (b) with the gradient of (a). (d) Processed depth map using
[9]. (e) Overlap of (d) with the gradient of (a). (f) Processed
depth map from [8]. (g) Overlap (f) with the gradient of (a). (h)
Our processed depth map. (i) Overlap (h) with gradient of (a).

 (a) (b)
Figure 10. Zoom in of Figure 9. (a) Zoom in view of

Figure 9(g). (b) Zoom in view of Figure 9(i).

(a)

(b) (c)

(d) (e)

(f) (g)

 (h) (i)

Figure 11. Experimental result of frame 61 of Bear glide
sequence. (a) Color image. (b) Initial depth map. (c) Overlap (b)
with the gradient of (a). (d) Processed depth map using [9]. (e)
Overlap of (d) with the gradient of (a). (f) Processed depth map
from [8]. (g) Overlap (f) with the gradient of (a). (h) Our pro-
cessed depth map. (i) Overlap (h) with gradient of (a).

8. ACKNOWLEDGEMENT

This work was supported in part by the MOST, Taiwan un-der
Grant MOST 104-2221-E-009 -069 -MY3 and by the Aim for the
Top University Project of National Chiao Tung University, Tai-
wan.

1534

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

(a)

(b) (c)

(d) (e)

(f) (g)

 (h) (i)

Figure 12. Experimental result of frame 17 of Person se-
quence. (a) Color image. (b) Initial depth map. (c) Overlap (b)
with the gradient of (a). (d) Processed depth map using [9]. (e)
Overlap of (d) with the gradient of (a). (f) Processed depth map
from [8]. (g) Overlap (f) with the gradient of (a). (h) Our pro-
cessed depth map. (i) Overlap (h) with gradient of (a).

9. REFERENCES

[1] V. Gandhi, J. Čech and R. Horaud, “High-Resolution Depth
Maps Based on Tof-Stereo Fusion.” In IEEE Robotics and
Automation (ICRA), 2012.

[2] D. Ferstl, et.al., “Multi-Modality Depth Map Fusion Using
Primal-Dual Optimization.” In IEEE International Conference
on Computational Photography (ICCP), 2013.

[3] Y.-H. Chiu, M.-S. Lee and W.-K. Liao, “Voting-Based Depth
Map Refinement and Propagation for 2d to 3d Conversion.” In
Asia-Pacific Signal & Information Processing Association
Annual Summit and Conference (APSIPA ASC), 2012.

[4] C.-L. Chien , A. Wang, S.-P. Weng , H.-M. Hang, “A Method
of Disocclusion Detection and Filling for the Depth Map
Generated by Kinect Sensor,” 2015 Conf. on Computer Vision,
Graphics, and Image Processing, Yilan, Taiwan, 2015.

[5] R. Li, B. Zeng and M. L. Liou, “A New Three-Step Search
Algorithm for Block Motion Estimation,” IEEE trans. on
Circuits and Systems for Video Tech., pp. 438-442, 1994.

[6] D.G. Lowe, “Distinctive Image Features from Scale-Invariant
Keypoints.” In Int'l J. Computer Vision, pp. 91-11, 2004.

[7] S.M. Hong and Y. S. Ho, “Depth Map Refinement Using
Superpixel Label Information.” In 2016 APSIPA ASC, 2016.

[8] S.-P. Weng, Depth Map Enhancement based on Its Associated
High-Resolution RGB Video, MS thesis, National Chiao Tung
University, July 2015

[9] J. Liu, X. Gong and J. Liu, “Guided Inpainting and Filtering for
Kinect Depth Maps.” In IEEE Int'l Conf. Pattern Recognition
(ICPR), 2012.

[10] Experimental results (videos) are shown in
http://people.commlab.tw/ Hang's Research
Resource/DepthMapEnhancement

1535

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

		2018-10-19T10:54:57-0500
	Preflight Ticket Signature

