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Abstract—In this paper we present a deep learning multimodal
approach for speech driven generation of face animations. Train-
ing a speaker independent model, capable of generating different
emotions of the speaker, is crucial for realistic animations.
Unlike the previous approaches which either use acoustic features
or phoneme label features to estimate the facial movements,
we utilize both modalities to generate natural looking speaker
independent lip animations synchronized with affective speech.
A phoneme-based model qualifies generation of speaker indepen-
dent animation, whereas an acoustic feature-based model enables
capturing affective variation during the animation generation.
We show that our multimodal approach not only performs
significantly better on affective data, but improves performance
over neutral data as well. We evaluate the proposed multimodal
speech-driven animation model using two large scale datasets,
GRID and SAVEE, by reporting the mean squared error (MSE)
over various network structures.

Index Terms—Deep Learning, Speech Driven Animations,
Deep Neural Network (DNN), Active Shape Models (ASM)

I. INTRODUCTION

Speech driven facial animation translates dynamics of
speech to articulation of facial gestures. Facial animations
are essential, for their practical use in various applications
such as on line virtual agents and other interactive human-
computer interfaces. To understand natural speech in noisy
environments or non grammatical expressions and to give
healthy response, facial animation can be more beneficial in
human computer interaction, [1] [2]. Computer simulation of
human faces, which can accurately reflect facial movements,
has been a thriving field of research for decades, resulting
in a large number of facial models and animation systems
[3]. Researchers in the field of computer graphics, machine
learning, psychology as well as medicine are relentlessly
working towards generating more realistic animated avatars.

High quality speech driven animations are usually generated
either by a skilled animator, or by re-targeting motion capture
of an actor. The benefit of hand made animation is that the
animator can accurately synthesize, style and time synchronize
the animation, but it is costly and time consuming. The main
alternative to this method is data driven (text or speech)
animation by capturing and tracking facial motion of an actors
face [4] [5] [6]. But in later method, there is trade off between
quality and cost/time. In this targeted area of research, speech
and text are among the most popular and effective modalities
to generate facial animations. The problem of mapping a
speech signal to the facial animations can be investigated on

several different levels as: acoustic signal level, phoneme level
and word level [7]. At signal level, raw speech or its low/high
level features are used to generate automated facial animations.
Whereas phoneme and word level are part of text driven
animations. At the phoneme level, speech is first segmented
into a sequence of phonemes. Mapping is then found for each
phoneme in the speech signal using a viseme table, which
contains one visual feature set for each phoneme. The standard
set of visemes is specified in MPEG-4 and contains 15 static
visemes that can be easily distinguished [8].

Early research on acoustic to visual mappings was based on
different methods including Hidden Markov Models (HMM),
Gaussian Mixture Models (GMM) and Dynamic Bayesian
Networks (DBN’s). In an early work of [9], authors predicted
the 3-D facial movements from LPC and RASTA-PLP acoustic
features. Their research was based on entropy-minimization
algorithm that learned both the structure and the parameters
of an HMM to perform frame to frame mapping. Later, [1]
proposed to consider context by tagging video frames to audio
frames from past and future. Most of this mapping from speech
to visual features is performed off line by training a model and
then utilizing that model to predict facial movements. A recent
work presented a method to capture not only facial movements
in real-time at high fidelity, but also some fine details such
as wrinkles [5]. Another recent study on lip-sync produced a
high-quality video of USA former president Obama, speaking
with accurate lip-sync [10]. A recurrent neural network was
trained on many hours of his weekly address footage, that
learns the mapping from raw audio features to mouth shapes.
Although the method claimed to generate lip shapes correctly,
the limitation is generalization as it was trained and tested
on a single speaker. This problem was addressed in [6],
where they focused on generating facial animations solely
from phoneme sequence as input. The idea was based on using
a DNN with sliding window predictor that learns arbitrary
nonlinear mappings from phoneme label input sequences to
mouth movements. Contrary to conventional method of map-
ping phoneme sequence to fixed number of visemes, their
model successfully mapped the text based input of phonetic
sequence to output video representation of continuous speech.
Although their system provided some promising results with
high quality speech driven animations and it was claimed to be
generalizable for any speaker, despite being trained on a single
reference speaker, they did not address possible variabilities
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due to affective speech animation.
In this study, we proposed a multimodal approach to

enhance the previously developed methods for high fidelity
production of data driven facial animations. We propose
a system that can, not only benefit from the sequence to
sequence mapping of text based generation of facial shape
animations, but also utilizes the acoustic variability in the
speech and merge them together to enhance the quality of
generated animations. Most of conventional studies utilized
the data either gathered in a neutral emotionless way or with
highly emotional states, in a controlled studio environment. In
this study, we applied the proposed method on different neutral
and affective datasets. We show that using speech features
along with the text features not only improves the accuracy
on the affective data remarkably, but turns out to be more
efficient for neutral data as well. Remaining of the paper is
organized as follows. In section II we describe the proposed
multimodal speech-driven facial shape animation system. We
give experimental evaluations in Section III. Finally, the article
is concluded in Section IV.

II. METHODOLOGY

This section covers the details of the datasets we utilized for
this study; GRID, an audio visual dataset recorded in neutral
without expressing emotions, and Surrey Audio-Visual Ex-
pressed Emotion (SAVEE), recorded with different categorical
emotions. Then, the feature representation is given, followed
by description of the network architectures employed for the
multimodal speech-driven facial animation system.

A. Datasets
GRID [11], an audio visual-corpus, consists of audio and

video recordings of 1000 sentences spoken by each of 34
speakers. The sentences are drawn from the following simple
grammar: command (4) + color (4) + preposition (4) + letter
(25) + digit (10) + adverb (4). The digits in parenthesis repre-
sent the number of choices for each of the 6 word categories.
None of the spoken sentences contain any emotional content
and uttered in a neutral way. Videos are recorded at a rate of
25 fps and audio is sampled at 25 kHz. Word transcriptions
are provided along with dataset. A total of approximately
2.5 million frames are available to train and validate models.

The Surrey Audio-Visual Expressed Emotion (SAVEE)
database [12] consists of footage of 4 British male actors
with six basic emotions(disgust, anger, happy, sad, fear sur-
prise) and neutral state. A total of 480 phonetically balanced
sentences are selected from the standard TIMIT corpus [13]
for every emotional state. Audio is sampled at 44.1 kHz with
video being recorded at a rate of 60 fps. Phonetic transcriptions
are provided with the dataset. A total of approximately 102 K
frames are available to train and validate models. Actors’ face
is painted with blue markers for tracking of facial movements
during the recordings.

B. Feature Extraction
A key factor in training the neural networks is representation

of the inputs and outputs of the model. In this study we

Fig. 1. An example of facial feature extraction on SAVEE dataset. Blue points
are original markers painted on actor’s face. Dlib extracted points (red) are
used for a more descriptive shape of the lower face.

utilized speech features along with the underlying phoneme
labels to train a model to estimate the visual facial features.

1) Text Features: We utilized the underlying phoneme
labels of the input speech as text features. In the preparation
of text features, we used Montreal forced aligner [14], to
generate the phoneme transcription files. Each phoneme can
span variable length video frames, depending upon the length
of its occurrence in a specific sentence. A standard set of
41 phonemes was used for transcribing the data, including
silence and short pause. Following the work presented in
[6], One hot encoding was used to represent the phoneme
indicator feature corresponding to each video frame. The set
of extracted phoneme features is represented as

{
fp
j

}N
j=1

,
where fp

j ∈ R41×1 and N is the number of instances in the
training set.

2) Speech Features: Raw speech signal contains confined
spectral information that can be valued for speech to
facial mapping. Inspired by the work of [15] we used
Mel-Frequency Spectral Coefficients, also denoted as MFSC
features. For each speech frame, 40 MFSC features were
extracted using HTK toolkit [16] to define the acoustic energy
distribution over 40 mel-frequency bands. These features
were computed on short term overlapping Hamming-windows
over the speech, with sampling interval set according to the
frame rate of the corresponding videos. The window size
was chosen as 8 ms and 10 ms for the SAVEE and GRID
datasets respectively, resulting in a 2-to-1 and 4-to-1 audio to
video frame correspondence. All speech features were z-score
normalized to have zero mean and unit variance in each
feature dimension. We represent the set of acoustic feature
vectors as

{
fa
j

}N
j=1

, where fa
j ∈ R40×r and r is the audio to

video frame ratio.
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3) Visual Features: The raw visual features are described
with a set of coordinate points on the lower face region, along
the jaw line, nose, inner and outer lips, and represented as:

S = [x1, y1, x2, y2, ..., xM , yM ]T . (1)

The Dlib facial landmark detector [17] was used to detect a
total of M = 36 landmark points on the lower face region for
each video frame in both datasets. Figure 1 presents extraction
of sample landmark points using the Dlib detector.

We utilized Active Shape Model (ASM) to remove the
correlation in the training set and for dimensionality reduction
as well [18]. In the ASM, a statistical model is trained for a set
of shapes

{
S1,S2,...,SN

}
, by applying Principal Component

Analysis (PCA) to model the variation of data around the mean
shape. Prior to building the shape model, it is necessary to
filter out the possible rotation, scale and position difference of
shapes from one frame to another. The Generalized Procrustes
Analysis (GPA) was used for the shape alignment purpose
[19]. In GPA, all the shapes from the training set are mean
removed and scaled to have unit norm. The training set is then
aligned iteratively by minimizing the distance of each shapes
to the reference mean until convergence. After alignment of
the shapes, the mean shape and the covariance matrix are then
computed as:

S̄ =
1

N

N∑
i=1

Si (2)

C =
1

N − 1

N∑
i=1

(Si − S̄)(Si − S̄)T (3)

In the shape model, each shape is described by a set of
parameters in a lower dimensional space. Given the model
parameters, the corresponding shape S in the original space is
generated using:

S = S̄ + Pfv, (4)

where P = [P1P2...Pk] is the truncated eigenvectors of the
covariance matrix(C), corresponding to the k largest eigen-
values, and fv is the k-dimensional model parameters. We
chose k = 18 which allows the trained shape model to capture
98% of the variation in the training set. Figure 2 shows three
main modes of variation around the mean, varying the model
parameters between ±3 of their standard deviation.

Upon training the shape model, the visual features were
chosen as the projection of shapes in the training set to the
PCA space, i.e. the model parameters fv , which are computed
as:

fv = PT (S − S̄). (5)

We represent the set of visual feature vectors as
{
fv
j

}N
j=1

,
where fv

j ∈ R18×1.

+3
 st

d

Mode 1

-3
 st

d

Mode 2 Mode 3

Fig. 2. Three main modes of variation in the shape model for the SAVEE
dataset. Parameters range is restricted between ±3 of their std to allow
generation of plausible shapes.

C. Feature Representation

The raw training data used in this study comprises a
sequence of 40-dimensional MFSC features and a sequence
of 41-dimensional phoneme indicator features, as input se-
quences, and a sequence of 18-dimensional PCA features as
the output representation. To capture the temporal nature of the
speech and visual features, often temporal sliding windows are
utilized, as in [6]. We also utilized sliding windows of size Ka,
Kp, Kv over the MFSC, phoneme and PCA sequences, respec-
tively. For each instance in the raw training data, the sliding
window covers a neighborhood around the instance, with the
instance at the window’s center, converting the original feature
sequences into a set of overlapping features. Therefore at
each training instance the temporal feature representation is
calculated as:

Fm
j =

{
(fm

j−km
, ..., fm

j , ..., fm
j+km

)
}N
j=1

(6)

Where m indicates the modality i.e. m ∈ {a, p, v} and km =
(Km − 1)/2 is the half window size.

For the output PCA and input phoneme indicator sequences,
the feature vectors covered inside the window are concate-
nated column-wised to create samples F v

j ∈ R18Kv×1 and
F p
j ∈ R41Kp×1, respectively. For the MFSC input sequence,

feature vectors inside the window are stacked through the 3-
d dimension yielding an instance F a

j ∈ R40×1×rKa , which
could be interpreted as a (40, 1) image with depth rKa. Note
that the scaler r is the speech to video frame ratio, hence r = 2
and r = 4 for the SAVEE and GRID datasets respectively.

D. Network Architecture

From a machine learning point of view, speech animation
is described as a multi-variate regression model i.e. the real-
valued temporal output features are estimated given the input
features.

We investigate three different DNN for the speech animation
task. The text-based method proposed in [6] is used as a base-
line in this study. Despite having some benefits such as making
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Fig. 3. Proposed multimodal-based network. Acoustic and Phoneme features
are extracted from speech and fed to the network separately, merged at an
intermediate level and connected to the fully connected output layer.

the model speaker and language independent, a shortcoming
of the text-based approach will arise when processing affective
data. We show that using speech features along with the text
features, improves the performance of the speech animation
system for both affective and neutral datasets.

1) Text-based Architecture: For text-based experiments, a
deep Multilayer Perceptron (MLP) similar to what is described
in [6] was used. The input layer, accepting indicator features,
is connected to three fully connected (FC) hidden layers
with 1024 neurons each and a final output layer. To induce
the non-linearity, each fully connected layer is followed
by a hyperbolic tangent activation function. We employed
standard mini batch stochastic gradient descent algorithm for
training. To counteract over-fitting, dropout [20] with 50%
probability was used. Mini batch size was selected as 128
along with Adam optimizer [21] for learning rate adaptation.
The final output layer is standard multi-variate regression
layer predicting the PCA sequence and trained to minimize
the MSE loss.

2) Speech-based Architecture: Convolutional Neural Net-
works (CNN) are shown to be efficient in extracting discrimi-
native features from speech [15]. We employed a CNN archi-
tecture for speech-based model training, as another baseline
to our proposed multimodal approach.

The image-like temporal speech features are fed to the
input layer of the speech-based network. The network
contains two convolution layers with first layer having 64
filters of size 7, followed by a pooling layer with window
size of 4 and stride of 2. In the second convolution layer,
we decreased the filter size to 5 and increased the number
of filters to 128 and a pooling layer with window size and
stride of 2 was chosen. The network is then connected to
two fully connected layers with 1024 hidden neurons each.
We used dropout regularization method with probability 50%
in the fully connected layers only, to overcome over-fitting.
Hyperbolic tangent activation function was used at each layer
with Adam optimizer for hyper learning rate optimizations.

3) Proposed Multimodal Architecture: The proposed multi-
modal approach is a combination of the text-based and speech-
based networks, hence gaining the advantage of text features
for a speaker independent model and benefiting from the
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Fig. 4. Train and validation loss curve for three different network architectures
on SAVEE dataset.

speech features for discriminating different affective content.
We utilized a fusion strategy to update the output layer’s
weights according to the merged hidden neurons of the two
modalities, during optimization. Text and speech features are
fed separately to the network and later concatenated in last
layer of the network (before the output layer). The fused
neurons are then connected to the fully connected output
regression layer as shown in Figure 3. Similar deep MLP and
CNN structures were employed, as described in sections II-D1
and II-D2, for text and speech inputs, respectively.

All models were trained using Keras1 with Tensorflow [22]
backend on a NVIDIA TITAN XP GPU.

III. EXPERIMENTAL EVALUATIONS

To evaluate the performance of the proposed method, MSE
loss between the ground truth and the ones estimated by the
model was calculated on both parameter and original shape
space. The predicted output gives the shape model parameters
in a temporal window of size Kv . The model parameters at
a given frame are calculated as the temporal mean of the
network’s output and later used to estimate the shape contours
in the original shape space, using (4). The shape space loss is
reported per landmark point in a 150× 150 frame scale.

For SAVEE dataset with a total number of 102K samples,
90% of data was used for training the model and the rest
10% for validation set. Though the number of data samples
in GRID dataset is a lot more than in SAVEE (approximately
2.5M samples), for a fair comparison we used same number
of samples to train the models.

Aside from the network characteristics, the sliding window
sizes are important hyper parameters which need to be selected
carefully. The optimal sliding window sizes over the raw
feature sequences were chosen as (rKa,Kp,Kv) = (30, 7, 3)
and (28, 11, 5) after fine tuning the proposed multimodal
network, for SAVEE and GRID datasets respectively.

1https://keras.io/
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TABLE I
PERFORMANCE EVALUATION OF EXISTING AND PROPOSED METHOD OVER

EMOTIONAL AND NEUTRAL DATASETS. VALUES INDICATE THE MSE IN
THE PARAMETER AND SHAPE SPACE.

MSE Dataset Text-based [6] Speech-based Multimodal

PCA space SAVEE 12.9 8.28 6.75
GRID 10.7 7.86 7.26

Shape space SAVEE 0.76 0.53 0.42
GRID 0.53 0.44 0.39

Figure 4 shows the MSE loss curve through the learning
process, for three different discussed architectures, trained and
validated on the emotional SAVEE dataset. As it is obvious
from the figure, the proposed multimodal method performs re-
markably better than the text-based network on emotional data.
The non-decreasing learning curve for the text-based network
indicates the failure of the model to learn the variation in the
emotional output data using only phoneme features. Whereas
in the multimodal case, adding speech features enables the
model to capture the output sequence more accurately, hence
yielding a smaller MSE loss.

The proposed method performs better on the neutral GRID
dataset as well in terms of the MSE in the shape and parameter
space. However we observe that the benefit which the multi-
modal network brings to the text-based model is slightly less
than the emotional case. Table I presents the comparison of
mean squared error between synthesized and original features
in the parameter and original shape space. We observe that
merging the two modalities give a clear edge over using either
of the modalities, with both neutral and emotional datasets.

IV. CONCLUSIONS

We introduced a novel approach for generating face anima-
tions synchronized with the input speech. A statistical shape
model was trained to project the shape data into an uncor-
related lower dimensional parameter space, capturing 98% of
variation in the training data. We trained a multimodal deep
neural network with acoustic and phoneme features as inputs,
to estimate the facial shape parameters. The proposed approach
was shown to perform better on neutral and emotional datasets,
in terms of MSE loss in the shape and parameter space. We
observed that the benefit of the proposed multimodal approach
over the baseline text and speech-based methods was more
remarkable for the affective dataset. As a future work we will
investigate speech animation under different emotional states
and will use the generated shape animations for a user study
performance evaluation.
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