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Abstract—For 3D Lambertian scenes with no occlusion, we
show that there exist a filter bank such that it can perfectly
reconstruct the light field from the focal stack, if the focal stack is
captured through “Cauchy-type” aperture mask. All the derived
filters are spatially invariant; therefore the presented filter bank
method requires no depth estimation. Simulation results using a
synthetic scene show that the filter bank reconstructs the light
field with significant high quality.

I. INTRODUCTION

Light filed is the distribution of light rays in a 3D free space
and recorded as a 4D function, which is often represented
as a 2D array of 2D images [1]. Unlike the conventional
images in which the light rays are recorded at 2D pixel
positions, the recorded light field has additional 2D angular
information at each pixel positon; this enables us various
image manipulations such as novel view generation, refocusing
and extending depth-of-field (DOF).

To acquire 4D light field by a fixed single sensor, so
called Plenoptic cameras equipped with micro lens array in
front of the imaging plane have been used (e.g., [2]). In
these systems, each lens captures 2D spatial information and
the pixels under the lens capture 2D angular information;
therefore the sensor pixel resolution determines the resolution
of the 4D light field. This means it has a resolution trade-off
between the spatial and the angular dimensions. The lower
resolution of either dimension may degrade the quality of the
image manipulations. For instance, in light field rendering [3],
low angular resolution causes ghosting artifacts in the novel
views [4].

In order to improve the resolution of the light field, a
straightforward solution is to move a single camera. In this
way, a light field with higher resolution can be obtained;
the angular resolution is the same with the sensor pixel
resolution and the spatial resolution is determined by the
distance between the moving camera positions. It, however,
requires a precise control of the camera position as well
as an accurate camera calibration. Different from this direct
capturing, an alternative way is to recover the higher resolution
light field from a set of multiple images at different focal
depths (called focal stack) captured by a single fixed camera.

As the early work for the light field recovery from the focal
stack, Aizawa et al. presented an iterative recovery method

[5] for Lambertian scenes that consist of a few layers with
no occlusion. Modeling both the focal stack and the desired
novel view (the novel sub-aperture image or pinhole view) as
linear combinations of the unknown layer textures at different
depths, they derived an equation that holds between them and
solved it iteratively. This method can appropriately shift the
position of object regions according to their depths without
depth estimation. However, the equation cannot be completely
solved; in fact, at the lower frequency, the solution (i.e., the
novel view) tends to diverse much faster. So does the extended
version recently presented in [6] to the scene with many layers.

In the present paper, we theoretically show that the equation
can be solved if we use the optimally designed aperture
mask [7], called Cauchy-type aperture, when capturing the
focal stack. We then derive a set of reconstruction filters
(i.e., filter bank) to be applied to images of the focal stack
such that the light field can be reconstructed perfectly for
Lambertian scenes with no occlusions. All the derived filters
are spatially invariant; thus our filter bank method needs no
depth estimation.

There are alternative approaches [8]–[12] based on com-
puter tomography. Since the focal stack can be modeled as a
set of projections of the light field [13], the light field can be
roughly estimated to be the back-projected focal stack. Some
methods [8]–[10] presented an optimum deconvolution filter to
suppress blurring artifacts caused in the obtained novel view.
Although these methods also do not involve depth estimation,
they work well only if the range of the focal depth is much
wider than that of the actual scene depth. In contrast, our filter
bank method allows the focal depth range to be the same with
the scene depth range.

II. PROBLEM DESCRIPTION

We represent a 4D Light field as a set of multiple images
(2D array of multiview images) f (s,t)(x, y) captured from a
view point (s, t) on st plane (called camera or aperture plane)
[14]. The coordinate (x, y) denotes a pixel position of the
imaging plane of each camera. Let the distance between two
planes denote d.

The focal stack as an input for the light field reconstruction
is captured from the origin of the st plane by changing the
focal depth. Letting g

(0,0)
n (x, y) be the image captured when
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Fig. 1. Characteristics of Cauchy-type pupil function (The maximum ampli-
tude was normalized to 1).

the focal depth is zn (n = 1, 2, ..., N), it is generated from
the light field f (s,t)(x, y) [14]:

g(0,0)n (x, y) =

∫∫
a(s, t;σ)f (s,t)(x−αns, y−αnt) ds dt (1)

where a(s, t;σ) is the aperture mask on the st plane with
its scaling factor σ which determines the amount of blur
and αn = d/zn. The aperture mask a(s, t;σ) satisfies∫∫

a(s, t;σ) ds dt = 1 for arbitrary σ.
For the aperture mask, we adopt the pupil function

a(s, t;σ) =
1

2πσ2

[( s

σ

)2

+
( t

σ

)2

+ 1

]−3/2

, (2)

called Cauchy-type pupil function (see the characteristics in
Fig.1). This function has been designed for all-in-focus image
generation from the focal stack in our recent work [7]. Its
2D Fourier transform (i.e., its optical transfer function) can be
simply represented by a rotationally symmetric exponential
function

A(ξ, η;σ) = exp{−2πσ
√
ξ2 + η2}, (3)

where ξ and η denote the horizontal and the vertical frequen-
cies, respectively.

Our goal is to derive a filter bank {k(s,t)n (x, y)} that per-
fectly reconstructs the light field f (s,t)(x, y) directly from the
acquired focal stack {g(0,0)n (x, y)} by

f (s,t)(x, y) =
N∑

n=1

k(s,t)n (x, y) ∗ g(0,0)n (x, y), (4)

where ∗ represents 2D convolution. Note that all the derived
filters are linear and spatially invariant; hence the proposed fil-
tering method requires no depth estimation and is independent
of the scene geometry.

III. FILTER BANK FOR LIGHT FIELD RECONSTRUCTION

A. Image formation model using layered scene representation

In this subsection, we model the focal stack and the light
field based on the layered scene representation used in the
previous work [5]–[7].

We represent a Lambertian scene with no occlusion as
a set of multiple layers at different depth zn from the
camera/aperture plane. Consider only m’th layer and let
f
(s,t)
m (x, y) denote all the light rays emerging from the surface

of m’th layer. Since the layer surface is Lambertian, we have

f (s,t)
m (x, y) = f (0,0)

m (x+ αms, y + αmt), (5)

where again αm = d/zm. Substituting this into Eq. (1), we
obtain

g(0,0)n (x, y)

=

∫∫
a(s, t;σ)f (0,0)

m (x− (αn−αm)s, y − (αn−αm)t) ds dt

=

∫∫
a(s, t;σ|αn−αm|)f (0,0)

m (x− s, y − t) ds dt

= a(x, y;σ|αn−αm|) ∗ f (0,0)
m (x, y). (6)

Because we assume the scene has no occlusion (i.e., all the
layers do not occlude each other), we can model the focal stack
as the sum of the above obtained results for all the layers as

g(0,0)n (x, y) =

N∑
m=1

a(x, y;σ|αn−αm|) ∗ f (0,0)
m (x, y). (7)

The function a(x, y;σ|αn−αm|) is known as a point spread
function (PSF), which is a scaled version of the aperture mask
used. Note that the PSF becomes Dirac’s delta function δ(x, y)
when m = n.

We can also model the light field f (s,t)(x, y) using
f
(0,0)
m (x, y). From now on, assuming t = 0, we only consider

the horizontal view point without loss of generality. The light
field f (s,0)(x, y) can be expressed by

f (s,0)(x, y) =
N∑

m=1

f (0,0)
m (x− αms, y). (8)

B. Image formation model in the Fourier domain

We represent the above image formation models in the
Fourier domain. Taking Fourier transform of Eq. (7), we obtain
the following matrix-vector formula:

g = Hf . (9)

The two vectors are defined as

g =


G

(0,0)
1 (ξ, η)

G
(0,0)
2 (ξ, η)

...
G

(0,0)
N (ξ, η)

 and f =


F

(0,0)
1 (ξ, η)

F
(0,0)
2 (ξ, η)

...
F

(0,0)
N (ξ, η)

 , (10)

where G
(0,0)
n (ξ, η) and F

(0,0)
n (ξ, η) represent the 2D Fourier

transforms of g(0,0)n (x, y) and f
(0,0)
n (x, y), respectively. If we
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change the focal depth zn such that αn changes in equal
interval of p, the matrix H can be given by the following
symmetric Toeplitz form (especially called Kac-Murdock-
Szegö (KMS) matrix [15]):

H =


1 A A2 . . . AN−1

A 1 A . . . AN−2

A2 A 1
. . .

...
...

. . . . . . . . . A
AN−1 . . . . . . A 1

 , (11)

where the function A denotes the Fourier transform of PSF
a(x, y;σp) as

A(ξ, η;σp) = exp{−2πσp
√

ξ2 + η2}. (12)

Similarly, taking the Fourier transform of Eq. (8) gives

F (s,0)(ξ, η) = w⊤f , (13)

where w is defined as

w =


exp(j2πξα1s)
exp(j2πξα2s)

...
exp(j2πξαNs)


and ⊤ denotes transpose operation.

C. Deriving filter bank

Using the image formation models in the Fourier domain,
we derive the filter bank that reconstructs the light field
directly from the focal stack.

At the frequency where H−1 exists, eliminating the un-
known f from equations (9) and (13) yields

F (s,0)(ξ, η) = w⊤H−1 g. (14)

Each element of the row vector w⊤H−1 specifies the fre-
quency characteristic of the reconstruction filter k

(s,0)
n (x, y)

to the image g
(0,0)
n (x, y); therefore in the Fourier domain we

can obtain the filter bank as a form of(
K

(s,0)
1 (ξ, η),K

(s,0)
2 (ξ, η), . . . ,K

(s,0)
N (ξ, η)

)
= w⊤H−1.

(15)
In all the frequency except the direct current (DC), since

A(ξ, η;σp) ̸= 1, the matrix H is invertible and its inverse is
given as

H−1 =
1

1−A2


1 −A

−A 1 +A2 −A
. . . . . . . . .

−A 1 +A2 −A
−A 1

 .

(16)

Consequecncy the filter bank is derived based on Eq. (15) as
follows:

K
(s,0)
1 (ξ, η) =

1−A exp(−j2πξps)

1−A2
exp(j2πξα1s) (17)

K(s,0)
n (ξ, η) =

A2−2A cos(2πξps) + 1

1−A2
exp(j2πξαns)

(n = 2, . . . , N − 1) (18)

K
(s,0)
N (ξ, η) =

1−A exp(j2πξps)

1−A2
exp(j2πξαNs) (19)

At the DC where H−1 does not exist, Eq. (9) cannot
be solved for f . Despite of this, we can identify the DC
component of the filters by taking the limit to zero of the
above obtained results. By applying l’Hospital’s theorem, we
can obtain the limit value at the DC as follows:

lim
ζ→0

K
(s,0)
1 (ζ, θ) =

1

2
− j

s cos θ

2σ
(20)

lim
ζ→0

K(s,0)
n (ζ, θ) = 0, (n = 2, . . . , N − 1) (21)

lim
ζ→0

K
(s,0)
N (ζ, θ) =

1

2
+ j

s cos θ

2σ
(22)

Here ζ =
√

ξ2 + η2 and θ = arctan(η/ξ).
These results show that all the filters do not diverse and are

stable 1. The imaginary parts of the DC components of K(s,0)
1

and K
(s,0)
N depend on the directional frequency θ and thus are

not determined uniquely; however it is acceptable that they
are set to be zero because we can assume that these filters in
the spatial domain have real values.

IV. SIMULATION

Using synthetically generated focal stack data, we recon-
structed the light field by the proposed filter bank and evalu-
ated the reconstruction accuracy in peak-signal to noise ratio
(PSNR).

Assuming a test scene that consists of three planes, on each
of which a different part of image Baboon is mapped, we
synthetically generated nine differently focused images (256 ×
256 resolution) as the focal stack based on the image formation
model (9). The focal stack generated for the case of σp = 1
[pixel] is shown in the left column in Fig. 2. The images g1, g5
and g9 are focused on the nearest, the middle and the farthest
depth layer, respectively. For instance, the farthest layer in g1
is blurred with σp = 8 [pixels] and both nearest and farthest
layers in g5 is blurred with σp = 4 [pixels].

The reconstructed light field from the focal stack is shown
in the middle column in Fig. 2. They are the novel views from
different view point s. In this simulation setting, according to
the view point s, the maximum disparity α1s varies from -64
to 64 [pixesl] and the minimum disparity α9s varies from -32
to 32 [pixesl]. As can be seen, compared with the grand truth
in the left column, all the novel views are reconstructed with
sufficient quality and the three planes in the views are properly
shifted without visible artifacts.

1We found that the filters diverse and are unstable for normally used
Gaussian or pillbox apertures.
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Fig. 2. Simulation results. The left column: Synthetically generated focal stack
(top to bottom: g1 to g9). The middle column: Reconstructed light field from
the focal stack (top to bottom: horizontally shifted novel views from left to
right) The right column: The grand truth of the light field

-30 -20 -10 0 10 20 30
30

32

34

36

38

40

42

44

46

48

50

52

Fig. 3. PSNR of the reconstructed light field.

The PSNR of the reconstructed light field for various blur
amount σp is shown in Fig. 3. For large blur setting (σp ≥
0.5), the PSNR were significantly high over all the range of
horizontal view point. This shows that the presented filter bank
can accurately reconstruct the light field. On the other hand,
for very small blur setting (σp = 0.1), the PSNR become
lower when the view point was farther from the origin. This
is because the filter characteristics tend to have larger value,
leading to the increase of the quantization errors in generating
the focal stack.

V. CONCLUSION

In this paper, we derived the filter bank that allows perfect
reconstruction of the high-resolution light field directly from
the focal stack that is captured through Cauchy-type aperture
mask. The simulation results showed that high quality recon-
struction is possible by the derived filter bank.

In future, we conduct experiments using real captured focal
stack to evaluate the reconstruction quality.
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