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Abstract—Speaker clustering is an important problem of speech
processing, such as speaker diarization, however, its behavior in
adverse acoustic environments is lack of comprehensive study.
To address this problem, we focus on investigating its compo-
nents respectively. A speaker clustering system contains three
components—a feature extraction front-end, a dimensionality
reduction algorithm, and a clustering back-end. In this paper,
we use the standard Gaussian mixture model based universal
background model (GMM-UBM) as a front end to extract
high-dimensional supervectors, and compare three dimensionality
reduction algorithms as well as two clustering algorithms. The
three dimensionality reduction algorithms are the principal com-
ponent analysis (PCA), spectral clustering (SC), and multilayer
bootstrap network (MBN). The two clustering algorithms are the
k-means and agglomerative hierarchical clustering (AHC). We
have conducted an extensive experiment with both in-domain
and out-of-domain settings on the noisy versions of the NIST
2006 speaker recognition evaluation (SRE) and NIST 2008 SRE
corpora. Experimental results in various noisy environments show
that (i) the MBN based systems perform the best in most cases,
while the SC based systems outperform the PCA based systems as
well as the original supervector based systems; (ii) AHC is more
robust than k-means.

Index Terms—Speaker clustering, noise robust speaker diariza-
tion.

I. INTRODUCTION

Speaker clustering aims to partition a set of speech seg-
ments into several groups where each group of segments
belongs to a single speaker. It is an essential part of many
acoustic systems, such as speaker diarization. For example,
a speaker diarization system [1] contains four components:
data preprocessing, speaker segmentation, speaker clustering
and speaker resegmentation. Research experience shows that
the performance of speaker diarization is mainly determined
by speaker clustering, while data preprocessing and speaker
segmentation can be quite standard, and speaker resegmentation
does not help much in many cases.

Speaker clustering in clean or high signal-to-noise ratio
(SNR) environments has been studied sufficiently. Kenny et
al. applied agglomerative hierarchical clustering (AHC) in the
baseline system [2]. Shum et al. [3] used principal component
analysis (PCA) for dimension reduction and used k-means
clustering based on cosine similarity metric for clustering.
They also applied spectral clustering (SC) to identity vectors
(i-vectors) [4]. Senoussaoui et al. [5] applied an iterative
mean-shift algorithm to speaker clustering. Zhang [6] proposed

to replace traditional PCA by multilayer bootstrap network
(MBN) in a standard speaker clustering system. Wang et al. [7]
proposed to combine SC with a d-vector based feature extrac-
tion front-end, where the SC algorithm contains a novel affinity
matrix refinement step. The speaker clustering algorithms in
clean environments have achieved good performance.

However, the working environments of speaker clustering
in a real-world application are mostly noisy, which needs
further study. Recently, this problem has received increasing
attention. Zhu et al. [8] proposed to enhance noisy speech
by a deep neural network based enhancement algorithm, and
applied consensus clustering to improve the stability of speaker
clustering in noisy conditions. Maciejewski et al. [9] built
a standard AHC based baseline system and studied speaker
diarization in reverberation environments.

In this paper, we aim to study how different speaker clus-
tering systems behave with respect to the variation of signal-
to-noise ratio (SNR). The comparison dimensionality reduction
algorithms include PCA, SC, and multilayer bootstrap network
(MBN) [6], all of which take the supervectors produced from
a Gaussian mixture model based universal background model
(GMM-UBM) as their inputs. The comparison clustering al-
gorithms include k-means and AHC. We investigate the com-
parison methods in both in-domain and out-of-domain settings.
Experimental results on the noisy versions of NIST 2006 SRE
and NIST 2008 SRE corpora show that (i) the MBN based
systems perform the best in most cases, while the SC based
systems outperform the PCA based systems; (ii) AHC is more
robust than k-means.

The rest of the paper is organized as follows. In Section II,
we introduce a speaker clustering framework. In Section III,
we introduce the nonlinear dimensionality reduction methods in
comparison. In Section IV, we report the experimental results.
In Section V, we conclude the paper.

II. A SPEAKER CLUSTERING FRAMEWORK

A speaker clustering framework that will be shared by all
comparison methods is shown in Fig. 1. Suppose there is a
set of speech segments {ti}Ni=1, where ti is the i-th speech
segment in the time domain. The framework first extracts
MFCC features from each frame of speech segment t, and
then trains a speaker-independent feature extraction front-end,
named GMM-UBM, from the pool of all frame-level features
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Fig. 1: A speaker clustering framework

[10]. After the GMM-UBM training, it extracts a supervector
zi which is the zero-th order and first-order Baum-Welch statis-
tics from the i-th speech segment. Finally, speaker clustering
becomes a standard clustering problem that partitions {zi}Ni=1

to several non-overlapping groups, each of which belongs to a
single speaker.

Because the supervector zi is usually high-dimensional and
may also contains some nonlinearity, a common idea is to first
reduce zi to a low-dimensional identity feature vector xi by
some dimensionality reduction method, such as PCA, SC or
MBN, and then conducts clustering on {xi}Ni=1 by traditional
AHC or a partition-based method, such as k-means. In speaker
diarization and clustering, cosine similarity is suitable to mea-
sure the similarity of a pair of identity feature vectors.

III. DIMENSIONALITY REDUCTION METHODS

A. Multilayer bootstrap networks

MBN [11] is a nonparametric nonlinear dimensionality re-
duction method that is flexible in modeling complex and noisy
data without pre-assumptions of data distributions, hence it is
suitable to the problem of speaker clustering in adverse acoustic
environments.

1) Network structure: MBN contains multiple hidden layers
and an output layer (Fig. 2). Each hidden layer consists of a
group of mutually independent k-centroids clusterings; each k-
centroids clustering has k output units, each of which indicates
one cluster; the output units of all k-centroids clusterings are
concatenated as the input of their upper layer. The output layer
is PCA.

The network is gradually narrowed from bottom up, which
is implemented by setting parameter k as large as possible at
the bottom layer and be smaller and smaller along with the
increase of the number of layers until a predefined smallest k
is reached.

2) Training method: Before training MBN, we need to first
normalize xi by its `2-norm as x̄i ← xi

/
‖xi‖2. This prepro-

cessing is to guarantee that, when we evaluate the similarity
of x̄i and x̄j by the inner product S(x̄i, x̄j) = x̄T

i x̄j , the
similarity score equals to the cosine similarity score between
xi and xj .

MBN is trained layer-by-layer from bottom up. For train-
ing each layer given a d-dimensional input data set X =
{x1, . . . ,xn} either from the lower layer or from the original
data space, we simply need to focus on training each k-
centroids clustering, which consists of the following steps:

• Random sampling of features. The first step randomly
selects d̂ dimensions of X (d̂ ≤ d) to form a subset of X ,
denoted as X̂ = {x̂1, . . . , x̂n}.

(a)
(k=6)

(k=3)

(k=2) Cyclic-shift

W1      W2      W3

Layer 1

Layer 2

Layer 3

PCA

(b)

W1       W2      W3

Fig. 2: Network structure [11]. The dimension of the input data for this demo
network is 4. Each colored square represents a k-centroids clustering. Each
layer contains 3 clusterings. Parameters k at layers 1, 2, and 3 are set to 6, 3,
and 2 respectively. The outputs of all clusterings in a layer are concatenated
as the input of their upper layer.

• Random sampling of data. The second step randomly
selects k data points from X̂ as the k centroids of the
clustering, denoted as {w1, . . . ,wk}.

• One-nearest-neighbor learning. The new representation
of an input x̂ produced by the current clustering is an
indicator vector h which indicates the nearest centroid
of x̂. For example, if the second centroid is the nearest
one to x̂, then h = [0, 1, 0, . . . , 0]T . The similarity metric
between the centroids and x̂ at the bottom layer is set to
arg maxk

i=1 w
T
i x̂ at all hidden layers.

We summarize the hyperparameters of MBN and their default
values in Table I, where the default values are recommended
by [11].

B. Spectral analysis of Laplacian matrix

A well-known spectral analysis of Laplacian matrix is SC
[12], which conducts eigenvalue decomposition on a nor-
malized Laplacian matrix. It is a widely-used nonparametric
nonlinear dimensionality reduction method.

SC first constructs a normalized Laplacian matrix L by

L = I−D−1/2SD−1/2 (1)

where I is the identity matrix, S is an affinity matrix whose
element si,j is the cosine similarity score of xi and xj :

si,j =
xT
i xj

‖xi‖2‖xj‖2
, ∀i, j = 1, . . . , N (2)

and D−1/2 is a diagonal matrix whose diagonal element di,i
is the sum of the i-th row of W.

It then finds k eigenvectors u1, . . . ,uk of L that correspond
to the top k smallest eigenvalues, which produces a matrix U =
[u1, . . . ,uk], where k is the ground-truth number of classes.
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TABLE I Hyperparameters of MBN.

Parameter Description Default value

δ A parameter that controls the network structure by kl+1 = δkl, ∀l = 1, . . . , L 0.5

a Fraction of randomly selected dimensions (i.e., d̂ ) over all dimensions (i.e., d) of input data. 0.5

V Number of k-centroids clusterings per layer. > 100

k1 A parameter that controls the time and storage complexities of the network. k1 = 0.5N for small-scale problems

Suppose the i-th row of U is yi, then the feature represen-
tation of xi produced by SC is:

hi =
yi

‖yi‖2
(3)

IV. EXPERIMENTS

A. Database

We conducted the investigation on the female speakers of
the 8conv conditions of the NIST 2006 speaker recognition
evaluation (SRE) and NIST 2008 SRE corpora. There are 402
female speakers in the 8conv condition of NIST 2006 SRE,
and 395 female speakers in the 8conv condition of NIST 2008
SRE. Each speaker has 8 utterances. After removing the silence
regions by VAD, each utterance is roughly 2 minutes, where
we took the ASR transcripts of the corpora as the VAD labels.
We cut each utterance into 15 seconds’ segments.

We selected babble and factory noises from the NOISEX-92
database as the noise sources. For each type of noise, we took
the first two-third part of the noise signal as the noise source of
NIST 2006 SRE, and the remaining one-third part as the noise
source of NIST 2008 SRE. The experiment was conducted at
SNR levels of [5, 10, 15] dB respectively. For each SNR level,
we added each speech segment with a randomly selected piece
of noise.

Finally, our speaker clustering job is to clustering the noisy
speech segments into their ground-truth speakers.

B. Experimental Setup

We adopted two test environments—in-domain test and out-
of-domain test. The term “in-domain test” means that the
speakers to be clustered have appeared in the GMM-UBM
training, while the term “out-of-domain test” means that the
speakers are not included in the GMM-UBM training. We
used all noisy speech segments of the 402 female speakers
in the NIST 2006 SRE to train the GMM-UBM front-end. To
simulate a real-world environment, such as meeting or home,
we conducted speaker clustering on the first 20 females of NIST
2006 SRE and NIST 2008 SRE as the in-domain and out-of-
domain tests, respectively.

We set the frame length to 25 milliseconds and frame
shift to 10 milliseconds. We extracted 19-dimensional MFCC
with 1-dimensional log energy, and further normalized the 20-
dimensional features by feature warping with a 3 seconds
sliding window[13]. We trained a GMM-UBM with 1024
Gaussian mixtures for the supervector extraction.

We set the hyperparameters of MBN to the default values
in Table I, i.e. V = 200, a = 0.5, kl+1 = 0.5kl, and

TABLE II Comparison results of speaker clustering systems in the in-domain
test and babble noise.

NMI
5 dB 10 dB 15 dB clean

AHC 0.72 0.85 0.89 0.91
SC+AHC 0.55 0.90 0.93 0.94
MBN+AHC 0.72 0.91 0.92 0.93
KM 0.58 0.70 0.75 0.79
SC+KM 0.37 0.87 0.86 0.84
MBN+KM 0.67 0.84 0.82 0.85

ACC
5 dB 10 dB 15 dB clean

AHC 0.56 0.72 0.77 0.79
SC+AHC 0.52 0.85 0.86 0.91
MBN+AHC 0.67 0.91 0.91 0.93
KM 0.46 0.52 0.60 0.65
SC+KM 0.37 0.80 0.71 0.63
MBN+KM 0.56 0.68 0.62 0.69

k1 = 0.5N . The output dimension of PCA was set to the
ground-truth number of speakers, i.e. 20. We used k-means
(KM) and AHC as the clustering algorithms. Because KM
suffers from local minima, we ran KM 50 times and picked the
result that corresponds to the optimal objective value among
the 50 objective values for each single experiment. We used
the unweighted average distance as the clustering metric of
AHC. The comparison speaker clustering systems are different
combinations of the dimensionality reduction methods and
clustering algorithms.

We evaluated the performance of the speaker clustering
systems in terms of normalized mutual information (NMI) and
clustering accuracy (ACC), where Hungarian algorithm1 is used
to solve the label permutation problem of ACC between the
clustering result and the ground-truth labels. NMI and ACC
are two standard evaluation metrics of clustering. The higher
their scores are, the better the performance is.

C. Main results

Tables II to V list the results of the comparison speaker
clustering systems. From the table, we observe the following
experimental phenomena. (i) The performance of all compari-
son systems drops significantly with the decrease of SNR. (ii)
The MBN-based clustering systems are more robust than the
SC-based systems and AHC in most noisy environments. For
example, MBN+AHC achieves an ACC of 28% higher than
AHC and 11% higher than SC+AHC in the in-domain test
and factory noise at the SNR of 5 dB. (iii) AHC performs

1See http://www.cad.zju.edu.cn/home/dengcai/Data/Clustering.html for the
implementation of ACC.
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Fig. 4: NMI performance of MBN+AHC with different hyperparameters δ, a, and V in the in-domain test and factory noise at the SNR of 5 dB.

TABLE III Comparison results of speaker clustering systems in the in-domain
test and factory noise.

NMI
5 dB 10 dB 15 dB clean

AHC 0.78 0.84 0.86 0.91
SC+AHC 0.83 0.87 0.92 0.94
MBN+AHC 0.86 0.90 0.91 0.93
KM 0.65 0.71 0.77 0.79
SC+KM 0.72 0.82 0.85 0.84
MBN+KM 0.84 0.84 0.82 0.85

ACC
5 dB 10 dB 15 dB clean

AHC 0.60 0.67 0.70 0.79
SC+AHC 0.76 0.76 0.89 0.91
MBN+AHC 0.88 0.91 0.91 0.93
KM 0.55 0.55 0.68 0.65
SC+KM 0.64 0.76 0.70 0.63
MBN+KM 0.82 0.72 0.65 0.69

TABLE IV Comparison results of speaker clustering systems in the out-of-
domain test and babble noise.

NMI
5 dB 10 dB 15 dB clean

AHC 0.47 0.53 0.49 0.48
SC+AHC 0.43 0.59 0.58 0.60
MBN+AHC 0.53 0.56 0.58 0.56
KM 0.41 0.44 0.47 0.51
SC+KM 0.38 0.53 0.54 0.56
MBN+KM 0.50 0.52 0.53 0.52

ACC
5 dB 10 dB 15 dB clean

AHC 0.38 0.41 0.34 0.36
SC+AHC 0.37 0.52 0.50 0.51
MBN+AHC 0.45 0.52 0.54 0.52
KM 0.34 0.38 0.39 0.43
SC+KM 0.37 0.45 0.45 0.45
MBN+KM 0.41 0.45 0.42 0.44

TABLE V Comparison results of speaker clustering systems in the out-of-
domain test and factory noise.

NMI
5 dB 10 dB 15 dB clean

AHC 0.50 0.52 0.53 0.48
SC+AHC 0.52 0.59 0.58 0.60
MBN+AHC 0.53 0.53 0.56 0.56
KM 0.42 0.42 0.46 0.51
SC+KM 0.44 0.52 0.52 0.56
MBN+KM 0.52 0.54 0.52 0.52

ACC
5 dB 10 dB 15 dB clean

AHC 0.38 0.42 0.39 0.36
SC+AHC 0.44 0.52 0.49 0.51
MBN+AHC 0.49 0.46 0.50 0.52
KM 0.36 0.33 0.41 0.43
SC+KM 0.41 0.47 0.49 0.45
MBN+KM 0.46 0.47 0.44 0.44

MBN PCA

Fig. 3: Visualizations of speaker feature representations produced by MBN and
PCA in the in-domain test and factory noise at the SNR of 5 dB. Different
colors represent different speakers.

better than KM in most cases. (iv) All systems perform much
better in the in-domain test than in the out-of-domain test. An
interesting phenomenon is that the speaker clustering methods
could not perform well even in the clean environment in the out-
of-domain test. (v) The performance of all comparison methods
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TABLE VI Performance comparison between MBN-based and PCA-based
speaker clustering systems in the in-domain test and factory noise at the SNR
of 5 dB.

NMI ACC
PCA+AHC 0.81 0.69
MBN+AHC 0.86 0.88
PCA+KM 0.72 0.67
MBN+KM 0.84 0.82

drops significantly in the babble noise at the SNR of 5 dB due
to the speech-shaped noise.

We further compared MBN with PCA as a supplemental
experiment. Figure 3 shows the visualizations of the 20 speak-
ers in the two-dimensional subspaces produced by MBN and
PCA respectively. From the figure, we can see that MBN
produces a better visualization than PCA. Table VI lists the
comparison results of the MBN-based and PCA-based speaker
clustering systems. From the table, we observe that the MBN-
based systems outperform the PCA-based systems.

D. Effects of hyperparameters of MBN-based systems on per-
formance

The MBN-based systems, which perform the best in general,
have several tunable hyperparameters as shown in Table I. This
section studies the hyperparameters that are not default.

We studied the effects of parameters δ, a, V of the
MBN+AHC system in the in-domain test and factory noise
at the SNR of 5 dB. We searched parameter δ through
[0.1 : 0.1 : 0.9], parameter a through [0.1 : 0.1 : 1], and
parameter V through [10, 20, 30, 50, 100, 200, 400], where the
symbol [o : p : q] means that the search starts at o and ends
up at q with an increment of p. The result in Fig. 4 shows that
the MBN+AHC with the default parameter setting in Table I
reaches nearly the optimal performance.

V. CONCLUSIONS

In this paper, we have conducted an empirical comparison
between the recent speaker clustering systems in the noisy en-
vironments. The motivation behind the work is that the research
of previous speaker clustering and diarization is mostly done
in the clean environments, however, the real-world working
environment of a speaker clustering and diarization method is
seldom clean. We have compared several speaker clustering
systems, all of which use GMM-UBM as the feature extraction
front-end. The systems include AHC, SC+AHC, MBN+AHC,
PCA+AHC, KM, SC+KM, MBN+KM, and PCA+KM. We
have conducted an in-domain test and an out-of-domain test
on the noisy versions of NIST 2006 SRE and NIST 2008
SRE corpora. Experimental results show that (i) the MBN-
based speaker clustering systems perform the best in general,
while the SC-based systems outperform the systems that use
the original supervectors produced from GMM-UBM; (ii) all
comparison methods behave much poorer in the out-of-domain
test than in the in-domain test; (iii) the performance of all
comparison methods drop significantly with the decrease of
the SNR levels.
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