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Abstract—The present study tackles the problem of automat-
ically discovering spoken keywords from untranscribed audio
archives without requiring word-by-word speech transcription by
automatic speech recognition (ASR) technology. The problem is
of practical significance in many applications of speech analytics,
including those concerning low-resource languages, and large
amount of multilingual and multi-genre data. We propose a two-
stage approach, which comprises unsupervised acoustic modeling
and decoding, followed by pattern mining in acoustic unit
sequences. The whole process starts by deriving and modeling
a set of subword-level speech units with untranscribed data.
With the unsupervisedly trained acoustic models, a given audio
archive is represented by a pseudo transcription, from which
spoken keywords can be discovered by string mining algorithms.
For unsupervised acoustic modeling, a deep neural network
trained by multilingual speech corpora is used to generate speech
segmentation and compute bottleneck features for segment clus-
tering. Experimental results show that the proposed system is
able to effectively extract topic-related words and phrases from
the lecture recordings on MIT OpenCourseWare.

Index Terms—Zero-resource speech technology, unsupervised
speech modeling, acoustic segment model, string mining

I. INTRODUCTION

In recent years, automatic speech recognition (ASR) tech-
nology is advancing to the level that is considered adequate
for daily use in human-computer interaction [1], [2]. The high
performance level is contributed largely by the effectiveness
of deep learning algorithms with large amount of training
data [3], [4]. For mainstream commercial systems, there is no
much concern on the availability of training data and linguistic
knowledge about the intended languages. With fine-grained
or coarse transcription for part or all of the training data,
supervised approaches could be applied to the training of a
deep neural network for acoustic-phonetic mapping [3], [5],
[6]. This is considered a rather straightforward process.

There are many application scenarios where transcribed
training data are difficult or even impossible to acquire. One
of the scenarios concerns those unpopular and less-studied
languages or dialects, for examples, ethnic minority languages
in China. In the ASR research community, low-resource lan-
guages (or zero-resource in the extreme case) refer to the cases
that most of the key elements of linguistic knowledge required
for ASR system development, e.g., definition of phonemes,

pronunciation lexicon, orthographically represented data, etc.,
do not exist, although a certain amount of audio-form speech
data may be available [7], [8]. There are also situations
that the linguistic resources in existence do not adequately
represent the spoken language in actual usage, for examples,
regional variants of a major language, code-mixing speech,
and technical language in a highly specialised area.

Another application scenario with practical significance
is the unsupervised spoken term discovery from large-scale
multi-genre audio archives. By multi-genre, we refer to a
high diversity of audio content, including speech of differ-
ent speaking styles and accents, and from varying acoustic
channels, and all kinds of non-speech sounds. Examples are
publicly available broadcast media content, live recordings
of lectures/seminars/meetings, and personal digital recordings.
While improving ASR performance for multi-genre speech
transcription has attracted great research interest [9], unsu-
pervised pattern discovery is considered a pragmatic approach
to efficient indexing, search and organizing of complex audio
content.

The present study tackles the problem of unsupervised
keyword discovery from raw audio of topic-specific classroom
lectures. The experimental dataset is adapted from unedited
video recordings in the MIT OpenCourseWare, covering vari-
ous courses on Mathematics, Engineering and Computer Pro-
gramming [10]. In addition to the teacher’s speech, the audio
content contain students’ speech (e.g., asking or responding
questions), cough, laughter, chalk-writing sounds, furniture
sounds, video sound, etc. The teachers may or may not be
native speakers of English. Some of them carry very strong
foreign accents. Our objective is to automatically find out a
set of keywords that can represent the subject of a lecture or
course, without performing explicit speech transcription.

To tackle this problem, we develop a two-stage approach,
which comprises unsupervised acoustic modeling and decod-
ing, followed by pattern mining in acoustic unit sequences.
Subword-level acoustic models are trained from untranscribed
audio recordings using an unsupervised approach. For the
segmentation of audio frames and clustering of subword units,
we propose to incorporate language-independent bottleneck
features (BNFs) from a deep neural network (DNN) trained
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Fig. 1: Unsupervised acoustic modeling framework used to train acoustic subword models and generate subword unit sequences
for target speech.
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Fig. 2: Unsupervised pattern mining framework used to discover keywords in subword unit sequences of target speech.

by multilingual speech corpora [11]. The multilingual DNN is
expected to provide a wide coverage and rich representation
of acoustic and phonetic variations, so as to better charac-
terize the unseen speech data. With unsupervisedly trained
acoustic models, each lecture recording can be decoded into
a pseudo transcription, which is in the form of subword unit
sequence. A spoken keyword in the lecture is identified as
a distinctive subsequence pattern that occurs multiple times
in the pseudo transcription. The performance of the proposed
system is evaluated by comparing and relating the discovered
“keywords” with the ground-truth transcription provided at the
MIT OpenCourseWare website.

II. PREVIOUS WORK ON UNSUPERVISED ACOUSTIC
MODELING AND PATTERN DISCOVERY

A. Unsupervised acoustic modeling

Unsupervised acoustic modeling aims at finding basic
speech units, which are desirably equivalent to phonemes,
from untranscribed speech data. Previously investigated ap-
proaches can be divided into two categories, namely bottom-up
modeling and top-down modeling. In the bottom-up approach,
speech is viewed as a sequence of low-level components,
e.g., frames or segments, which can be grouped by clustering
techniques to define higher-level structures [12]–[14]. The
learned clusters are regarded as the basic units to represent
the language concerned. Top-down modeling methods seek
use of higher-level knowledge to provide constraints and guide
the modeling of low-level speech components [15], [16]. The
higher-level knowledge, e.g., word/phrase segment pairs, could
be obtained by a process known as spoken term discovery
(STD). In recent studies, DNNs has been shown effective
in improving performance of both bottom-up and top-down
modeling methods [17]–[20].

The commonly used bottom-up framework for unsupervised
acoustic modeling consists of three steps, namely, speech seg-
mentation, segment clustering, and iterative modeling. Speech
segmentation aims to divide a speech utterance into variable-
length segments based on, for instance, the spectral disconti-
nuities. Segmentation could be data-driven, e.g. the bottom-
up hierarchical clustering method presented in [21], or based
on out-of-domain knowledge and/or resources, e.g., language-
mismatched phone recognizers [22]. Segment clustering is to
find and group speech segments that share similar acoustic

properties. Various clustering algorithms such as Gaussian
mixture model (GMM) [23], segmental GMM (SGMM) [24],
vector quantization (VQ) [25] and spectral clustering [13],
[22], have been investigated. With the cluster labels as initial
tokenization, acoustic models are trained and refined by iter-
atively performing model parameter estimation and decoding,
in a supervised manner. Following the terminology of [25],
this framework is referred to as acoustic segment modeling
(ASM) in this study.

B. Unsupervised pattern discovery

Unsupervised pattern discovery (also known as spoken term
discovery (STD) [8], or unsupervised term discovery (UTD)
[26]) refers to the task of automatically discovering words
and linguistic entities from audio archives without supervision
[27]. Unsupervised pattern discovery from audio signals could
be done in two steps [27], [28]: (1) identifying similar audio
segments from target audio archives, and (2) clustering the
segments into groups of discovered patterns. In [27], Park
and Glass proposed a segmental dynamic time wrapping
(DTW) algorithm to discover similar audio patterns from pairs
of utterances by comparing at acoustic level. They further
applied graph-based clustering towards similar segments, in
order to find the most common word-/phrase-like patterns. A
number of extensions to [27] were made mainly to improve
the feature representations, e.g., using Gaussian posteriorgram
[28], language-mismatched phoneme posteriorgram and un-
supervised subword posteriorgram [29]. Another direction of
improvement was to improve the computation efficiency [30].

Recently, there are works focusing on the topic of lexicon
discovery from untranscribed speech [31], [32]. It is closely
related to unsupervised pattern discovery, but emphasizing on
full-coverage segmentation of speech into word-like units.

III. UNSUPERVISED ACOUSTIC MODELING AND DECODING

In the present study, the ASM framework is adopted for
unsupervised acoustic modeling and decoding. The novelty of
our work lies in that a multilingual DNN trained with resource-
rich language resources is involved in both speech segmenta-
tion and segment representation. The proposed system design
is shown as in Fig. 1.
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Fig. 3: Multilingual bottleneck network used to obtain lan-
guage independent acoustic information.

A. Segmentation and BNF extraction

The input utterance is divided into variable-length segments,
from which fixed-dimension feature representations are ex-
tracted. In the proposed system, a multilingual DNN is trained
for this purpose. The architecture of a multilingual DNN
is illustrated as in Figure 3. It contains a set of language-
specific output layers and a number of shared hidden layers,
including a low-dimensional bottleneck (BN) layer. Training of
the DNN follows stochastic gradient descent (SGD) algorithm,
to minimize language-weighted average cross-entropy loss
function [33].

Given an input utterance, the trained DNN would produce
multiple sets of phoneme-level time alignments at the block-
softmax layers. These hypothesized alignments are combined
to give a single segmentation as in described in Feng et al.
[22], i.e., hypothesized segment boundaries within an internal
of 20 ms are merged. Frame-level BNF of an input utterance
are extracted from the bottleneck layer. Segment-level BNFs
are obtained by averaging the frame-level features.

B. Segment clustering

The BNFs obtained from all segments have the same di-
mension. By a BNF clustering process, segments with similar
acoustic properties are grouped together. A practical issue for
segment clustering is that the number of clusters is unknown,
as in most cases linguistic knowledge on the concerned
language is completely unavailable. The hierarchical agglom-
erative clustering (HAC) [34] approach is applied to obtain a
general picture on the similarity among segments, and allow
the number of clusters to be determined manually. In this
study, the Ward’s minimum variance [35] is used as the linkage
criterion for HAC. An example dendrogram describing the re-
sult of HAC on a lecture recording from MITOpenCourseWare
(refer to Section V for details) is illustrated as in Fig. 4.

After determining the number of clusters R, the segments
from the entire dataset are clustered by the k-means algorithm.
Each of the resulted cluster is assigned a specific label that is
used to represent all its members. The clusters are expected
to correspond to a set of linguistically relevant speech units

Fig. 4: Dendrogram showing hierarchical clustering of 100,000
segments.

are subword level. Given an input utterance, the sequence of
segment labels is regarded as a kind of pseudo transcriptions,
which can be used for further analysis and comparison.

C. Iterative training and decoding
The availability of pseudo transcription makes supervised

training of acoustic models possible. Specifically, DNN-HMM
acoustic models [3] can be trained to represent the unsuper-
visedly learned subword units, and these models are refined in
conjunction with the pseudo transcriptions of all training data
in an iterative manner, as elaborate below:

1) Train an initial set of DNN-HMM acoustic models
with the pseudo transcriptions resulted from segment
clustering.

2) Decode the training data with the current models and
obtain new pseudo transcriptions.

3) Train the acoustic models with the new pseudo transcrip-
tions.

4) Repeat Step 2) and 3) until convergence.
Iterative training is carried out with the domain-specific
dataset, i.e., all lectures from the same course. In this way,
acoustic models and pseudo transcriptions are jointly opti-
mized for the target application.

After iterative training, the final version of pseudo transcrip-
tions, in the form of subword unit sequences, are used for the
subsequent process of keyword discovery.

IV. PATTERN DISCOVERY FROM SUBWORD UNIT
SEQUENCE

With the unsupervisedly trained acoustic models, the audio
content of a lecture can be represented by a pseudo transcrip-
tion (subword unit sequence). A keyword spoken frequently
during the lecture is identified by a distinctive pattern that
repeatedly occurs in the transcription. The process of searching
for such candidate patterns consists of two parts:

• Sequence matching between each pair of pseudo tran-
scriptions and generating “bags of unit sequences”;

• Clustering the “bags of unit sequences” into groups of
similar sequence patterns, which correspond to keywords.
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A. Generating “bags of unit sequences”

Identification of similar or closely related subsequences in
long symbol sequences is an important problem in bioinfor-
matics. In [36], an algorithm of inexact matching between
a pair of short symbol sequences was described. Based on
this algorithm, the “bags of unit sequences” containing only
the matching subsequences are generated. This algorithm is
referred to as local sequence alignment in this paper. Pseudo
code for this algorithm is listed in Algorithm 1.

In our application, symbol sequences are pseudo transcrip-
tions, i.e. subword unit sequences, acquired from unsupervised
acoustic modeling, as discussed in Section III. The motivation
for allowing inexact matching of “bags of unit sequences” is to
cope with the possible decoding errors in pseudo transcriptions
and pronunciation variations. Suppose there are N utterances
for the target untranscribed speech. Each time we pick up 2
symbol sequences A and B, corresponding to 2 utterances,
and perform Algorithm 1 towards A and B to generate “bags
of unit sequences”. After N(N−1)

2 times, all possible pairs of
sequences are used to perform Algorithm 1. Finally, all the
discovered “bags of unit sequences” are stored, and will be
used for subsequent clustering process. We are only interested
in the “bags of unit sequences” with 4 symbols or longer, to
make sure they mainly cover content-related words.

Algorithm 1 Local sequence alignment

1: procedure LOCALALIGN(A = a1a2...an, B = b1b2...bm)

2: s(ai, bj) =

{
+1 , if ai, bj match
−1 , if ai, bj mismatch

. Similarity

score between sequence elements ai and bj
3: Compute an (n + 1) × (m + 1) matrix P, where the

element pi,j is,

pi,j =



0 , i or j = 0

max


pi−1,j−1 + s(ai, bj)

pi−1,j

pi,j−1

0

, elsewhere

4: Traceback from pn,j∗ ending with an element of P
equal to 0, where pn,j∗ are local maxima of {pn,j |0 ≤
j ≤ m}, to obtain common subsequence pairs in A and
B.

5: Store all obtained subsequences with reasonable length
into the “bag of words”.

6: end procedure

B. Sequence clustering

The “bag of unit sequences” created as in Section IV-A
contain a large number of unit sequences of different lengths.
These sequences are clustered into groups using the leader
clustering algorithm [37], as depicted in Algorithm 2. The
radius of each cluster is given as T . To avoid clusters from
overlapping to much, we set the minimum distance between
centroids into a∗T , where a is larger than 0. Leader clustering

is sensitive to the initialization of centroids. To avoid having
the centroid that is not the representative of the cluster due to
poor initialization (e.g. outliers), the centroid is updated with
the most representative sequence, i.e., the sequence having the
least total distance with all cluster members, as is shown in
Line 10 of Algorithm 2. The clustering process iterates until
the number of clusters converges (remain unchanged).

The normalized Levenshtein distance ||L(x, y)|| used in
Algorithm 2 is defined as,

||L(x, y)|| = b
L(x, y)√
|x|2 + |y|2

, (1)

where L(x, y) is the Levenshtein distance [38] between se-
quences x and y. b is an adjustable scalar. The normalization
allows clusters to be formed with consideration of sequence
length: short sequences to have more strict match (e.g. 1
difference out of 5), and longer sequence to have looser match
(2-3 differences out of 10).

Algorithm 2 Leader clustering

1: procedure LEADER(bag of sequences S)
2: Initial a point i to centroid
3: for each point p in S do
4: if ||L(i, p)|| > a ∗ T for all i in centroid, a > 0:

then
5: Add p to centroid
6: end if
7: end for
8: Assign each point p in S to its closest cluster i with
||L(i, p)|| < T .

9: for each group do
10: Update centroid with the representative of the

cluster (measured by smallest total distance with same
group members).

11: end for
12: Repeat steps 2-11 until the number of clusters con-

verge.
13: end procedure

V. EXPERIMENTAL SETUP

A. Training data
The proposed system is evaluated on the task of unsuper-

vised keyword discovery from audio recordings of academic
lectures. The audio data are extracted from three courses that
are publicly available at the MIT OpenCourseWare website
[10]. The courses are “Mathematics for Computer Science”
(MATH), “Principles of Digital Communication II” (COMM)
and “Introduction to Computer Science and Programming
in Python” (PYTH). The recording conditions of the three
courses were similar. Each course consists of 12−25 lectures.
The duration of lecture is in the range of 45 − 70 minutes.
The course teacher of MATH spoke with French accent. The
speaking rate in PYTH was relatively fast and that in COMM
was slow. The long recordings are divided into short segments
(roughly 5− 10 seconds) for further processing.
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B. System set-up

Unsupervised acoustic modeling is carried out for the three
courses separately. That is, a set of subword units are learned
from all lecture recordings of each course, leading to a set of
acoustic models tailored for the course.

A multilingual DNN with BN layer is trained with 5
speech corpora of 4 resource-rich languages: TIMIT (English)
[39], WSJ (English) [40], CUSENT (Cantonese) [41], 863
(Mandarin) [42] and a distant-speech database of German [43],
using Kaldi [44]. The DNN has 5 hidden layers with dimen-
sions of 1500, 1500, 1500, 40 (BN layer) and 1500 respec-
tively. There are 5 block-softmax output layers, corresponding
to the 5 speech corpora. The state-level labels required for
supervised training of the multilingual DNN are obtained
from the context-dependent GMM-HMM (CD-GMM-HMM)
trained separately for the 5 corpora. 23-dimensional Mel-scale
filter-bank features (fbanks) are extracted for training both CD-
GMM-HMM and DNN.

The trained multilingual DNN is used to obtain subword-
level segmentation and generate frame-level BNFs for the
lecture recordings (see Section III-A). The segmentation is
derived from the 5 block-softmax layers. Segment-level BNFs
are obtained by averaging the frame-level features. By apply-
ing k-means clustering to segment-level features, 55 clusters
are obtained, each denoting a subword-level unit. The number
of clusters is determined by HAC, as discussed in Section
III-B.

For iterative training, acoustic models are trained in a
course-specific manner, also using Kaldi [44]1. In each it-
eration, GMM-HMM acoustic models with speaker adaptive
training (GMM-HMM-SAT) are trained beforehand to gener-
ate feature-space maximum likelihood linear regression (fM-
LLR) features, with the latest version of pseudo transcriptions
and multilingual BNFs as input features. The fMLLRs and
HMM state-level alignments generated by GMM-HMM-SAT
are used to train the DNN-HMM acoustic models, followed
by decoding target speech to obtain an updated version of
pseudo transcriptions, i.e., the 1-best path of decoding lattices.
The language model needed for decoding is trained with exact
the same version of transcriptions used for GMM-HMM-SAT
training in this iteration. During iterative training of course-
specific acoustic models and decoding target data into pseudo
transcriptions, the frame-level unit labels before and after each
iteration are compared. If the percentage difference is below
0.1%, convergence of training is assumed. In our experiments,
it is observed that 5 to 6 iterations are needed for convergence.

As a comparison, iterative training with the same config-
uration except for replacing multilingual BNFs with fbanks
(as inputs to GMM-HMM-SAT training) is also tested. The
system with multilingual BNFs converges faster than that with
the fbanks2.

After iterative training, the recordings are represented by

1kaldi/egs/timit/s5/run.sh
2Due to limited space, experimental results on comparing BNFs and fbanks

are not presented here.

pseudo transcriptions. Bag of subword sequences, generated
by performing Algorithm 1, are clustered by Algorithm 2 in
order to obtain similar sequence patterns, i.e. the discovered
keywords. The parameter b in Equation (1) is set to 4. We
experimented various parameters from T : 0.7 − 1.6 (with
interval 0.1), a : 1− 2 (with interval 0.1), and found out that
T = 1.4, a = 1.8 could lead to relatively good performance
in terms of cluster number, purity and cluster size.

VI. RESULTS AND ANALYSIS

Given a set of lecture recordings, the proposed system is
able to generate a certain number of clusters of subword
unit sequences. Unit sequences in the same cluster should be
similar (based on the normalized Levenshtein distance) and are
expected to represent the same word or phrase being spoken in
the lectures. For the intended task of keywords discovery, it is
desired that a significant portion of the content-related words
could be covered by the unsupervisedly generated clusters. In
this section, we analyze the automatically discovered keyword
clusters with respect to the frequently occurred words and
phrases in the ground-truth transcriptions (available at the MIT
OpenCourseWare website3).

A. Quality of discovered “word” clusters
We examine the clustering results for 2 selected lectures in

the course MATH. For Lecture 4 (“Number Theory I”, 80 min.
long), the system generates 95 keyword clusters from 34, 313
candidate unit sequences. For Lecture 8 (“Graph Theory II:
Minimum Spanning Trees”, 83 min. long), there are 119
clusters from 25, 899.

Tables I and II list the words corresponding to the 10
longest sequence clusters in the two lectures, respectively. It
is observed that most of these clusters correspond to words
that are related to the lecture topic. Clusters of sequences
with 12 to 16 subword units generally have high purity. A
cluster with high purity provides a valid representation of a
specific word or phrase. As the sequence length decreases, the
cluster’s purity tends to decrease. Sequences with less than 5
units typically correspond to parts of different words that have
similar pronunciations, e.g., “so”, “(al)so”, and “so(lve)”; “in”
and “in(teger)”.

The same word may be represented by more than one
clusters. For example, clusters #116 and #109 for Lecture 8
(Table II) both correspond to “vertices”. It is also observed
that some of discovered words can be composed by other
clusters of shorter sequences. Some of the clusters represent
non-speech sounds, e.g., cluster #77 in Table I for “chalk-
writing sounds”, which are very common in live recordings of
lectures.

B. Coverage of discovered words
In this section, the coverage of automatically discovered

“words” is examined with respect to the ground-truth tran-
scriptions. For the three courses that we are experimenting
with, word-by-word speech transcriptions are available at the

3ocw.mit.edu/index.htm
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TABLE I: Lecture 4: Number Theory I

Cluster # Corresponding words Cluster
size Purity

58 divide any result 2 100%
63 the zero steps 2 100%
70 Multiple of 2 100%
56 linear combination 17 100%
40 the/a number theory 5 100%
70 a and b 14 100%
28 use the lemma again 2 100%

43 Greatest common, The greatest
common 18 100%

77 *chalk-writing sounds* 8 100%
76 gallon jug 15 100%

TABLE II: Lecture 8: Graph Theory II: Minimum Spanning
Trees

Cluster # Corresponding words Cluster
size Purity

70 b equal to 2 100%

66 this particular edge, this particular
err 4 75%

57 connected subgraph, the subgraph 7 100%

89 A subgraph,The smaller part 4 50%,
50%

87 still connected, both connected 4 100%
83 Double star is 2 100%
80 So we know that 2 100%
116 Vertices, vertices that, -ices have 7 85.7%

45 the spanning tree, a spanning tree,
spanning tree 25 100%

109 vertices 4 100%

the course website. Word-level trigrams, bigrams and unigrams
are computed from the transcription for each lecture session
or all lectures in a course, with the function words like “is”,
“a”, “the” being discarded.

For a specific lecture session, the most frequent N -grams
are examined one by one, to determine whether the corre-
sponding word(s) can be matched with any of the discovered
“word” clusters. There are cases that a cluster may partially
match a trigram or bigram. If the unmatched part is a function
word, e.g. “linear combination” versus “linear combination
of”, it is regarded as a case of match. If the unmatched part
is a content word, e.g., “divisor” versus “common divisor”, it
is regarded as mismatch.

For Lecture 4 (“Number Theory I”) of the course MATH
and Lecture 8 (“Object-Oriented Programming”) of the course
PYTH, we analyze the top 10 trigrams, top 20 bigrams and
30 unigrams and match them with the 10 longest sequence
clusters and other highly-populated clusters. The matching
rates are found to be 73.3% and 51.6% respectively. The
details of matching results for the lecture of “Object-Oriented
Programming” are given as in Table III. It is noted that the
uncovered unigrams are mostly words with a small number
of phones, e.g. “add”, “car”, “code”, while the covered words
are mostly polysyllabic words, e.g., “python”, “coordinate”.

TABLE III: Matching results for the lecture of “Object-
Oriented Programming”

Trigram Count Match ?
a coordinate object 14 yes
can interact with 13 yes
a fraction object 9 partly

an object of 7 yes
of the class 7 yes

of type coordinate 7 partly
the exact same 6
you can create 6

is equal to 6
going to define 6 yes

(a) Trigram

Bigram Count Match ?
an object 25 yes
the class 22 yes

coordinate object 20 partly
interact with 19 yes

a list 17
a coordinate 17 yes
the object 14 yes

fraction object 14 partly
object that 14 yes

the x 13
this method 13 yes
can interact 13 yes

create a 13
a fraction 12 yes

data attributes 12 yes
of type 11 yes

for example 11 yes
to define 10
the list 10

underscore underscore 10
(b) Bigrams

Unigram Count Match ?
object 118 yes

coordinate 70 yes
class 60 yes
type 47 yes

method 46 yes
data 45 yes

objects 44 yes
right 38

i 35
list 32

python 30 yes
x 29

create 28
self 28
print 27
one 25 yes
c 24 yes

dot 24
attributes 22 yes
fraction 21 yes

underscore 20
value 20 yes

interact 19 yes
y 18

define 18
init 17
add 17
lists 16
car 16

code 15
(c) Unigrams
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For the lecture of “Number Theory I”, the matching rate for
unigrams is higher, due to more complicated phonetic structure
of the words.

The same analysis has also been done for the course
COMM, which contains 25 lectures of 70 minutes long. The
100 most frequent trigrams, bigrams and unigrams are exam-
ined by comparing with clusters generated from all lectures.
A high matching rate of 85.8% is recorded.

The proposed system needs improvement in its ability of
identifying keywords of relatively short length. In fact, short
candidate sequences are not included when generating the
candidate sequences for clustering (see Section IV-A). There
is also an issue related to clusters that represent parts of a
word.

VII. CONCLUSION

We propose a two-stage approach to unsupervised keyword
discovery. Pseudo transcription are generated by decoding
results of unsupervised subword models. Keywords are tok-
enized by searching matching subword sequences in pseudo
transcription using local sequence alignment, and clustered
into groups with leader clustering.

We experimented the model on 3 academic courses, con-
cluding that the model has the ability in extracting topic related
information, with coverage of 51.6% − 85.8% of the most
frequent keywords. The performance of keywords matching is
related to the phone size of the word, and is easier to match
words with more phonemes with high purity in the clusters.

It is expected that the model has the capability in modeling
other languages (e.g. zero-resource languages) with the use of
language transfer property in multilingual bottleneck network.
Future application on topic classification of recordings can also
be considered.
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