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Abstract—This paper proposes a novel iterative decoder based
on concatenated belief propagation (BP) for CRC-aided polar
codes. Compared to the conventional BP-based decoders for
polar codes, soft cancellation (SCAN) decoder can generate a
log likelihood ratio (LLR) of coded bit with lower computational
complexity without sacrificing the detection capability. Unfortu-
nately, its performance is not as good as that of CRC-aided suc-
cessive cancellation list decoder (SCLD) although SCAN decoder
has advantage of hardware implementation. To compensate the
performance gap, we exploit CRC structure for not only error
detection but also error correction with the assistance of its error
correction capability at a short code length by exchanging LLRs
between SCAN decoder and BP decoder on the basis of CRC.
Moreover, the sub-optimal criterion for selecting a parity check
matrix of CRC for BP decoder is proposed. Finally, computer
simulations are conducted to confirm the validity of our proposed
method. The proposed method can obtain the gain of about 0.6

dB at BER = 10
−3 compared to the native SCAN decoder without

requiring huge memory size as in SCLD.

I. INTRODUCTION

In 2009, Arikan proposed a polar code based on channel

polarization phenomena [1], which is universally recognized as

a major breakthrough in coding theory. The most noteworthy

point of polar codes is achievability of the Shannon limit for

symmetric binary-input memoryless channels by using simple

successive cancellation decoder (SCD) with low encoding and

decoding complexity. Moreover, in 2016, the third generation

partnership project (3GPP) agreed to adopt polar codes for

the enhanced mobile broadband (eMBB) control channels for

the 5G new radio (NR). As a result, polar codes are gaining

attention more and more.

The native SCD is capable of achieving high decoding

capability when the code length is sufficiently long. However,

if the code length is short, the channel polarization effect

cannot be adequately experienced, resulting in poor decoding

performance. To remedy the drawback, which is induced by

the poor channel polarization, several decoding algorithms

have been proposed so far. The sophisticated algorithms are

roughly classified into two types: successive cancellation list

decoding (SCLD) and belief propagation (BP) decoding.

Successive canceller suffers from error propagation issues.

The SCLD applies list decoding that select W higher like-

lihood candidates as survival paths. The list structure can

mitigate the negative impacts of the error propagation [2].

However, the decoding capability is worse than low density

parity check (LDPC) codes [3]. To cope with the drawback,

cyclic redundancy check (CRC) aided list decoding is helpful

in finding better survival paths. As a result, in short code

length, its performance is better than the LDPC at the expense

of computational complexity. Furthermore, we should pay

attention that the SCLD is not suitable for generating log-

likelihood ratios (LLR) of a coded bit, which is exploited for

performing statistical signal processing in bit interleave coded

modulation (BICM)-iterative detection (ID) as well as turbo

equalizer [4].

For generating reasonable LLR, Arikan’s BP decoding

method has been proposed in [5]. BP decoder iteratively

performs message passing on the factor graph (FG) of the

polar code to improve the detection capability gradually.

Unfortunately, the computational complexity of Arikan’s BP

decoder is higher than SCLD. For reducing the computational

complexity to find LLR of a coded bit, soft cancellation

(SCAN) decoder has been proposed [6], [7]. However, its

performance is not as good as CRC-aided SCLD.

To compensate the performance gap, this paper exploits

CRC structure even in SCAN decoder. In this case, CRC is

utilized for not only error detection but also error correction

with the assistance of its error correction capability at a short

code length. In the conventional SCAN decoding method,

iterative decoding is performed only on the FG of polar

codes. In addition, BP decoder for the CRC structure is

serially concatenated with SCAN decoder for polar codes in

the present paper. For the serially concatenated code, iterative

LLR exchange between SCAN and BP decoders is effective

in obtaining enhanced LLR.

A problem in performing BP decoding based on the CRC

structure is a presence of short cycle (SC) depicted in a Tanner

graph (TG) of parity check matrix. If TG contains many

SCs, strict probabilistic marginalization cannot be performed

at the sum-product algorithm (SPA) variable node, and there

is a disadvantage that its decoding performance is severely

degraded. In order to solve this inconvenience, we propose

optimal selection criteria for parity check matrix in this paper.

The paper is organized as follows. In Sect. II, a signal

model is defined. The polar coded transmission system and

the algorithm of SCAN decoder are explained in Sect. III.

In Sect. IV, we propose an iterative decoding algorithm for

concatenated structure between BP decoder based on CRC

and SCAN decoder. Then, we discuss a problematic SC when

operating SPA based on CRC, and propose selection criteria

for parity check matrix. In Sect. V, the proposed method is

validated by computer simulations. Finally, Sect. VI concludes
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Fig. 1: A schematic of polar coded transceiver.

this paper.

II. SIGNAL MODEL

Let us consider polar codes of code length N bits and

information bit length K bits with coding rate K/N . The

polar coded transmission model is shown in Fig. 1. At the

transmitter, information bits d = [d0, . . . , dk, . . . , dK−1] is

encoded by channel encoder C, resulting in coded bits x =
[x0, . . . , xn, . . . , xN−1]. The resultant coded bits are modu-

lated by binary shift keying (BPSK) M to yield transmitted

symbols s = [s0, . . . , sn, . . . , sN−1] ∈ S = {
√
Es,−

√
Es}N ,

i.e. sn = −2xn + 1. where Es denotes the average energy of

transmitted symbols. Assuming additive white Gaussian noise

(AWGN) channels, the receiver observes received symbols

y = [y0, . . . , yn, . . . , yN−1], which is represented as

y = s+ z, (1)

where z = [z0, . . . , zn, . . . , zN−1] denotes a complex-valued

AWGN vector, whose elements obey zero mean and variance

of one-sided noise power spectrum density N0. The received

symbols y is softly demodulated by symbol demapper M−1

for computing LLR of a coded bit, which is given by

rn = ln
p (yn|xn = 0)

p (yn|xn = 1)
, (2)

where p (yn|xn) is probability density function of the obser-

vation yn. Substituting (1) into (2), the LLR is simplified as

rn =
4
√
Es

N0

ℜ{yn} , (3)

where ℜ{·} indicates the real part of complex values. On

the basis of the resultant LLR, channel decoder C−1 detects

estimates of information bits d̂ =
[

d̂0, . . . , d̂k, . . . , d̂K−1

]

.

III. POLAR ENCODER AND SCAN DECODER

A. Construction of polar codes

In the encoder C, an information bit vector d is mapped to a

vector u = [u0, u1, . . . , uN−1] on the position corresponding

to an index set I (|I| = K). On the other hand, denoting

complementary set of I as Ic (|Ic| = N − K), 0 is

mapped to the vector u on the position corresponding to the

complementary index set Ic. The N−K zero elements on the

Ic are referred to as frozen bits, and the index set is known

to both the encoder and the decoder. The position of frozen

bits are typically determined at channels with lower mutual

information [8] 1. Then, coded bits x are obtained by

x = uBNFN , (4)

1In this paper, for simplicity, K channels with large channel capacity of
m-times polarized binary erasure channel (BEC) are selected for transmitting
information bits.
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Fig. 2: An example of FG of polar codes (N = 8).

Fig. 3: Unit graph for polar codes.

where matrices BN and FN are a bit-reversal and a generator

matrix of polar codes, respectively. The matrix FN is defined

by

FN = F⊗m
2 , (5)

where m = log2 N , (.)⊗m denotes the m-th Kronecker power,

and

F2 =

(

1 0
1 1

)

. (6)

B. Soft Cancellation Decoder

SCAN decoder performs over the FG of polar codes. An

example of the FG of a polar code with code length N = 8 is

illustrated in Fig. 2. There are N(m+1) nodes in the FG when

length N = 2m. These nodes are classified into m+1 classes

indexed by λ, and each class consists of 2λ groups indexed

by ϕ. Furthermore, each group contains 2m−λ nodes indexed

by ω. An arbitrary node can be denoted by these parameters

(λ, ϕ, ω) uniquely.

Each node has two memories of LLRs L and R. LLR belief

Lλ(ϕ, ω) at the (λ, ϕ, ω) node propagates from left to right on

the FG. By contrast, Rλ(ϕ, ω) does from right to left. Note

that Lλ(ϕ, ω) of the most left side L0(0, ω) is the received

channel LLR rω and initial values of Rm(ϕ, 0) on the most

right side has constant LLRs, where Rm(ϕ, 0) = 0 if uϕ is an

information bit and Rm(ϕ, 0) = +∞ if it is a frozen bit. The

FG in Fig. 2 is constructed by serial and parallel concatenation
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of unit graphs shown in Fig. 3. The message passing rules on

the unit graph are summarized as follows:

Lλ+1(ϕ2, ω2)

= f(Rλ+1(ϕ3, ω3) + Lλ(ϕ1, ω1), Lλ(ϕ0, ω0)), (7)

Lλ+1(ϕ3, ω3)

= f(Rλ+1(ϕ2, ω2), Lλ(ϕ0, ω0)) + Lλ(ϕ1, ω1), (8)

Rλ(ϕ0, ω0)

= f(Rλ+1(ϕ2, ω2), Rλ+1(ϕ3, ω3) + Lλ(ϕ1, ω1)), (9)

Rλ(ϕ1, ω1)

= f(Rλ+1(ϕ2, ω2), Lλ(ϕ0, ω0)) +Rλ+1(ϕ3, ω3),(10)

where the function f(a, b) is defined as

f(a, b) , 2 tanh−1

[

tanh

(

a

2

)

× tanh

(

b

2

)]

. (11)

IV. CRC-AIDED SCAN ITERATIVE DECODER

A. CRC Error Correction

The CRC encoder appends parity bits of length J bits

p = [p0, . . . , pJ−1] to the end of information block d. As

a result, we have CRC-coded bits of length K + J bits

b = [d,p] = [b0, . . . , bK+J−1]. While CRC codes are

usually used for an error detection only, they might have

error correction capability, thanks to the redundancy of parity

bits. When information bit length K is large, the coding

rate K/(K + J) is high, resulting in weak error correction

capability. However, when information bit length K is enough

short, the error correction capability is significant. The CRC-

coded block b could be regarded as a binary liner block code,

and the SPA decoder is a useful decoding algorithm for such

block codes.

B. Iterative Decoding between SCAN and CRC Decoders

The CRC-aided polar code implicitly has a structure of se-

rial concatenated code in which polar and CRC codes are inner

and outer codes, respectively. For the concatenated structure,

iterative decoding based on Turbo principle is effective in

improving the reliability of LLRs [9]. A configuration of the

CRC-aided polar-coded transceiver is depicted in Fig. 4. At

the transmitter, as mentioned before, parity bits p are added

to the end of information bits d by CRC encoder. Then, coded

bits x is obtained by the polar encoder explained in Sect. III.

The resultant coded bits are modulated by BPSK.

At the receiver, after computing channel LLR rn of (3) at the

demodulator, SCAN decoder performs. In the SCAN decoder,

LLR α = [α0, . . . , αK+J−1] is obtained in each iteration, and

delivered to SPA decoder of the CRC. CRC decoder performs

error corrections by SPA to yield LLR β = [β0, . . . , βK+J−1].
Then, subtracting α from β, the extrinsic LLR which are fed

back to polar SCAN decoder is obtained.

This LLR exchange between two decoders is performed un-

til the parity check of the CRC is satisfied or the iteration num-

ber reaches an arbitrary maximum count. When the iteration

is over, we detect the information bits d from the output LLR

of information bit of SPA decoder γ = [γ0, . . . , γk . . . , γK−1]
as

d̂k =

{

0 (γk ≥ 0)

1 otherwise
. (12)

C. SPA Decoding for CRC

Now let us focus on the parity check matrix of CRC.

According to the generator polynomial to be used, the K ×
(K + J) generator matrix is represented as

G = [IJ |P ] , (13)

where IJ is a J × J identity matrix and P is a generator

matrix for generating the parity bits of CRC. On the other

hand, the parity check matrix H can be derived as

H =
[

PT|IJ
]

, (14)

where .T indicates a matrix transpose. The generator matrix G

and the parity check matrix H always satisfy a parity check

equation, which is represented as

GHT = P + P = 0. (15)

As long as no SCs are included in the TG of the parity check

matrix H , SPA can perform strict probabilistic marginalization

and is an optimal soft-input soft-output iterative decoding

algorithm based on BP [10]. By inputting LLRs of information

bits from the SCAN decoder to the SPA decoder of CRC as

prior information, more reliable LLRs of information bits may

be obtained. However, when SCs exist in the TG of parity

check matrix, it is subject to loopy propagation, and the output

beliefs from a certain variable node is propagated back to

the same node after several iterations [11]. As a result, belief

propagation among the nodes has strong correlations, resulting

in the significant degradation of decoding performance in SPA.

Unfortunately, the negative impacts of correlations becomes

more severe as the length of the loops becomes shorter. It is

well known that the performance deterioration is noticeable,

especially when the length of SC is 4. In other words, we may

improve the performance of SPA decoder by using a parity

check matrix with a small number of SCs of length 4.

When the generator matrix G is not a square matrix, there

are a lot of parity check matrices H satisfying the parity check

equation of (15). Therefore, there is a possibility to find an

appropriate parity check matrix H with a few SCs of length
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(a) H1

(b) H34

Fig. 5: Shape of parity check matrices (K = 40).

4. The number of SCs of length 4 in the TG of check matrix

H can be calculated by [12],

η(H) =

K
∑

i=1

K
∑

j=i+1

(
[

HHT
]

i,j

2

)

, (16)

where [A]i,j denotes the i-th row and j-th column (i, j)

element of matrix A and

(

a
b

)

= aCb is the number of

combinations.

For the simplicity, we consider shifts of the identity matrix

IJ to an arbitrary θ-th starting column (θ = 1, . . . ,K + 1)
by applying basic row operations on matrices to find the

appropriate check matrix. The resultant matrix is denoted by

Hθ. Then, the parity check matrix with the smallest number

of contained SCs of length 4 is given by

θ̂ = arg min
θ

η(Hθ). (17)

Fig. 5 shows the parity check matrices H1 and H34 in the

case of K = 40, respectively. The check matrix H34 in (b)

includes the least number of SCs of length 4 in TG, which is

obtained by (17). The number of SCs of length 4 included in

H34 is 3,407, whereas it is 9,925 in H1.

V. SIMULATION RESULTS

We have conducted several computer simulations to confirm

the validity of the proposed decoding method. Tab. I shows

the simulation conditions. As a CRC, CRC-24 (J = 24) is

used. The generator polynomial of CRC-24 is given by

g(x) = x24 + x10 + x9 + x6 + x4 + x3 + x+ 1. (18)

The length of information bits K is 40. The length of the polar

code is N = 128 with half coding rate. K channels with large

channel capacity of m-times polarized BEC are selected for

the index set of information bits I. The erasure rate ε of BEC

is decided by performing computer simulation assuming SCD

TABLE I: Simulation conditions.

Information bit length K = 40

Outer channel encoder CRC-24

Inner channel encoder half-rate polar code

polar encoded bit length N = 128

Num. of iterations for SPA 32

Num. of iterations for SCAN 8

Modulator BPSK

Channel model AWGN

Fig. 6: BLER performance of several types of decoders.

and selecting the one with the best performance. The modula-

tion scheme is BPSK, and the channel model is AWGN. The

maximum number of local iterations inside SPA and global

iterations of SCAN are 32 and 8, respectively.

Fig. 6 shows the BLER performances of CRC-aided polar

codes with several types of decoders. In “CRC + SCAN (i)”,

CRC is used only for error detection. On the other hand, “CRC

+ SCAN (ii)” is the proposed iterative decoding scheme with

the aid of the error correction capability of CRC based on H1.

“CRC + SCAN (iii)” is proposed method based on H34 with

the minimum numbers of SCs with length 4. As a comparison

with leading-edge method, the performance of SCLD with

list size W = 32 is presented. Compared to “CRC + SCAN

(i)”, the proposed method “CRC + SCAN (ii) improves the

performance of SCAN decoder, but the improvement is slight

and not sufficient due to the large number of SCs included

in H1. By contrast, “CRC + SCAN (iii)” can significantly

improve the performance with the assistance of the appropriate

check matrix H34. More specifically, the proposed method can

obtain the gain of about 0.6 dB at BLER = 10−3 compared to

the native SCAN decoding “CRC + SCAN (i)”. Unfortunately,

there is still a gap of about 1.2 dB compared to the SCLD.

However, required memory size is smaller than SCLD as
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TABLE II: Memory size required for different decoders of

polar codes.

Decoding method Total memory for decoding

SCD 3(2N − 1)

SCLD W (6N + 3m+ 2)

SCAN 2N(m+ 1)

Proposed Method 2N(m+ 1) + 2J(K + J)

discussed following.

Let us shift our focus to the number of memories required

to decode polar codes, where one memory is required to

store one LLR value. Here, we define L and R to denote

the memories required to store the LLRs passed from left to

right and from right to left in the Tanner graph of polar codes.

When the length of polar code is N , the SCD requires 2N−1
memories for L and 2(2N − 1) memories for R. As a result,

3(2N−1) memories are required [2], [13]. On the other hand,

in SCLD, the number of memories required for L and R are

W (2N − 1) and 2W (2N − 1), where W is the decoding

list size [2], and another 3W (m + 1) + 2W memories are

needed for path mapping. Thus, the total number of memories

required for SCLD is W (6N+3m+2). By contrast, in SCAN

decoding, 2N(m+1) memories are required because N(m+1)
nodes need to keep the values of L and R, respectively [6] In

addition, 2J(K + J) memories for store LLRs are required

in the SPA decoding on the basis of CRC included in the

proposed method. Therefore, the total number of memories

for proposed decoding is 2N(m + 1) + 2J(K + J). Tab. I

summarizes the total number of memories required to decode

polar codes with different decoding methods.

Fig. 7 shows the number of required memories of each

decoding method according to the code length N , where the

CRC length is J = 24, the code rate of polar codes is 1/2.

The list size of SCLD is W = 32. Obviously, the number

of memories of our proposed method is far less than that of

SCLD, which is advantageous in hardware implementation.

Under the condition N = 128, K = 40, the number of

memories required for the proposed method is 5,120 while the

SCLD with CRC requires 25,312. Remarkably, the number of

memories required for proposed method is about 1/5 of that

of SCLD.

VI. CONCLUSIONS

In this paper, we proposed a novel iterative decoder design

based on concatenated belief propagation for CRC-aided polar

codes by exploiting CRC structure. CRC was utilized for

not only error detection but also error correction with the

assistance of the error correction capability of the CRC at

a short code length. Furthermore, to solve the performance

degradation of SPA-based decoding induced by the SCs in-

cluded in the parity check matrix of the CRC, the criterion

for selecting the parity check matrix based on the number

of SCs of length 4 was applied. Finally, we demonstrated

the proposed method can obtain the gain of about 0.6 dB

Fig. 7: Number of memories required for different decoders.

at BER = 10−3 compared to the native SCAN decoding

by computer simulations. Compared to SCLD, the proposed

method can decode polar codes with lower required memory

spaces. However, there is still a large performance gap between

the BP-based decoder and SCLD. Therefore, as our future

work, we are considering the development of our method to

improve this deterioration.
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