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Abstract— It is desirable to be able to measure an infant’s 

length from a photo. This would make the measurement of the 

infant’s length easy which is important for infant growth 

velocity monitoring. To make this possible, we developed a 

technique in which round stickers are put on the body joints of 

the infant before taking photos.  The round stickers will be 

projected onto the image plane into ellipses with different 

parameters depending on the direction and distance from the 

camera. By estimating the parameters of the ellipses in the 

picture, we can calculate the 3D positions of the sticker centers 

and the length of the infant. A major difficulty with this 

technique is that the infant moves during the picture taking, 

which could cause severe motion blur. In this paper, we use a 

CNN (Convolutional Neural Network) to restore the ellipses for 

ellipse parameter estimation. To generate realistic training data 

which is needed for the CNN to accurately restore the ellipses 

for length measurements, we propose to simulate the whole 

ellipse formation pipeline. The whole training process includes 

generating ellipses of random sizes, motion blurs, and 

illumination changes, and adding noise, demosaicing, and 

gamma and inverse gamma corrections. Simulation results 

show that better accuracy of measurements can be achieved 

with the proposed training methods. 

I. INTRODUCTION 

 It is important to monitor an infant’s length to make sure 

that the infant is growing normally. Unlike adults who could 

listen to guidance and stand near reference object (for example 

height ruler), it is hard to ask infants to do the same. 

Traditionally, measuring an infant’s length requires performing 

a manual measurement using an infantometer. However, the 

infant struggles in the process, and it often needs three trained 

assistants to hold the infant’s head and feet and to adjust the 

infantometer, and so, constant measuring at home is not 

possible. It is very desirable to be able to measure an infant’s 

length from a photo. This would make the measurement of the 

infant’s length easy. To make this possible, we developed a 

technique in which round stickers are put on body joints of an 

infant before the pictures are taken, as shown in Fig. 1. Putting 

the stickers on the infant would only take a few seconds and is 

very easy to perform. After that, the whole process is fully 

automatic. The round shape stickers will become ellipses in the 

picture with different parameters depending on the pose of the 

camera. By estimating the parameters of the ellipses in the 

picture, our algorithm can calculate the 3D positions of the 

sticker centers and the length of the infant automatically [15].  

     We conducted field trials to test the method. We found it can 

provide accurate measurements, but several factors can affect 

the accuracy of the proposed technique.  A major problem is 

that the infant moves during the picture taking, which could 

cause severe motion blur. The severe motion blur could cause 

the ellipse-parameter estimation inaccurate. One way to solve 

this problem is to deblur the image before the ellipse parameter 

estimation. However, traditional deblurring methods may 

introduce ringing effects [1][2], which makes accurate ellipse 

edge estimation difficult. Besides, most of the state of the art 

deblurring algorithms fail if the image contains strong noise. 

Applying a smoothing algorithm before deblurring usually 

affects the deblurring accuracy [3]. For accurate recovery of the 

ellipse parameters, the deblurring algorithm itself should be 

noise robust. Only a few publications explicitly considered 

noisy blurred images [3][4][5]. However, [3] relies on inverse 

Radon transform which requires straight edges in the latent 

image. In [4], it requires more than one image, and [5] assumes 

that the blur kernel is known. 
 

 
 

Fig. 1. An example of using rounds stickers to measure the infant 

length. The 3D distance of each blue dashed line is estimated. We 

could obtain the infant’s length by summing up the lengths of all blue 

dashed lines. 
 

 Another problem is that sometimes because of poor 

lighting, the detected stickers’ boundaries may not be 

continuous due to camera’s sensor noise. Mild Gaussian 

smoothing could help to remove noise without causing serious 

edge shift. However, for motion-blurred and poor-lighting 

images, edge locations are not easy to recover. Almost all 

ellipse detection and fitting methods rely on accurate edges as 

input. Directly applying existing ellipse estimation methods 

will not result in good ellipse parameter estimations. Both edge-

grouping and Hough-transform based methods failed. Errors 

caused by the motion blur under poor lighting could not be 

removed by outlier handling methods such as [6], since all 

edges’ locations are affected. 

Recently, people have applied neural networks to deblur 

images. A complete review is out of the scope of this paper. We 

briefly summarize three representative works [7][8][9]. In [7], 

it uses blurred patches cropped from actual images to train a 

CNN that classifies blur kernel into limited number of types, 

and Markov Random Field (MRF) model is used to calculate a 
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dense and smooth blur-kernel distribution. [8] deblurs in the 

frequency space domain, tt achieves the state of the art results 

with much higher processing speed. In [9], it uses a high-speed 

camera to take sharp video frames, then synthesizes motion 

blurred images by averaging consecutive clear frames. It adopts 

simplified residual network blocks [10] and a deep multiscale 

CNN structure. However, our goal is to deblur the ellipses for 

accurate parameter estimation which is different from debluring 

the image to make it sharp and appealing. 

Through simulations, we found that for our infant-length 

measurement application, the data used in training the CNN 

affect the accuracy of the measurements significantly. In this 

paper, we propose to use a CNN structure, with a synthetic data 

generation pipeline that takes into account possible effects for 

generating realistic training data, to restore the ellipses for 

automatic infant length measurements. Since our task is to 

accurately recover the ellipse edge locations, not the whole 

latent image, our CNN structure is light-weighted. The results 

confirm the effectiveness of our proposed approach.  

The organization of the rest of this paper is as follows. In 

Section II, we describe our CNN structure for restoring the 

ellipses for accurate parameter estimation in the infant length 

measurement application. In Section III, we discuss the 

synthetic data generation for training the CNN. In Section IV, 

we present our simulation results. In Section V, we conclude 

the paper. 

II. PROPOSED CNN STRUCTURE FOR ELLIPSE RESTORATION 

The proposed CNN structure for restoring the degraded 

ellipses is shown in Fig. 2. Our CNN structure is inspired by 

[11]. The differences are that we added sigmoid functions after 

most of the convolutions layers to increase the nonlinearity, and 

we do not use a very deep structure. Our use of the sigmoid 

function is inspired by [12]. It resembles the purpose of 𝑡𝑎𝑛ℎ 

function in the paper but gives us better results. 

 

 
 

Fig. 2. Proposed CNN structure. 

 

The structure could roughly be considered by the three parts 

enclosed by the red, blue, and green dashed rectangles as shown 

in Fig.2. The first part of the structure consists of four 

convolutional layers. After max pooling, the image’s resolution 

is reduced to half in both horizontal and vertical dimensions of 

its original. The second part contains four parallel convolution 

layers to extract information from different scales. Since the 

resolution has been halved in both dimensions, four up-

sampling layers are used at the end of the second part. The third 

part concatenates the results of part one and part two, then 

followed by a three-channel convolution layer and a sigmoid 

function. Parameters of each convolutional layers are listed in 

Table 1. 

The motivation of using this structure is that an ellipse is 

much simpler than a general image. Thus, the network does not 

need to be too deep or too complicated as in [11], [9], or [12]. 

An ellipse has smoothly curved boundaries. To recover the edge 

location, there is no need to use the global information of the 

image. However, the receptive field still needs to be large 

enough to cover the blur-kernel size and to minimize the effect 

of noise. For our case, a 32 × 32 receptive field is large enough 

to handle the blurred ellipses. We could remove the max 

pooling and up-sampling layers. However, this will increase the 

computation time, and the results do not get better.  

III. GENERATING TRAINING DATA 

For deep learning, one of the most important parts is 

collecting and labeling sufficient amount of data for training. 

Collecting and labeling data could be very time-consuming. For 

us, pixel and even sub-pixel level edge location is desirable. We 

need the blurred ellipse and the corresponding clear ellipse pairs 

for training. The strategy of [9] to take several pictures to 

synthesize the blurred ones does not apply to our case.  

To synthesize an ellipse and its degraded version close to that 

observed in the practical situations, we simulate the process of 

the ellipse formation and degradation. We limit our image size 

to 256 × 256, the stickers’ color to green, and the background 

color to white. We synthesize the training data with the 

following four steps considering the actual ellipse generation 

and degradation process: 

TABLE 1. CONVOLUTION LAYER PARAMETERS 
 

Layer 

Name 

CONV1_1 CONV1_2 CONV1_3 CONV1_4 

Filter size 7 × 7 5 × 5 5 × 5 3 × 3 

Filter 

numbers 

16 32 32 64 

Stride (1,1,1,1) (1,1,1,1) (1,1,1,1) (1,1,1,1) 

Receptive 
field 

7 × 7 11 × 11 15 × 15 17 × 17 

 

Layer 

Name 

CONV2_1 CONV2_2 CONV2_3 CONV2_4 

Filter size 1 × 1 3 × 3 3 × 3 3 × 3 

Filter 
numbers 

16 16 16 16 

Stride (1,1,1,1) (1,1,1,1) (1,1,1,1) (1,1,1,1) 

Dilation 1 2 4 8 

Receptive 

field 

18 × 18 20 × 20 24 × 24 32 × 32 

 

Layer 

Name 

CONV3_

1 

CONV3_

2 

CONV3

_3 

CONV3

_4 

CONV4 

Filter size 1 × 1 1 × 1 1 × 1 1 × 1 5 × 5 

Filter 

numbers 

1 1 1 1 3 

Stride (1,1,1,1) (1,1,1,1) (1,1,1,1) (1,1,1,1) (1,1,1,1) 

Receptive 

field 
18 × 18 20 × 20 24 × 24 32 × 32 NA 
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Step 1. Generate the motion-blurred ellipse mask. We first 

generate random ellipse parameters, motion directions, and 

motion magnitudes. We evenly divided the motion range to get 

101 locations, then generate a clear 0/1 ellipse mask for each 

location. The motion-blurred ellipse mask is obtained by 

averaging all those 101 clear masks. The final ellipse mask has 

a value between 0 and 1. To account for the partial area effect 

[13], the mask is first generated in a high resolution (we use 

2560 × 2560). It is then blurred by a Gaussian kernel of size 

7x7 with standard deviation of 2, then downsampled to 256 ×
256. An ellipse could be described as: 

𝒉(𝒙, 𝒚, 𝜽, 𝒙𝟎, 𝒚𝟎, 𝒂, 𝒃) =
(𝒄𝒐𝒔𝜽(𝒙 − 𝒙𝟎) + 𝒔𝒊𝒏𝜽(𝒚 − 𝒚𝟎))𝟐

𝒂𝟐

+
(−𝒔𝒊𝒏𝜽(𝒙 − 𝒙𝟎) + 𝒄𝒐𝒔𝜽(𝒚 − 𝒚𝟎))𝟐

𝒃𝟐
= 𝟏 (𝟏)

 

where 𝜃  is the ellipse’s orientation, (𝑥0, 𝑦0)  is the ellipse’s 

center, and 𝑎 and 𝑏 are parameters for major and minor axis. 

So, the clear ellipse mask can be written as: 
 

𝑓𝑚𝑎𝑠𝑘(𝑖, 𝑗, 𝜃, 𝑥0, 𝑦0 , 𝑎, 𝑏)

= {
1, ℎ(𝑖, 𝑗, 𝜃, 𝑥0, 𝑦0, 𝑎, 𝑏) ≤ 1

0, ℎ(𝑖, 𝑗, 𝜃, 𝑥0, 𝑦0, 𝑎, 𝑏) > 1
(2)

 

 

where (𝑖, 𝑗) is the pixel’s location. The motion blurred mask is: 

𝑓𝑏𝑙𝑢𝑟𝑟𝑒𝑑(𝑖, 𝑗) =
1

2𝑁 + 1
∑ 𝑓𝑚𝑎𝑠𝑘(𝑖, 𝑗, 𝜃, 𝑥0′, 𝑦0′, 𝑎, 𝑏)

𝑁

𝑛=−𝑁

(3) 

𝑥0
′ = 𝑥0 + 𝑛𝛿𝑐𝑜𝑠𝜙  and 𝑦0

′ = 𝑦0 + 𝑛𝛿𝑠𝑖𝑛𝜙 , (𝑐𝑜𝑠𝜙, 𝑠𝑖𝑛𝜙)  is 

the motion direction, and the total moved length is (2𝑁 + 1)𝛿 

(in our case, N=50). 

Step 2. Add noise and light intensity variation. We add zero-

mean Gaussian noise with a magnitude of 0.2 and standard 

deviation of 1, and use Error function (integral of a Gaussian 

function) as the shape of light intensity variation (caused by 

shadow). Image pixel values first are multiplied by the light 

intensity profile. Then, each R, G, B channel is applied with 

independent Gaussian noise. We also randomly control the 

percentage of pixels that are affected by noise.  

Step 3. Image demosaicing. For a regular camera, at each 

pixel location only one of 𝑅, 𝐺, 𝐵   is directly read from the 

sensor. Other values are estimated from its neighbors’ values 

by interpolation. The reason to simulate demosaicing is because 

demosaicing will add artifact to otherwise smooth edges, and 

the noises of the neighbor pixels are no longer independent. 

Pixel or subpixel accuracy of the estimated ellipse is desirable. 

It is better to simulate those artifacts so that CNN can learn how 

to correct it.  

Step 4. Gamma correction and pixel value quantization. Pixel 

values in all previous operations were represented using float 

numbers within the range [0,1].  For a JPEG image, modern 

digital cameras use the sRGB space where the RGB values went 

through a Gamma correction process with 𝛾 = 2.2 before the 

quantization and compression process. To make the synthesized 

data as close to those in the actual images as possible, we also 

perform the same Gamma correction process (i.e., the RGB 

colors were first gamma corrected in each channel, 𝑅𝛾 = 𝑅1/𝛾, 

𝐺𝛾 = 𝐺1/𝛾 ,  𝐵𝛾 = 𝐵1/𝛾 ). Then, all values are quantized to 

integers between 0 to 255, represented by eight-bit unsigned 

integers. When feeding the training data into our model, we first 

change the data type to float and rescale the pixel values to the 

range [0, 1], then apply inverse gamma correction to make the 

pixel values proportional to the luminance. We show from 

simulations, the results are better with this Gamma correction. 

The whole process of automatically generating the degraded 

ellipses for training the CNN is shown in Fig. 3. We could see 

that after applying the demosaicing effect, noise became less 

(because noise corresponds to the missing (RGB) color is 

dropped), and noise granularity become larger because of 

interpolation. Also, the ellipse boundary is less sharp than 

before. After quantization, the pixel values are not as accurate 

as before. However, this is not noticeable to human eyes. The 

resultant degraded ellipses look very similar to those observed 

in the practical images we encountered.  

 

 
Fig. 3. (a) Clear ellipse, (b) blurred, no noise, (c) blurred image with 

noise, (d) after considering the demosaicing effect, (e) after gamma 

correction and pixel value quantization. 

IV. EXPERIMENTS AND RESULTS 

To train the CNN model, we generated 30,000 blurred 

ellipses of random sizes, orientations, motion directions, and 

motion ranges. We choose the batch-size to be 16. Every time 

16 images are randomly drawn from images containing the 

30000 blurred ellipses, then they are applied with noise, random 

lighting variation, demosaicing effect, Gamma correction and 

pixel value quantization. All parameters in the CNN were 

randomly initialized. The energy function is chosen to be: 

𝑙𝑜𝑠𝑠 =
∑ (𝑥𝑟𝑒𝑐𝑣(𝑖, 𝑗) − 𝑥𝑔𝑡(𝑖, 𝑗))

2

𝐴𝑙𝑙 𝑝𝑖𝑥𝑒𝑙𝑠

𝐿𝑥 × 𝐿𝑦

(4) 

where 𝑥𝑟𝑒𝑐𝑣(𝑖, 𝑗) is the pixel value at the (𝑖, 𝑗) position in the 

recovered image, 𝑥𝑔𝑡(𝑖, 𝑗) is the pixel value at the (𝑖, 𝑗) position 

in the ground truth image, and 𝐿𝑥 × 𝐿𝑦  is the image size. Since 

the shape of the sticker is simple, the training only takes about 

4,000 steps with Adam optimizer. The initial learning rate is 

0.0001. After 1000 steps, the learning rate was dropped to 

0.00001. After another 1000 steps, learning rate is updated to 

0.000001, and we will use 0.000001 as the learning rate for the 

rest of optimization. Training takes about 3 hours with i5-3570 

CPU and GTX1070 graphic card. This is very fast due to the 

light weighted network. Removing max-pooling and up-

sampling layers will increase the second part (Fig. 2, blue 
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dashed rectangular) convolution layer’s resolution, and training 

time will be longer. However, the result does not improve.  

A. Restoration with synthetic data: 

A comparison of noisy blurred input, restored ellipses, and 

the ground truth ellipses is shown in Fig. 4. Subjectively, there 

is no obvious difference between the restored ellipses and the 

ground truths. The only noticeable difference is that the 

recovered ellipse edge is not as sharp as the ground truth. Fig. 

5 (a) and (b) show the difference between blurred ellipses, the 

restored ellipses, and the ground truths. For the restored 

ellipses, the errors mainly locate at near the ellipse boundaries. 

After obtaining the restored ellipses, we use the Taubin’s 

method [14] with outlier removal [6] to estimate the parameters 

of all ellipses for comparisons. Fig.5(c) shows ellipse fitting 

results of the CNN processed image and the motion blurred 

image. Ellipses fitted from the restored images almost entirely 

overlap with the ellipse fitted from the ground truth images. 

 

 
Fig. 4. (a) Noisy blurred input, (b) restored by CNN, (c) Ground Truth. 
 

 
 

Fig. 5. (a) |blurred-GT|, (b) |recovered-GT|, (c) Fitted ellipses 

comparison. 

B. Results with actual images: 

To show the results in the practical situations, we scan the 

image patches near those green stickers. We used overlapped 

patches, each patch has a size 256 × 256. After recovery, only 

the center 200 × 200 pixels were stored and merged for ellipse 

detection. Circular stickers have a known diameter 19.05 mm. 

We put the green circular stickers on the headboard and 

footboard of an infantometer as shown in Fig. 6, and take 

pictures of the stickers. The estimated footboard to headboard 

distance is 45.2 cm, compared to the infantometer reading of 45 

cm. The difference is only 0.2 cm. This verifies that our method 

can accurately recover noisy motion-blurred circular sticker’s 

parameters with the CNN. 

 

 
(a) 

 
(b) 

Fig. 6. (a) Infantometer with motion blurred circular stickers on the 

headboard and footboard, the distance reading from the infantometer 

is 45.0 cm, Recovered clean ellipses and fitting. The calculated two 

plane distance is 45.2 cm, compared to 45.0 cm read from the 

infantometer. (b) Ellipse detection using conventional methods from 

[15][16]. 

 

Unlike previous deblur algorithms which try to recover all 

textures of an image, our model suppresses textures that do not 

belong to label and background. The reason is that we only 

trained the model with green circular stickers and white 

background, the ground truths are synthesized ideal ellipses. All 

other unrelated texture will be considered as noise by the CNN 

model. We could compare the red and blue rectangles in Fig 

6(b) with the original image Fig 6(b), dark edges of the 

background were gone in the recovered images. This does not 

invalidate our method, because the goal is to recover the edge 

location, not a good visual result. The model tries to recover 

ellipses with smooth and clear edge boundaries that can 

facilitate edge tracing. Such effect could not be achieved if 

actual images are used as ground truths of training data due to 

the unavoidable noise and artifacts. 

Table 2 shows the comparison of 3D distance recovery using 

parameters of the detected ellipses. The relation between 3D 

positions and ellipse parameters could be found in [17]. The 3D 

distance estimation is very sensitive to ellipse parameters. It is 

impossible to obtain ground truth parameters from the blurred 

images, thus, the accuracy of recovered 3D distance could serve 

as a very good metric to evaluate the algorithm. The ground 

truth of sticker’s 3D distances could be obtained using physical 

tools. Here image blur was caused by camera motion. The distance 

estimated without CNN processing is 42.3 cm, 2.7 cm shorter 

than the infantometer reading. The distance estimation  with our 

1386

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



 

proposed CNN is 45.2 cm, only 0.2 cm longer than the 

infantometer reading. The results also show the necessity of 

simulating gamma and inverse gamma correction during 

training: the error decreases from 1 cm to 0.2 cm. Notes about 

Avg, Med, and STD: for one image we have six length 

estimations, three headboard stickers’ distances to the 

footboard, and 3 footboard stickers’ distances to the headboard. 

Avg means the average value of those six estimations; Med 

means the median value; STD means standard deviation of 

those six values. The result validates our synthetic training data 

generation method. The good performance on synthetic data is 

transferable to realistic images. 

 
TABLE 2. RESULTS OF APPLYING DIFFERENT METHODS ON AN IMAGE 

WHERE THE ELLIPSES ARE BLURRED. “THIS WORK*” MEANS “THIS WORK 

WITHOUT GAMMA CORRECTION.” 

 

Estimation This work This work* Without 

CNN 

processing 

1 45.1 cm 45.8 cm 42.6 cm 

2 45.3 cm 46.3 cm 41.9 cm 

3 45.0 cm 45.8 cm 42.2 cm 

4 45.0 cm 45.8 cm 41.9 cm 

5 45.4 cm 46.2 cm 42.6 cm 

6 45.3 cm 46.1 cm 42.7 cm 

Avg 45.2 cm 46.0 cm 42.3 cm 

Med 45.2 cm 46.0 cm 42.4 cm 

STD 0.1 cm 0.2 cm 0.3 cm 

Err 0.2 cm 1.0 cm 2.6 cm 

 

 Fig. 7 shows the recovered clear ellipses from the image that 

contains motion-blurred circular stickers. Here motion blur was 

simulated by moving the baby doll’s leg while taking the 

picture. The ground truth distance is 6.70 cm. The estimated 

distance by the method proposed in this paper is 6.78 cm. The 

difference is less than 1 mm.  
 

 

Fig. 7. Blurred stickers. (a) Circular stickers were blurred due to foot 

motion, (b) recovered clear ellipses. Conventional methods  (such as  

[15][16])  failed when directly applied to blurred images.  

   Our current trained CNN cannot handle stickers of general 

shapes. However, our CNN model and the data generation 

method do not make assumptions about the shape of the 

stickers. For different shapes of stickers, we just need to 

synthesize the training data for this specific shape of sticker. 

For sticker-based pose estimation or many other 3D 

reconstruction problems, accuracy of the edge location is very 

important. If we could integrate the smoothed curve deblurring 

problem into the deep learning structure, this could facilitate 3D 

reconstruction with low-quality images. 

V. CONCLUSION 

In this paper, we proposed a CNN-based structure for ellipse 

restoration in an infant-length measurement application. We 

also proposed a fully synthetic training data generation method 

which can generate realistic data for training the CNN. The 

method considers different artificial effect during the image 

formation. We demonstrated the effectiveness of our method 

using actual images taken by a regular cellphone camera.  Our 

CNN model and the training data generation method do not 

make assumptions about the shape of stickers. Thus, they can 

be directly trained to recover other types of stickers. 
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