
Graph Learning & Fast Transform Coding of 3D
River Data

Weihang Liao∗, Gene Cheung∗, Shogo Muramatsu†, Hiroyasu Yasuda† and Kiyoshi Hayasaka†
∗ National Institute of Informatics, Tokyo, Japan

† Niigata University, Niigata, Japan

Abstract—Collection of physical river measurements across
space and time is important towards analysis and prediction
of dynamic river flow, and thus early warning and prevention
of flood disaster. In this paper, we focus on lossy compression
of 3D river data at high quality using predictive graph-based
transforms. Specifically, we first divide 3-dimensional river data
into non-overlapping temporal frame groups. Data in a frame
group t is then predicted using frame group t − 1, assuming
strong temporal correlation. Then for each block in a frame
in group t, we learn a sparse inverse covariance matrix from a
spatial neighborhood of blocks in the previous frame group via a
graphical lasso algorithm with structural constraints. The learned
matrix is then interpreted as a graph Laplacian, and graph lifting
transform (GLT) or fast graph Fourier transform (FGFT) are
employed to encode the prediction residuals efficiently. Experi-
mental results show coding performance gain over conventional
DCT and competing graph transform schemes without graph
learning.

I. INTRODUCTION

The drastic cost reduction and ubiquity of sensors in the
physical environment mean that large volume of data are
now easily collected for a wide range of cyber-physical
systems, from video surveillance, hyperspectral imaging for
crop monitoring, and virtual reality environments with 3D
visual data like point clouds. These high-dimensional sensed
data are often dense in sampling (thus exhibits large inter-
sample correlation) and very large in size. Thus design of
suitable coding algorithms that exploit inherent correlation for
compression gain while remain computationally practical is
important. In this paper, leveraging on recent advances in
graph signal processing (GSP) [1], [2], we focus on graph-
based compression of 3D volumetric data, in particular, 3D
river data.

Climate change in recent decades has led to more frequent
and unpredictable torrential rain in Japan, often resulting in
flood disasters, property damages and loss of human lives. As a
preventive measure, [3] have proposed a large-scale river mon-
itoring and analysis system, so that early warnings for potential
flooding can be automatically generated. Dense measurements
of river data (e.g., water level, water depth, water speed) across
space and time result in large 3D volumetric data, however,
which requires compression for efficient network transmission
and storage.

In this paper, we propose a graph-based coding framework
for compression of large 3D volumetric data. Specifically,
we first segment the captured 3D data into groups of finite
duration in time, where each group is composed of “frames”

of 2D samples across 2D space. For each group t, we first
perform prediction using encoded signal in group t − 1 as
predictor to reduce signal energy, assuming strong temporal
correlation. To efficiently code the prediction residual, we
first perform structure-constrained graph learning [4] using
samples in group t − 1, which efficiently estimates a sparse
inverse-covariance (precision) matrix. Given the computed
precision matrix, we compress blocks in frames of group t
using either graph lifting transform (GLT) [5] or fast graph
Fourier transform (FGFT) [6], the earlier of which has lower
complexity—O(n log n) instead of O(n2)—but slightly lower
compression performance. Experimental results show that our
coding scheme outperforms conventional DCT and graph
transform schemes without graph learning.

The rest of the paper is organized as follows. We first
overview related work in Section II. We present the overview
of the proposed coding framework in Section III, then describe
the details of graph learning and graph based coding in
Section IV. Experimental results and conclusion are presented
in Section V and VI, respectively.

II. RELATED WORK

Graph transform coding of image and video data has been
studied for close to a decade now [5], [7]–[12]. While earlier
works focused on coding of piecewise smooth images like
depth maps [7]–[9], more recent works have been extended
to higher-dimensional visual data like hyperspectral images
[11] and light field images [12]. Optimal graph transforms for
coding of prediction residuals have also been studied [10], as
well as fast implementation of graph transform via lifting [5].
Leveraging on these previous works, in this paper we design
a compression scheme for graph transform coding of 3D river
data, exploiting inherent inter-sample correlation in the data
via graph learning [4], and utilizing recent advances on fast
implementation such as FGFT [6].

III. OVERVIEW OF THE CODING SCHEME

We first define notations used in this paper. We then describe
how we organize the 3D-volumetric data, and then overview
our proposed coding framework.

Given a generic 3D-volumetric data, we assume that the
samples are regularly distributed along x and y dimensions in
2D space and across time t. At each sample location, there are
n channels. One typical example is video, where each pixel
contains R, G and B color channels. In order to elucidate the

1313

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

978-988-14768-5-2 ©2018 APSIPA APSIPA-ASC 2018

sediment transport mechanism of rivers, we developed Stream
Tomography, a device capable of simultaneously measuring
the variations of surface and bed of an artificial indoor river,
and acquire them as time series data. For the river data, it
contains four channels: the height of the river surface, the
depth of the river bed, the variation of the river height, and
the variation of the river depth.

To be adaptive to non-stationary statistics across time,
we first divide the whole 3D-volumetric data into K frame
groups along the time dimension. In each group, the data is
organized into frames, each containing samples of different
spatial locations but the same time instant. The k-th group
is denoted by gk, each group contains M frames, and the
m-th frame in gk is denoted by fmk . In each frame, the data
is divided into non-overlapping blocks, and the locations of
different blocks are denoted by a pair of coordinates (x, y).
The data organization is illustrated in Fig. 1.

Fig. 1. (a)the original 3D-volumetric data; (b)the partition of different groups
and frames; (c)the blocks in one frame.

We assume a Gaussian Markov random field (GMRF)
model for each sample block in a frame in a group, whose
statistics are similar to a neighborhood of blocks in frames of
a previous group. We assume further that four channels within
the same block are correlated, and hence once one channel
is encoded, we can estimate its inter-sample correlations for
coding of the other channels.

For the first channel in group gk, we use the last frame
in the previous group fMk−1 as an reference frame to predict
the other frames fmk−1, m ∈ {1, . . . ,M − 1}. Given the
computed prediction residuals, we then use a graph learning
algorithm [4] to learn a sparse inverse covariance (precision)
matrix to capture inter-pixel correlations. For the remaining
three channels, we instead use the decoded first channel in
the same group gk to estimate the precision matrix, with

the observation that the channels in same time instant have
stronger correlations.

Once a sparse precision matrix is computed, it is repre-
sented as a graph, and we use different implementations of
Graph Fourier Transform (GFT) [1], [9] to compute transform
coefficients, perform quantization and entropy coding using
the Amplitude and Group Partition (AGP) method [13]. For
fast implementation of GFT, we employ two variants for
practical execution: Graph Lifting Transform (GLT) [14] and
Fast Graph Fourier Transform (FGFT) [6].

At the decoder side, we follow the same procedure described
above to compute a prediction residual, and learn exactly the
same graph, thus arriving at the same transform basis. Notice
that in our coding scheme, no additional side information (SI)
is required that would result in extra coding overhead, unlike
[9].

IV. GRAPH BASED CODING

We first discuss how we construct a graph structure for
coding of a sample block, then introduce the two GFT
approximations—GLT and FGFT—respectively.

A. Graph Definition

The proposed coding scheme is executed block-by-block
for each frame. For one block we first construct an undirected
weighted graph G = (V, E ,W). The vertex set V corresponds
to the data sample locations in the block, and the edge set E
is specified by (i, j, wi,j), where i, j ∈ V , and wi,j ∈ R+

is the positive edge weight between 0 and 1 that reflects
the similarity between connected vertices i and j. Adjacency
matrix W is a |V| × |V| symmetric matrix, where the (i, j)-
th element Wi,j is wi,j . We then define the degree matrix
D as a |V| × |V| diagonal matrix, where diagonal element
Di,i =

∑
j Wi,j . Finally, the graph Laplacian matrix of G is

defined as: L = D−W [1].

B. Graph Learning

As discussed previously, using a training dataset (either
blocks of the same channel in similar spatial locations in
the previous group or blocks of different channels in the
same group) we compute a sparse inverse covariance matrix
using algorithm in [4], which we interpret as the graph
Laplacian matrix L. The algorithm [4] is basically a graphical
lasso algorithm [15] with structural constraints; it estimates
the target Laplacian matrix L by minimizing the following
objective:

min
L

Tr(LC)− log det(L) + ‖L�H‖1 (1)

where C is an empirical covariance matrix, and H is a
regularization matrix. Since L is singular by construction, the
objective function in (1) is rewritten as:

min
L

Tr(L(C + H + J))− log det(L + J)

s.t. L ∈ L(A)
(2)

where J = vvT (v is a constant vector of length |V|).
J ensures that the determinant is larger than 0. A is a

1314

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

Fig. 2. The shifting of reference block. The blocks with black solid line are
in the same spatial location, the blocks with gray dashed line are the shifted
locations.

connectivity matrix specifying the permissible locations of
non-zero edge weights. L(A) is a set of graph Laplacians
which follow the structure constraints specified by A.

In our coding scheme, we constrain L(A) to be the space
of 8-connected graphs to capture only neighboring sample
correlations. The optimization in (2) is solved by an iterative
block-coordinate descent algorithm [16].

Note that there are roughly 4 × |V| edges in the graph.
To collect sufficient observations for graph learning, when
constructing a graph for a block at coordinate (x, y) in the
first channel in group t, we consider the corresponding (over-
lapping) blocks at coordinate (x′, y′) in a spatial neighborhood
±ρ in all frames in the previous group t−1, as shown in Fig. 2.
We can thus collect N = (M − 1) × (2ρ+ 1)2 observations
to compute an empirical covariance matrix C.

C. Graph Spectrum

Once the graph Laplacian matrix has been learned, we can
perform eigen-decomposition:

L = VΛV> (3)

where Λ is a diagonal matrix with eigenvalues of L along
its diagonal, and V contains eigenvectors of L as columns.
Together they form the graph spectrum of the graph G. Note
that L is symmetric and thus all its eigenvalues are real, and
L can be shown to be positive semi-definite (PSD)—via the
Gershgorin circle theorem—and thus all its eigenvalues are
also non-negative. V> is also known as the graph Fourier
Transform (GFT).

To compute the GFT, however, the complexity of general
eigen-decomposition of a n × n matrix is O(n3). To reduce
the computation cost, we investigate two fast implementations
in the following subsections.

D. Graph Lifting Transform

The GLT is implemented based on the idea of wavelet
transform [14], namely, use lifting to iteratively split the graph
into approximate and detailed subgraphs. The lifting operation
contains three main steps:

1) Bipartition. The input graph is split into two different
subsets: the prediction set P and the update set U , where
P + U = V and P ∪ U = ∅.

2) Prediction stage. Every node in P is predicted by some
neighbors in U with a prediction filter p. The prediction
residual d corresponds to the detail coefficients.

3) Update stage. Every node in U is updated with d using
the update filter u. This results in smooth coefficients s,
which is an approximation of the original signal.

After one lifting operation, the output smooth coefficients s
will be input to next iteration, resulting in a multi-level decom-
position. The GLT has been shown to achieve an approximate
performance to GFT [17], while no eigen-decomposition is
required, and the cost of computing the GLT coefficients is
only O(n log n).

In our implementation, we solve the bipartition problem
based on the idea in [18]. We first construct a minimum
spanning tree of the input graph G, then use breadth first
search to traverse every nodes. So the vertex set V will be split
into P and U based on the odd-even depth. The p and u filters
are designed based on the method proposed in [19], where the
prediction filter p is optimized to minimize the energy of the
detail coefficients d, and the update filter u is designed to
be orthogonal to p. The transform coefficients are uniformly
quantized and reordered based on [20].

E. Fast Graph Fourier Transform

The motivation of FGFT is to avoid expensive eigen-
decomposition of the graph Laplacian L, while approximating
the eigenvectors in V>. In our coding scheme, FGFT is
implemented based on the method proposed in [6], i.e., a
series of sparse and orthogonal matrices (rotation matrices
called Givens matrices) to approximately diagonalize the
graph Laplacian matrix L:

L ≈ S1...SJ Λ̂ST
J ..S

T
1 (4)

where Λ̂ is an approximately diagonal matrix, and its diagonal
elements are approximations of eigenvalue λ. The product
V̂ = S1...SJ form the approximated transform basis.

In order to find a good approximation with reasonable
complexity, the author used a truncated Jacobi eigenvalue
algorithm [21]. It is an iterative procedure, where at each step
it finds the Givens rotation matrix Sj that eliminates the largest
remaining entry in L. See Fig. 2 and Fig. 3 in [6] for more
details.

To decide when to appropriately terminate the Jacobi eigen-
value algorithm (resulting in an approximately diagonalized
L), we set the maximum number of iterations J with respect
to the size of the graph:

J = 6|V| · blog2(|V|)c (5)

Note that FGFT only avoids the eigen-decomposition
(Eqn. 3). To compute transform coefficients, we still need to
perform matrix-vector multiplication, which is O(n2).

V. EXPERIMENTS

A. Experiment Data

In order to validate the efficiency of our proposed 3D data
coding scheme, we collected river depth data from an artificial

1315

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

Fig. 3. One time instant of the 3D river data, The x axis is the length-wise spatial displacement (down the river), and the y axis is the width-wise spatial
displacement (across the river). Different colors represent different depths for visualization (blue corresponds to deep, yellow corresponds to shallow).

indoor river testbed in Niigata University, by using a stream
tomography sensing device. The dimension of the monitored
river is of 12m length and 0.45m width, and the gradient of the
bed slope is 1/200. The data is sampled on a regular 2D grid
with dimension 41×851, and at each sample location there are
4 channels recorded (the height of the river surface, the depth
of the river bed, the variation of the height, and the variation of
the depth). By analyzing the data we notice that channels 1 and
3 are correlated, and channels 2 and 4 are correlated. So for
the experiment we use channel 1 to predict 3, and channel 2 to
predict 4, respectively. The samples are collected periodically
at 10 minute intervals, and 44 time instants in total. One time
instant of the 3D river data is shown in Fig. 3.

B. Experiment Settings

We first organize the 3D river data into frame groups, as
discussed in Section. III. For each frame we use 8 × 8 block
as the basic coding unit. The QP values are from 4 to 24, with
step size 4. Based on these configurations we design several
comparison tests, as described below:

1) We implement the entire proposed coding scheme, and
test both the low complexity (GLT) and high complexity
(FGFT) implementations separately.

2) We test a coding scheme without graph learning al-
gorithm. GLT is employed on a 8-connected graph
constructed based on Euclidean distance of sample lo-
cations.

3) We test the coding performance of standard Discrete Co-
sine Transform (DCT) directly applied on the prediction
residual.

C. Performance Comparison

The coding performances of different coding schemes in
two sets of experiments are shown in Fig. 4 and 5. For both
small and large group size, we can observe that the proposed
coding scheme yields obvious coding gain, especially for the
high PSNR region. Specifically, at PSNR=55dB, our coding
scheme using FGFT can save 60% bits consumption compare
with the default DCT; While the coding scheme using GLT can
save 40% bits consumption. Notice that for this application of
river data storage and analysis, the monitored river data must

Fig. 4. The coding performance comparison, each group contains 4 frames.

Fig. 5. The coding performance comparison, each group contains 11 frames.

be stored in a very high quality, thus the coding gain in high
PSNR region is meaningful.

VI. CONCLUSIONS

Compression of 3D river data is important for early preven-
tion and warning of river flooding due to torrential rainfalls.
In this paper, leveraging on recent advance in graph-based
transform coding, we design a new compression scheme
for large 3D river data. Experimental results show that by
learning appropriate graph structures from previously coded
data, one can utilize fast implementation of graph transforms
for practical and efficient compression of river data.

1316

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

REFERENCES

[1] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” in IEEE Signal Processing Magazine, vol. 30, no.3, May
2013, pp. 83–98.

[2] A. Sandryhaila and J. M. Moura, “Big data analysis with signal
processing on graphs: Representation and processing of massive data
sets with irregular structure,” IEEE Signal Processing Magazine, vol. 31,
no. 5, pp. 80–90, 2014.

[3] “Environmental monitoring applications: Flood warning
systems,” https://www.fondriest.com/environmental-measurements/
environmental-monitoring-applications/flood-warning-systems/,
accessed Jun 2, 2018.

[4] H. E. Egilmez, E. Pavez, and A. Ortega, “Graph learning from data
under laplacian and structural constraints,” IEEE Journal of Selected
Topics in Signal Processing, vol. 11, no. 6, pp. 825–841, 2017.

[5] Y.-H. Chao, A. Ortega, W. Hu, and G. Cheung, “Edge-adaptive depth
map coding with lifting transform on graphs,” in 31st Picture Coding
Symposium, Cairns, Australia, May 2015.

[6] L. Le Magoarou, R. Gribonval, and N. Tremblay, “Approximate fast
graph fourier transforms via multilayer sparse approximations,” IEEE
transactions on Signal and Information Processing over Networks,
vol. 4, no. 2, pp. 407–420, 2018.

[7] G. Shen, W.-S. Kim, S. Narang, A. Ortega, J. Lee, and H. Wey, “Edge-
adaptive transforms for efficient depth map coding,” in IEEE Picture
Coding Symposium, Nagoya, Japan, December 2010.

[8] W. Hu, G. Cheung, X. Li, and O. Au, “Depth map compression using
multi-resolution graph-based transform for depth-image-based render-
ing,” in IEEE International Conference on Image Processing, Orlando,
FL, September 2012.

[9] W. Hu, G. Cheung, A. Ortega, and O. Au, “Multi-resolution graph
Fourier transform for compression of piecewise smooth images,” in IEEE
Transactions on Image Processing, vol. 24, no.1, January 2015, pp. 419–
433.

[10] W. Hu, G. Cheung, and A. Ortega, “Intra-prediction and generalized
graph Fourier transform for image coding,” in IEEE Signal Processing
Letters, vol. 22, no.11, November 2015, pp. 1913–1917.

[11] J. Zeng, G. Cheung, Y.-H. Chao, I. Blanes, J. Serra-Sagrista, and
A. Ortega, “Hyperspectral image coding using graph wavelets,” in
IEEE International Conference on Image Processing, Beijing, China,
September 2017.

[12] Y.-H. Chao, G. Cheung, and A. Ortega, “Pre-demosiac light field
compression using graph lifting transform,” in IEEE International Con-
ference on Image Processing, Beijing, China, September 2017.

[13] A. Said and W. A. Pearlman, “Low-complexity waveform coding via
alphabet and sample-set partitioning,” in Visual Communications and
Image Processing’97, vol. 3024. International Society for Optics and
Photonics, 1997, pp. 25–38.

[14] S. Narang and A. Ortega, “Lifting based wavelet transforms on graphs,”
in APSIPA ASC, Sapporo, Japan, October 2009.

[15] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance
estimation with the graphical lasso,” in Biostatistics, vol. 9, no.3, 2008,
pp. 432–441.

[16] S. J. Wright, “Coordinate descent algorithms,” Mathematical Program-
ming, vol. 151, no. 1, pp. 3–34, 2015.

[17] Y.-H. Chao, A. Ortega, and S. Yea, “Graph-based lifting transform
for intra-predicted video coding,” in Acoustics, Speech and Signal
Processing (ICASSP), 2016 IEEE International Conference on. IEEE,
2016, pp. 1140–1144.

[18] G. Shen and A. Ortega, “Optimized distributed 2d transforms for
irregularly sampled sensor network grids using wavelet lifting,” in IEEE
International Conference on Acoustics, Speech and Signal Processing,
2008. IEEE, 2008, pp. 2513–2516.

[19] E. Martinez-Enriquez, J. Cid-Sueiro, F. Diaz-De-Maria, and A. Ortega,
“Directional transforms for video coding based on lifting on graphs,”
IEEE Transactions on Circuits and Systems for Video Technology, 2016.

[20] E. Martı́nez-Enrı́quez, F. Dı́az-de Marı́a, and A. Ortega, “Video encoder
based on lifting transforms on graphs,” in Image Processing (ICIP), 2011
18th IEEE International Conference on. IEEE, 2011, pp. 3509–3512.

[21] G. H. Golub and H. A. Van der Vorst, “Eigenvalue computation in the
20th century,” Journal of Computational and Applied Mathematics, vol.
123, no. 1, pp. 35–65, 2000.

1317

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

		2018-10-19T10:54:53-0500
	Preflight Ticket Signature

