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Abstract—A Spiking Neural Network (SNN), which expresses
information by spike trains, has an ability to process information
with low energy like a human brain. Hardware implementation
of a SNN is an important research problem. If the neurons
are linked by wireless communications, SNNs can obtain the
spatial degree of freedom, which may extend application area
dramatically. Additionally, such SNNs can process information
with low energy, owing to wireless communication by the spike
trains. Therefore, it is regarded as low power-consumption wire-
less sensor networks (WSNs) with adding the functions of SNN
neurons to wireless sensor nodes. This “Wireless Neural Sensor
Networks” can distribute information processing like a brain on
the WSN nodes. This paper presents a SNN with infrared(IR)
communications as the first step of the above concept. Neurons
are implemented by field programmable gate array, which are
linked by IR communications. The implemented SNN succeeded
in acquiring the XOR function through reinforcement learning.

I. INTRODUCTION

Biological information processing, which can high process-
ing performance with low power consumption like a human
brain, attracts many researchers attentions in recent years.
Neural networks, which are models of brain information
processing, are adapted in various field applications such
as image processing and speech recognition. Spiking Neural
Network (SNN) consists of spiking neurons, for example
Izhikevich model [1] , Hodgikin-Huxley model [2], and In-
tegrate and Fire (IF) model [3]. The spiking neurons, which
communicate information one another by spikes, imitates
biological experimental-observed dynamics of neuron. Spike
trains generated by each neuron have information in spike
timing and rate of spikes [4]–[6]. For example, the SNNs can
learn patterns of spike trains by the modifications of synaptic
weights as a function of relative timing of pre and postsynaptic
spikes, which is called Spike Timing Dependent Plasticity
(STDP) [7]–[15].

A hardware implementation of a SNN is an important
research topic. Theoretically, the SNN hardware can achieve
high speed and low energy-consumption information process-
ing [16], [17]. Actually, many SNN hardwares were proposed
with wired connections among neurons [18], [19]. If the
neurons are linked by wireless communications, neurons can
be located arbitrary with spatial, which may extend application
area of the SNNs dramatically. The SNNs can transmit spike
information by wireless communications with low energy.
Therefore, such SNNs are regarded as low power-consumption

wireless sensor networks (WSNs) with adding the functions
of SNN neurons to wireless sensor nodes. Additionally, this
“Wireless Neural Sensor Network” (WNSN) provide an ability
of distributed information processing on the WSNs.

The Field Programmable Gate Array (FPGA) is the circuit
devise, which can reconfigure a circuit topology by pro-
grammable software. Modern FPGAs include large number
of logic gates and physical memories. Because it is possible
to achieve parallel computations, FPGAs are effective tool for
hardware implementation of the neural networks [20]–[22].

This paper presents a SNN implementation on FPGAs,
which are linked by infrared (IR) communications as the first
step for realizing our WNSN concept. The XOR function
was acquired on the implemented SNN with reinforcement
learning, which showed the ability and potential to realize the
WNSN.

II. PROPOSED SNN

A. Neuron model

In this paper, a SNN is constructed by IF neurons [3]
in discrete time. Figure 1 shows a schematic diagram of
presynaptic and postsynaptic neurons and an example of the
membrane potential dynamics. Synaptic weights between neu-
rons are defined as wij , where j and i are labels of presynaptic
and postsynaptic neurons, respectively, as shown in Fig. 1(a).
The increase in postsynaptic membrane potential is caused by
receiving presynaptic neuron spikes. The membrane potential
values depend on neurons. The membrane potential of the
neuron i is expressed by

vi(t) = vr + (vi(t− δ)− vr) exp(−δ/τ) +
∑
j

wij(t)fj(t− δ),

if vi(t) ≥ vθ, then vi(t) = vr and fi(t) = 1,

if vi(t) < vθ, then fi(t) = 0,
(1)

where vr is the reset membrane potential value, δ is the time
step, τ is the time constant for the exponential decay, and fi(t)
expresses the state of fire of neuron i. The membrane potential
decreases according to the exponential decay. If the membrane
potential is larger than the threshold, the postsynaptic neuron
fires and the membrane potential resets to the fixed value as
shown in Fig 1(b).
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(a) (b)

Fig. 1: Schematic of feed forward neural network. (a) Presy-
naptic and postsynaptic neurons. (b) Dynamics example of
membrane potential

Fig. 2: Proposed system diagram

B. Proposed SNN implementation

Figure 2 shows a diagram of the proposed system. In the
proposed system, a SNN is implemented on FPGAs, which
are linked by IR communications. Table I gives FPGA and IR
communication module types, which are used in this paper.
The implemented SNN has two input neurons, 14 hidden
neurons, one output neuron, which are linked with forward
connections. Two neurons of the input layer are implemented
on individual FPGAs. Hidden neurons, output neuron, and
reward generator are installed in one FPGA. The reward gener-
ator was carries out information processing for reinforcement
learning. The links between input to hidden layer neurons are
achieved by the IR communications.

C. Infrared communication

In the proposed system, IR communication is adapted for
between input-layer neurons and hidden-layer neurons. Two
input units generate a spike train according to input signals.

In this paper, the communication multiplexing from two
input units to one information processing unit was applied
to the Time Division Multiple Access (TDMA). Two time

TABLE I: FPGA and Communication Modules

FPGA board Xilinx basys-3 Artix-7
Receiver module 7.4*6.2*5.25mm Infrared Receiver Module

Transmitter module 5mm Round Infrared

Fig. 3: Structure of time slots

slots are prepared for two input neuron spike signals. Figure
3 shows structure of time slots. For making time synchroniza-
tion among FPGAs, the synchronization signal is transmitted
from the information processing unit to input units. Input
units transmit spike signals from the next time step of the
synchronization signal. The spike signals from input units
can be distributed to all the hidden-layer neurons, which are
transmitted in the duration of the time slots. In this system,
one time step is divided into 100 unit time. One unit time is
0.026 (= 1/(37.9 × 1000)) second because cut-off frequency
of the band-pass filtering at the IR receiver module is 37.9
kHz.

III. LEARNING MECHANISM

A. Reinforcement learning

A reinforcement learning is one of learning methods of
the SNNs. In the reinforcement learning, the reward signals,
which are generated by reward generator according to output
neuron state and input neuron spike trains, are distributes
to all neurons. The reinforcement learning algorithm in [7],
which is called the modulated STDP with eligibility trace
(MSTDPET) [7], was installed in the implemented SNN. The
synapse weights are renewed according to reward signals. The
calculation flow of renewing synapse weights is as follows.

Firstly, the influences of postsynaptic and presynaptic are
obtained from

P+
ij (t) = P+

ij (t− δ) exp

(
− δ

τ+

)
+A+fj(t), (2)

and

P−
ij (t) = P−

ij (t− δ) exp

(
− δ

τ−

)
+A−fi(t), (3)

respectively, where τ± and A± are the constant value parame-
ters and A+ and A− have a positive value and a negative one,
respectively.

Secondly, the synaptic efficacy notation is calculated by

ξij(t) = P+
ij (t)fi(t) + P−

ij (t)fj(t), (4)
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At the next step, eligibility trace is obtained from

zij(t+ δ) = zij(t) exp

(
− δ

τz

)
+

ξij(t)

τz
, (5)

where τz is the time constant for exponential decay. In the
SNN, eligibility trace keeps decaying memory of the synaptic
efficacy.

Finally, synaptic weight is renewed as

wij(t+ δ) = wij(t) + ηR(t)zij(t+ δ), (6)

where η is the learning rate and R is a reward function which is
defined from a given task for the SNN. By renewing synaptic
weights successively, the desired output, which reflects the
input patterns, can be obtained.

B. XOR learning

For showing that the proposed system has an ability of
the SNN, the XOR function, which is a classical benchmark
problem of the NN, was learned and acquired in the proposed
system.

The XOR function relationships between inputs and output
are given in Table II. Input signals 0 and 1 were coded by
two distinct spike trains of 500 time steps in lengths, which
randomly include 50 spikes. The spike intervals follow Poisson
distribution. Output signals were coded by the firing rate. The
output firing rates for the output ‘1’ is higher than the output
firing rate for the output ‘0’. In one learning epoch, the four
patterns of (0, 0), (0, 1), (1, 0) and (1, 1) are randomly input
for 500 time steps every epoch. Namely, one epoch has 2000
time steps. 200 epochs are repeated for learning.

From the output neuron state and the correct output at t,
reward function R is obtained from

R(t) =


1 foutput(t) = 1 and correct output is 1

−1 foutput(t) = 1 and correct output is 0

0 foutput(t) = 0,
(7)

where foutput expresses the state of fire of output neuron and
correct output is obtained by knowing accurate value. For that,
time slots for transmitting of correct input value are prepared.

The synaptic weights between the input and the hidden
layers in the range of −15.0 ≤ whi < 15.0, where i and
h are labels of input and hidden layer neuron respectively.
The weights of the synapses between the hidden layer and
the output layer in the range of 0.0 ≤ woh < 15.0, where
o is the label of hidden layer neuron. The initial values of
the synaptic weights are set with random values in the above
ranges by using Linear Feedback Shift Register(LFSR). The
LFSR consists of shift registers and XOR logic gates, it is a
pseudo random number generator.

IV. DISCUSSION OF EXPERIMENT RESULTS

This section shows experimental results of XOR learning
by MSTDPET. Table III gives the values of experiment
parameters. Figure 4 shows the proposed system used for
experiments. The distances between transmitter and receiver
of infrared communication are 0.5 m and there are no obstacle.

TABLE II: XOR function relationships

input 1 input 2 output
0 0 0
0 1 1
1 0 1
1 1 0

TABLE III: Experiment of parameters

parameter value
η 0.125
δ 1.0
τ 20.0
τz 25.0
τ+ 20.0
τ− 20.0
vr −54.0
vθ −70.0
A+ 2.0
A− −1.0

Figure 5(a) shows the firing rates of the output neurons as
a function of epoch number for the fixed input patterns. It is
seen from this figure, the fire rate converged when the epoch
number was approximately 160. Figure 5(b) shows that the
number of total reward as a function of learning epoch. It is
seen from Fig. 5(b), number of total reward increased as the
epoch number increased. Additionally, the total reward also
converged when the epoch number was approximately 160
because fire rates of each input patterns are converged.

Before learning, the output fire rates for a certain input are
the almost same as for other inputs. It is seen from Figure 5(a)
that the input pattern (0, 1) and (1, 0) fires more than (0, 0)
and (1,1) posterior to learning.

The implemented SNN acquired the XOR function success-
fully in 100% of 20 experiments.

It could be confirmed from above results that the proposed
wireless SNN obtained the same result as the wired SNNs.
This showed an ability and a possibility to realize WNSN
concept in the near future.

Fig. 4: Proposed system used for experiments
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(a)

(b)

Fig. 5: Experimental result of XOR learning. (a) The number
of output neuron spiked as a function of the learning epoch.
(b) Total reward as a function of learning epoch.

V. CONCLUSIONS

In this paper, the SNN, which is linked by IR communica-
tions, has been proposed. The XOR function could be acquired
by applying reinforcement learning, which showed the ability
and potential to realize our WNSN concept. For future works
to build WNSN, it is necessary to adopt high speed wireless
communication module for improving the capacity of spike
signal communication and increasing transmission distance.
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