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Abstract—Generative adversarial networks(GANs) have been
successfully applied for generating high quality natural images
and have been extended to the generation of RGB videos and 3D
volume data. In this paper we consider the task of generating
RGB-D videos, which is less extensively studied and still chal-
lenging. We explore deep GAN architectures suitable for the task,
and develop 4 GAN architectures based on existing video-based
GANs. With a facial expression database, we experimentally find
that an extended version of the motion and content decomposed
GANs, known as MoCoGAN, provides the highest quality RGB-
D videos. We discuss several applications of our GAN to content
creation and data augmentation, and also discuss its potential
applications in behavioral experiments.

I. INTRODUCTION

The use of color videos with depth (RGB-D) has been
spread to various applications in computer vision such as peo-
ple tracking[1], object recognition[2], pose estimation[3][4]
and human activity recognition[5][6]. For such applications,
deep learning is thought to be useful but preparation of large
RGB-D training dataset is time-consuming and remains to be
an issue. One method of tackling this issue are generative
models, which can possibly be used for data augmentation.

Generative adversarial networks (GANs) [7] are genera-
tive models and are able to generate novel dataset based
on learned dataset. Over the past few years, many GANs
for image generation have been proposed, such as image
colorization [8], domain translation [9], image super-resolution
[10], high resolution image generation [11]. These previous
studies demonstrate that GANs have the ability of generating
high quality natural images. In recent years GANs have been
applied to generation of videos and 3D volume data. The
first attempt to generate videos using a GAN is VideoGAN
[12]. VideoGAN decomposes a given video into static back-
ground and moving foreground to effectively describe the
dynamics of the video. The motion and content decomposed
GAN (MoCoGAN) [13] is a state-of-the-art method for video
generation. MoCoGAN decomposes a given video into motion
and content, and represents the dynamics of the video in the
latent motion subspace.

In this paper we consider the task of generating RGB-D
videos, which is less extensively studied and still challenging.
We explore deep GAN architectures suitable for the task, and
develop 4 GAN architectures based on the existing video-
based GANs. The architectures are: (1) a model extended the
simple 2D GAN to RGB-D video generation using 3D CNN,
(2) a model extended from VideoGAN which decompose

Fig. 1: Basic architecture of GANs

video into foreground and background, (3) a model extended
from MoCoGAN which decompose video into motion and
content, and embed them in latent space, and model with RNN,
(4) a model which generate RGB and depth independently
based on MoCoGAN.

II. RELATED WORKS

We review the basic GAN and its extension to video
generation: VideoGAN and MoCoGAN.

A. Generative Adversarial Networks

GANs train generative models via an adversarial process.
The GANs architecture consists of two networks: a generator
network and a discriminator network. Fig.1 shows the archi-
tecture. The generator network G produces a sample from a
latent code z,

x̃ = G(z). (1)

The discriminator network D estimates the probability that a
sample came from the training dataset rather than G.

We train G such that it generates a sample similar to the
dataset, and train D to discriminate samples from the dataset to
ones that are generated by G. Training of G and D is achieved
via solving a minimax problem given by the objective

min
G

max
D

V (D,G), (2)

where the V (D,G) is

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ex̃∼pg(x)[log(1−D(x̃)))], (3)

where pg and pdata denote the generator distribution and the
data distribution, respectively. In practice, (2) is optimized with
a gradient based method.
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B. VideoGAN

The VideoGAN [12] has following two assumptions: 1)
videos are captured with a stationary camera, and 2) only
objects move in videos. Based on these assumptions, Vondrick
et al. argued that a scene can be decomposed into a moving
foreground and a static background and the decomposition is
useful for modeling scene dynamics.

Specifically, the architecture of the generator network is a
two-stream model that explicitly models the foreground with
3D convolutional neural network (3DCNN) and the back-
ground with 2DCNN, respectively. The generator produces a
video from a single latent code z, so a point in the latent
space corresponds to a video. In the training, the network to
train weights to add up the foreground and the background
are also integrated. The discriminator network is the same as
a usual GAN, which distinguish the generated samples from
the actual dataset samples.

VideoGAN tends to generate clear background and can
attach appropriate motion to appropriate object in the scene.
On the other hand, the generation of foreground needs im-
provement because the resolution of generated objects with
motion is low.

C. MoCoGAN

The MoCoGAN[13] producing a video from latent code
consists of content and motion part. Separating the two enables
easier control over the content as well as the movements within
the generated video.

Furthermore, Tulyakov et al. pointed out that previous
approaches have little consideration of the temporal attributes
of the video. Videos recording the same actions with difference
in speed will be represented by different points in the latent
space. To solve this issue, they has sampled a single point
from the motion latent space representing the initial state of
the RNN. This is then fed to the RNN to produce motion
vectors that have a length of the video frames. In other words,
the RNN is capable of learning trajectories in the motion latent
space corresponding to every movement, and its speed can be
defined by the sampling interval of the motion vectors. This
architecture enables modeling the dynamics of the video with
ease.

Fig.2 shows examples of generated samples with MoCo-
GAN and VideoGAN. These examples demonstrate that
MoCoGAN provides more natural images than VideoGAN.
The result is also supported in subjective evaluations using
crowdsourcing [13].

III. PROPOSED MODELS

In this section, we propose 4 GAN architectures for RGB-
D videos based on simple GAN, VideoGAN and MoCoGAN.
Our basic idea is to extend the GAN architectures for image
generation to those for RGB-D video generation by replacing
2D convolution with 3D convolution (spatio-temporal convo-
lution).

(a) generation result by MoCoGAN

(b) generation result by VideoGAN

Fig. 2: comparison generated samples between MoCoGAN
and VideoGAN, reprinted from [13]

A. RGBD-GAN

The simplest GAN architecture for image generation con-
sists of a single generator and a single discriminator which
are built based on 2DCNN. We extend the 2DCNN based
simplest architecture to the 3DCNN based architecture for
RGB-D videos. We call this architecture RGBD-GAN. Fig.3a
shows the RGBD-GAN architecture. In the figure, ”3D” rep-
resents that the network has 3 dimensional (spatio-temporal)
convolution.

The RGBD-GAN generates samples from a latent code
using (1). Learning RGBD-GAN is made by solving the
minimax problem of (2).

B. RGBD-VideoGAN

Second we develop a VideoGAN based architecture for
RGB-D video generation by adding depth channel. We call this
architecture RGBD-VideoGAN. Fig.3b shows the architecture.

The RGBD-VideoGAN generates samples from a latent
code,

x̃ = m(z)⊙Gf (z) + (1−m(z))⊙Gb(z), (4)

where Gf and Gb represent the generator for foreground and
background, respectively, and m represents the network that
estimates the ratio of the foreground video and background
image. Note that ⊙ is element-wise multiplication. The opti-
mization problem is the same as (2).

C. RGBD-MoCoGAN

Third we develop a MoCoGAN based architecture for RGB-
D video generation by adding depth channel. We call this
architecture RGBD-MoCoGAN. Fig.3c shows the architecture.

The RGBD-MoCoGAN generates samples from two latent
codes,

x̃ =

[
GI

([
zC

z
(1)
M

])
, ..., GI

([
zC

z
(T )
M

])]
, (5)
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where GI represents the generator, T represents the video
length, zC and zM are latent vectors corresponding to content
and motion part of the video, respectively. Similar to MoCo-
GAN [13], zC is sampled from the Gaussian distribution with
mean 0 and covariance matrix IdC

, where IdC
is the dc × dc

identity matrix. Also zM is recursively generated from

z
(t)
M = RM (z

(t−1)
M , ϵ(t)), t = 1, 2, . . . , T. (6)

where RM represents the recurrent neural network and ϵ(t)

is a normal Gaussian random variable with covariance matrix
IdM

. For a video, the content vector zC is sampled once and
fixed, a series of motion vectors [z

(1)
M , ..., z

(T )
M ] is produced

by RM . The objective function is

min
GI ,RM

max
DI ,DV

V (GI , RM , DI , DV ), (7)

where

V (GI , RM , DI , DV )

= Ex∼pdata [logDI(x
(t))] + Ex̃∼pg [log(1−DI(x̃

(t)))]

+ Ex∼pdata [logDV (x)] + Ex̃∼pg [log(1−DV (x̃))]. (8)

where DI represents image discriminator, DV represents video
discriminator, pg represents the distribution of generator, pdata
represents the distribution of the training data.

D. RGB+D-MoCoGAN

Each of the above three GANs includes a signal generator
which produces both of the RGB and depth signals. The use
of only the single generator implicitly assumes that these
two channels depend on each other. However RGB signals
are essentially different from depth signals because RGB is
color but depth is geometric distance. Hence we develop a
MoCoGAN based architecture by introducing two generators;
the first generator Grgb produces RGB videos, and the second
Gdepth produces depth videos. Fig.3d shows the architecture
in which the two generators Grgb and Gdepth are placed in the
network. We call this architecture RGB+D-MoCoGAN.

The RGB+D-MoCoGAN generates a sample from a latent
code,

x̃ =

[
x̃
(1)
rgb ⊕ x̃

(1)
depth, ..., x̃

(T )
rgb ⊕ x̃

(T )
depth

]
, (9)

x̃rgb =

[
Grgb(

[
zC

z
(1)
M

]
), ..., Grgb(

[
zC

z
(T )
M

]
)

]

x̃depth =

[
Gdepth(

[
zC

z
(1)
M

]
), ..., Gdepth(

[
zC

z
(T )
M

]
)

]
z
(t)
M = RM (z

(t−1)
M , ϵ(t)), t = 1, 2, . . . , T

where RM represents the network which generate zM , Grgb
represents the generator to produce rgb video frame, Gdepth
represents the generator to produce depth video frame, ⊕
represents channel-wise concatenation T represents the video

length. The objective function is

min
Grgb,Gdepth,RM

max
DI ,DV

V (Grgb, Gdepth, RM , DI , DV ), (10)
V (Grgb, Gdepth, RM , DI , DV )

= Ex∼pdata [logDI(x
(t))] + Ex̃∼pg

[log(1−DI(x̃
(t)))]

+ Ex∼pdata [logDV (x)] + Ex̃∼pg
[log(1−DV (x̃))], (11)

DI represents image discriminator, DV represents video dis-
criminator, pg represents the distribution of generator, pdata
represents the distribution of the training data.

IV. EXPERIMENT

We compare the four GAN architectures with a facial
expression video dataset and evaluate them from qualitative
and quantitative point of views.

A. Dataset

In the experiment, we made a new RGB-D video dataset
from an existing RGB video dataset by predicting depth
channel. The base dataset is the MUG Facial Expression
Database [14], which records facial expressions of 86 people.
The size of video image is 896 × 896, video length is 50 to
160 frames, the class label has six types of facial expressions:
anger, disgust, fear, happy, sad, and surprise. We perform the
following preprocessing for each image frame in a video to
obtain depth information:

1) Crop face region;
2) Resize 192× 192;
3) Apply 3-dimensional facial reconstruction [15] to ob-

tain a voxel data like (height, width, depth) =
(192, 192, 200);

4) Treat the maximum value on z-axis of the voxel as depth;
5) Resize the rgb image obtaned by step 1) and the depth

image obtained by step 3) to 64× 64.
Using the above preprocessing, we prepare the RGB-D

videos dataset of the size of 64 × 64. The length of the
generated video by all of models is fixed at 16 frames, so
we extract multiple subsequences from each video.

B. Condition

We build the generators and discriminators with five con-
volutional layers. We use rectified linear unit (ReLU) for the
generators and leaky-ReLU for the discriminators. In addition
we adopt batch normalization to train them. To stabilize the
training process, Gaussian noises with µ = 0, σ = 0.2 are
added to input of each layer of discriminator [16]. According
to the papers of VideoGAN and MoCoGAN, we use Gaussian
distribution with µ = 0, σ = 0.33 as the distribution of
the latent code. The dimension of the input noise is 100
for RGBD-GAN and RGBD-VideoGAN. dC and dM for
RGBD-MoCoGAN and RGB+D-MoCoGAN are 50 and 10,
respectively. We used GRU[17] as the recurrent neural network
RM . Table I shows other training configurations.
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(a) architecture of RGBD-GAN (b) architecture of RGBD-VideoGAN

(c) architecture of RGBD-MoCoGAN (d) architecture of RGB+D-MoCoGAN

Fig. 3: Proposed architectures

TABLE I: Training configuration

dataset

The MUG Facial Expression Database
type: RGB-D video

the numbers of samples: 3219
(channel, frame, height,width) : (4, 16, 64, 64)

batchsize 35
training epoch 200

optimizer Adam(α = 0.0002, β1 = 0.5, β2 = 0.999)

C. Qualitative evaluation

We trained our proposed models with the dataset and
compared visually the quality of the results. Fig. 4 shows three
example sequances (4, 8, 12, and 16th frames) of the RGB-D
videos generated by the proposed four models. In Fig. 4, we
separately show the RGB and depth signals.

We visually and subjectively compare the results based on
the three points:

1) RGB frame quality,
2) depth frame quality,
3) dynamics size.

Table II summarizes the qualitative evaluation results. As
shown in Table II, the best model is RGBD-MoCoGAN.
RGBD-GAN and RGBD-VideoGAN provide the poor quality
RGB frames. RGBD-MoCoGAN and RGB+D MoCoGAN
provide the good quality RGB frames but the latter provides
the poor quality depth frames.

D. Quantitative evaluation

For quantitative evaluation, we use inception-score [18]
which is thought to be correlated very well with human judg-
ment. The inception-score is a Kullback-Leibler divergence
between two probability distributions and defined by

exp(Ex∼pg(x)[KL(p(y|x)||p(y)]), (12)

where x and y represent a generated sample and the label
(e.g. happiness, anger). The probability distributions p(y) and
p(y|x) are estimated by the pre-trained classifier model. We
use C3D [19] as the classifier model which trained with the
same dataset in this experiment.

The metric based on the fact that good samples are expected
to yield:

1) low entropy p(y|x), i.e. high prediction confidence;
2) high entropy p(y), i.e. highly varied predictions.
We calculate the average and the variance of inception-score

from 10000 generated samples. As shown table III, the best
model is RGBD-MoCoGAN.

E. Discussion

From the qualitative and quantitative point of view, the
RGBD-MoCoGAN model provides the best quality RGB-D
videos. This result indicates that the MoCoGAN architecture
can properly model video dynamics. We thought that RGB+D-
MoCoGAN was the best model because the separation of RGB
and depth channels in the generation process was intuitively
appropriate. However this is not the case with the facial expres-
sion dataset. This result indicates that RGB and depth channels
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TABLE II: Qualitative evaluation

RGBD-GAN RGBD-VideoGAN RGBD-MoCoGAN RGB+D-MoCoGAN
quality of RGB frame Poor Poor Good Good
quality of depth frame Good Poor Good Poor

size of dynamics Average Poor Good Good

TABLE III: Evaluation with inception score

Model Inception Score Rank
RGBD-GAN 4.73± 0.0149 2
RGBD-VideoGAN 4.55± 0.0157 4
RGBD-MoCoGAN 4.77± 0.00914 1
RGB+D-MoCoGAN 4.67± 0.0184 3
Dataset 5.17± 0.0351 -

have a strong correlation and these individual modeling makes
training hard.

V. CONCLUSION

RGB-D video generation will have a considerable impact
on a wide range of fields in computer vision. To the best of
our knowledge, GANs for RGB-D video generation are less
extensively studied. In this paper, we propose the four GAN
architectures based on GANs for video generation. With the
facial expression dataset, we reveal that RGBD-MoCoGAN
generates highest quality RGB-D videos. Currently we do not
experiment extensively using other RGB-D videos such as nat-
ural scenes and gestures. With such dataset, we further develop
better GAN architectures for RGB-D video generation.
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(a) RGBD-GAN

(b) RGBD-VideoGAN

(c) RGBD-MoCoGAN

(d) RGB+D-MoCoGAN

Fig. 4: Generated samples（upper is rgb images, lower is depth images）
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