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Abstract—This paper presents a self-produced speech enhance-
ment and suppression method for multichannel auditory sig-
nals recorded with both air- and body-conductive microphones.
In processing auditory sound signals recorded with wearable
microphones for memorizing conversation and acoustic scenes
and events that each user experienced in daily life, source
separation is a promising technique as only a mixing of various
sound sources can be observed. To separate the recorded signals
into self-produced speech, i.e., user’s own speech and ambient
environmental sounds, we propose a self-produced speech en-
hancement and suppression method using not only air-conductive
microphones to record multichannel air-conducted signals but
also body-conductive microphones to record body-conducted
signals. A separation filter applied to the multichannel air-
conducted signals is estimated in an unsupervised manner while
effectively using the body-conducted signals dominantly including
self-produced speech components. We conduct an experimental
evaluation to investigate the effectiveness of the proposed method,
thereby demonstrating that the proposed method outperforms the
conventional method using only the air-conductive microphones.

I. INTRODUCTION

With the development of small audio recording devices
and the increase of attention for understanding speech and
audio scenes, novel audio applications using the wearable
audio recording devices are expected to be developed. For
instance, auditory sounds recorded with wearable microphones
are expected to be utilized for memorizing conversation and
acoustic scenes and events that each person experienced in
daily life. On the one hand, the recorded auditory sound signals
usually contain various sound source signals, such as user’s
speech and ambient environmental sounds. On the other hand,
target source signals usually depend on individual applications,
e.g., it will be ideal that we can obtain only user’s speech for an
application for transcribing it with speech recognition, and we
can obtain only ambient environmental sounds for classifying
acoustic scenes and detecting acoustic events. Therefore, a
sound source separation technique is expected to be effective
for extracting the desired target source signals from the mixed
signals.

As a typical source separation technique, Blind Source
Separation (BSS) has been actively discussed for many years.

In BSS based on Independent Component Analysis (ICA) [1]–
[3], a mixed signal is separated using a linear separation filter
estimated assuming that source signals are independent of each
other. Frequency-Domain ICA (FDICA) has been successfully
applied to auditory sound source separation [4], [5], and
it has been extended to Independent Vector Analysis (IVA)
[6], [7] to solve a permutation problem in FDICA. Recently,
Independent Low-Rank Matrix Analysis (ILRMA) [8], [9]
has been proposed to achieve high separation performance
by further introducing a sound source model based on non-
negative matrix factorization (NMF) [10]–[12] into IVA. These
approaches are expected to be also available for the mixed
signals recorded with the wearable microphones and be further
extended for achieving higher separation performance.

As the first step towards the development of BSS for the
mixed signals recorded with the wearable microphones, in this
paper we focus on enhancement and suppression of a self-
produced speech, i.e., user’s own speech. As a conventional
method related to this task, a speech enhancement method
using both air- and bone-conductive microphones has been
proposed [13]. The bone-conductive microphone is robust
against external noise sounds. Therefore, bone-conducted sig-
nals tend to contain self-produced speech components dom-
inantly. Although their sound quality significantly degrades
owing to a mechanism of bone-conductive recording, these
signals are effectively used for enhancing air-conducted speech
signals under noisy conditions.

Inspired by this conventional work, we propose a self-
produced speech enhancement and suppression method using
not only multiple air-conductive microphones as in the tradi-
tional BSS framework but also a body-conductive microphone
to dominantly capture self-produced speech components. As
one of the high-quality body-conductive microphones, we
focus on the Non-Audible Murmur (NAM) microphone [14],
which is a special microphone developed to detect non-audible
murmur, i.e., very soft whispered voice. NAM microphone is
also robust against external noise and can also record normal
voices as well as NAM. Moreover, NAM microphone is used
by attaching it to the skin surface behind the ear, and therefore,
it is straightforward to install it in a wearable device with it,
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such as a neckband-type device. In our conventional work,
we have reported that Semi-Blind Source Separation (Semi-
BSS) [15], [16] and Non-negative Tensor Factorization (NTF)
[17] can be effectively used to develop a NAM enhancement
method under noisy conditions by using both NAM and air-
conductive microphones. Although the task handled in this
conventional work is different from that in this paper, it is
expected that multichannel signal processing using both NAM
and air-conductive microphones will be effective for enhancing
or suppressing self-produced speech from the mixed signals.

In this paper, we apply the ILRMA-based BSS framework
to the self-produced speech enhancement and suppression pro-
cessing using multiple air-conducive microphones and a NAM
microphone. A separation filter applied to the multichannel
air-conducted signals is estimated by effectively using not
only the multichannel air-conducted signals but also the body-
conducted signal as a clue to estimate self-produced speech
components. Our experimental result will demonstrate that the
proposed method outperforms the conventional method using
only the air-conducted signals.

II. CONVENTIONAL SOURCE SEPARATION METHOD

BSS estimates individual source signals from mixed signals
in an unsupervised manner. When the number of sound sources
N is less than or equal to that of observed channels M ,
the observed multichannel signal is usually well separated
by using a linear separation filter. Let us denote frequency
components (i.e., complex values) of the source signal sij , the
observed signal xij and the separated signal yij as follows:

sij = (sij,1, . . . , sij,N )⊤, (1)
xij = (xij,1, . . . , xij,M )⊤, (2)
yij = (yij,1, . . . , yij,N )⊤, (3)

where i = 1, . . . , I is a frequency index and j = 1, . . . , J is
a time index. We assume that the mixing process is modeled
as follows:

xij = Aisij , (4)

where Ai is the time-invariant mixing matrix. Then, the
separated signal is given by

yij = W ixij , (5)

where W i is the separation matrix to be estimated assuming
that the source signals are statistically independent of each
other in ICA, IVA and ILRMA.

A. Independent Component Analysis (ICA)

We assume that source signals are statistically independent
of each other and are generated from non-Gaussian distribu-
tion. The joint distribution function of y is denoted as

p(y) = p(y1, . . . , yN ), (6)

where the notation i, j are omitted for simplicity. Each com-
ponent yn of y is independent of each other if the separation

matrix W can separate x into independent components. In
such a case, the joint distribution function is given by

p(y) =
N∏

n=1

p(yn), (7)

where p(yn) is the marginal distribution function of yn. In
ICA, W is estimated so that Eq. (7) holds.

Kullback-Leibler divergence [18] is used to evaluate Eq. (7),
which is defined as follows:

KL(W ) =

∫
p(y) log

p(y)∏N
n=1 p(yn)

dy

= −H(y;W ) +
N∑

n=1

H(yn;W ), (8)

where H(y;W ) is a joint entropy and H(yn;W ) is a
marginal entropy. Denoting |W | as the determinant of W ,
the following formula holds,

KL(W ) ∝ − log |W | −
N∑

n=1

Ex[log p(yn)], (9)

where Ex is an expectation over x. KL(W ) is zero when Eq.
(7) holds. Therefore, the separation matrix W is estimated by
minimizing KL(W ). In this estimation, the gradient method
is used to iteratively update the estimate of W as follows:

W (t+1) = W t + η(I − ϕ(y)y⊤)W t, (10)

where η is a positive constant and I is an identity matrix. The
vector ϕ(y) is defined as follows:

ϕ(y) = −
(
∂ log p(y1)

∂y1
, ...,

∂ log p(yN )

∂yN

)⊤

, (11)

where the derivatives are approximated with a nonlinear func-
tion assuming a specific probability density function p(yn).

B. Independent Low-Rank Matrix Analysis (ILRMA)

ILRMA is originated from the frequency-domain ICA and
has been proposed as natural expansion of IVA, which handles
all frequency components over an entire of frequency bands
as one vector yj,n = (y1j,n, ..., yIj,n)

⊤. On the one hand,
IVA uses a time-invariant sound source model. On the other
hand, ILRMA uses a time-invariant sound source model based
on NMF. We assume the complex Gaussian distribution as a
generation model of each source signal.

p(yj,1, ...,yj,N ) =
∏
n

p(yj,n)

=
∏
i,n

1

πrij,n
exp(−|yij,n|2

rij,n
), (12)

where rij,n is a time-variant frequency-dependent variance of
each sound source. In ILRMA, it is modeled by NMF as
follows:

rij,n =
∑
k

znktikvkj , (13)
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where znk is a hidden variable to assign the k-th basis to the
n-th source signal, and the sum of znk over k is 1 subject
to 0 ≤ znk ≤ 1. Moreover, tik and vkj are a component of
a basis matrix T = [tik] ∈ RI×K

≥0 having K basis vectors
corresponding to individual sound sources and a component
of an activation matrix V = [vkj ] ∈ RK×J

≥0 , respectively. The
objective function of ILRMA is defined as follows:

QILRMA = −2J
∑
i

log |detW i|

+
∑
i,j,n

|yij,n|2

rij,n
+

∑
i,j,n

log rij,n. (14)

In R.H.S. of Eq. (14), the first term and the second term
correspond to the objective function of estimating the sepa-
rating matrix in IVA, and the second term and the third term
correspond to the objective function of estimating the sound
source model in NMF with the Itakura-Saito divergence. The
update formula of the separation matrix W i is obtained by the
iterative projection method [19] and the update formula of the
sound source model is obtained from the auxiliary function
approach [20].

C. Wiener filter

As a typical BSS framework, speech and noise signals are
first estimated by ICA, IVA or ILRMA as described above, and
then, Wiener filter designed using the estimated speech and
noise signals is applied to the observed signal to extract target
speech signal. This framework is effective if the observed
signal is not well separated into each source signal with the
linear filter, e.g., in such a situation as the number of sources
N is larger than the number of observed channels M .

Wiener filter [21] is designed by minimizing a mean square
error between an estimated target signal and a true target
signal. It is well known that Wiener filter works reasonably
well in noise suppression or speech enhancement.

Suppose that the observed signal xij is given by superposi-
tion of a speech signal x(s)

ij and a noise signal x(n)
ij as follows:

xij = x
(s)
ij + x

(n)
ij . (15)

Then, Wiener filter is given by

Gij =
P (x

(s)
ij )

P (x
(s)
ij ) + P (x

(n)
ij )

, (16)

where P (·) shows power spectrum. The target signal is ob-
tained by applying this filter to the observed signal.

III. PROPOSED SEPARATION METHOD FOR
SELF-PRODUCED SPEECH ENHANCEMENT AND

SUPPRESSION

A. Multi-channel recording with air- and body-conductive
microphones

The left of Figure 1 shows a neckband-type wearable
recording device with multiple air-conductive microphones
and a NAM microphone used in our proposed framework.

Fig. 1: Air- and body-conductive microphones (left: recording
environment, right: microphone position)

Fig. 2: Noisy spectrograms (top: air-conducted signals, bottom:
body-conducted signals)

The air-conductive microphones are installed on the device
at equal intervals, which is set to the back of speaker’s neck.
NAM microphone is also installed on the device and attached
to the position shown in the right of Figure 1. Figure 2
shows an example of spectrograms of air- and body-conducted
signals recorded in the air-conductive and NAM microphones
under 70 dBA of noisy condition. Although air-conducted
microphone can record the self-produced speech components
in a wide range of frequency, it is easily contaminated by ex-
ternal sound signals. On the other hand, as NAM microphone
can record the self-produced speech signal dominantly while
suppressing external sound signals, the self-produced speech
components are well observed in the body-conducted signal.
However, their high frequency components are not observed as
they are significantly suppressed by essential mechanisms of
body conduction, such as lack of radiation characteristics from
lips and effect of low-pass characteristics of the soft tissues,
and therefore, the sound quality of the body-conducted speech
signal is degraded significantly.
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Fig. 3: Overview of the proposed method

B. Self-produced speech suppression and enhancement

In the proposed method, an observed signal is given by

x′
ij = (x⊤

ij , x
(b)
ij )⊤, (17)

where x
(b)
ij is an observed body-conducted signal. We assume

that the observed signal is generated by the following mixing
process,

x′
ij = Aisij (18)

and the separated signal is relatively well determined by using
the time-invariant linear filter as in the conventional separation
method, which is shown as

yij = W ix
′
ij . (19)

Figure 3 shows an overview of the proposed method. First,
the linear separation filter in Eq. (19) is estimated using
ILRMA. The number of source signals N is set equal to the
number of observed channels M . The hidden variables zn,k,
the basis matrix and the activation matrix are randomly initial-
ized. The N -by-N separation matrix W is initialized as the
identity matrix. After estimating W with ILRMA, the multi-
channel separated signals ŷij,n = (ŷij,n1, . . . , ŷij,nM , ŷ

(b)
ij,n)

⊤

are generated by using projection back [22] as follows:

ŷij,n = W−1
i Mnyij , (20)

where Mn is a diagonal matrix to extract only the n-th
component of yij by masking the other components. Then,
we automatically select separated signals corresponding to the
self-produced speech signal from the multichannel separated
signals by grouping them into a self-produced speech signal
group N (s) and an environmental noisy signal group N (n).
Under the condition that the number of separated signals in
N (s) is given, the separated signals with the largest waveform
power calculated in only the channel corresponding to the
body-conducted signal (i.e., ŷ(b)ij,n) are assigned to N (s). This
grouping process works reasonably well thanks to an inherent
property of the body-conducted signal, i.e., dominantly con-
taining the self-produced speech components. In this paper,
we set the number of separated signals in N (s) to 1 or 2.

TABLE I: Experimental condition

Evaluation data 18 sentences
Sampling frequency 48 kHz

Frame size 11.6 ms (512 pt)
Shift size 5.8 ms (256 pt)

Iteration times in ILRMA 100
Number of basis vectors K 200

Number of Channels M 5 ch

After that, we finally use Wiener filter to estimate the self-
produced speech signals for the self-produced speech enhance-
ment or the environmental noise signals for the self-produced
suppression. The separated signals assigned to N (s) are super-
imposed to generate the separated signal ŷ

(s)
ij corresponding

to the self-produced speech signal, and those signals assigned
to N (n) are superimposed to generate ŷ

(n)
ij corresponding to

the environment noise signal as follows:

ŷ
(s)
ij =

∑
n∈N(s)

ŷij,n, (21)

ŷ
(n)
ij =

∑
n∈N(n)

ŷij,n. (22)

Then, a single channel Wiener filter is estimated separately in
each channel using ŷ

(s)
ij,m, ŷ(n)ij,m as follows:

G
(s)
ij,m =

P (ŷ
(s)
ij,m)

P (ŷ
(s)
ij,m) + P (ŷ

(n)
ij,m)

. (23)

The enhanced self-produced speech signal is obtained by
applying this filter to the observed signal in each channel.
Note that only channels corresponding to the air-conducted
signals are used in this filtering process. The self-produced
speech suppression is also achieved by building Wiener filter
to suppress ŷ

(s)
ij,m in a similar manner as the self-produced

speech enhancement.

IV. EXPERIMENTAL EVALUATION

A. Experimental conditions

An experimental evaluation for the self-produced speech
enhancement and suppression was conducted. TABLE I shows
the experimental condition. Speech and environmental sound
were separately recorded and superimposed to generate the
mixed sound. Eighteen sentences uttered by one Japanese
female speaker were used as evaluation data. Crowd noise
with 70 dBA of the sound pressure level was used as the
environmental sound. The six noise sources were arranged
at intervals of 60 degrees around the speaker, where the
front of the speaker was defined as zero degree. In the
proposed framework, air-conducted signals recorded with four
air-conductive microphones of the wearable recording device
and another single-channel body-conducted signal recorded
with the NAM microphone were used as five-channel signals.
On the other hand, air-conducted signals recorded with five
air-conductive microphones of the wearable recording device
were used as five-channel signals in the conventional method.
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Fig. 4: Self-produced speech enhancement/suppression result

Namely, the number of observed channels was set to be smaller
than the number of sound sources as in practical conditions.

To investigate the effect of the number of self-produced
speech source signals assumed in the proposed separation
process, i.e., the number of separated signals assigned to N (s),
and the effect of using Wiener filter in the proposed method,
the following settings were evaluated:

• 2src w/ WF: the use of 2 self-produced speech source
signals and Wiener filter,

• 1src w/ WF: the use of 1 self-produced speech source
signal and Wiener filter,

• 1src w/o WF: the use of 1 self-produced speech source
signal and only the linear separation filter.

In the conventional method, 1 self-produced speech source sig-
nal was assumed in the separation process and we investigate
the effect of using Wiener filter. We calculated the Signal-
to-Distortion Ratios (SDRs) [23] at each of the air-conducted
speech channels and compared their averaged values in each
setting.

B. Experimental result

Figure 4 shows the experimental result. The error bars show
the 95% confidence intervals. It is shown that the proposed
method using both the air-conducted signals and the body-
conducted signals can outperform the conventional method
using only air-conducted signals. We can see that although
Wiener filter improves the enhancement and suppression per-
formance in the conventional methods, it is not helpful in the
proposed method. We can also see that the use of multiple
source signals for modeling the self-produced speech is not
useful, and therefore, it is enough to select only one separated
signal corresponding to the self-produced speech signal in the
proposed method.

V. CONCLUSION

In this paper, we have proposed the self-produced speech
enhancement and suppression method using a body-conducted

signal as well as usual multichannel air-conducted signals
recorded using a wearable device with a NAM microphone
and multiple air-conductive microphones. In the proposed
method, an efficient enhancement and suppression processing
has been achieved by effectively using the body-conducted sig-
nals dominantly including self-produced speech components.
The result of an experimental evaluation has showed that 1)
the use of body-conducted signals is effective for the self-
produced speech enhancement and suppression, 2) the use of a
combination of linear separation based on ILRMA and Wiener
filtering is not helpful in the proposed method.

We plan to develop more suitable mixing process to accu-
rately model the observed air- and body-conducted signals.
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