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Abstract  Information-Theoretic Learning (ITL) is one of the 

new methods gaining popularity used for adaptive signal 
processing learning algorithms and has many advantages 
compared to traditional method which minimizes the mean square 
error (MSE). Previously [12], we described a method based on the 
backpropagation algorithm to train a type of neural network 
called the multi-layer perceptron (MLP) using Information 
Theoretic Learning (ITL) techniques. Our method was developed 
to train MLPs by utilizing the minimum error entropy (MEE) of 
the error samples. The MSE is a second order statistic whereas the 
MEE uses the probability density function of the error samples. 
Therefore, the MEE technique uses higher order statistical 
information from the error samples to adapt the weights of the 
neural network. When the error distribution is non-gaussian, 
higher order statistical information can lead to faster training and 
smaller residual training error. The Probability Density Function 
(PDF) estimation using the Parzen window could affect the 
accuracy of the Back-Propagation training.  

In this paper, we investigate the effects of the Parzen Window 
estimator on the efficacy of the ITL training using Renyi’s 
Entropy and Shannon’s Entropy. Using different estimators and 
simulations, we compare MLP using the typical backpropagation 
algorithm (using MSE and cross-entropy) and also one using ITL 
methods in terms of convergence speed of the weights, PDF 
estimator and the residual error. We use standard data sets (like 
the MNIST handwriting data set available on the Internet) to train 
and test the MLP using all these methods. Simulation results 
compare the prediction accuracy of the three different types of 
backpropagation algorithms (MSE, Shannon's cross-entropy, 
Renyi's quadratic entropy) in the paper. 

Keywords— Information Theoretic Learning (ITL); multi-layer 
perceptorn (MLP); neural network; backpropagation; kernel 
function; minimum error entropy (MEE), Rényi’s entropy; Parzen 
window estimator. 

I. INTRODUCTION 
Traditional adaptive systems use second order statistics 

(such as variance, correlation etc.) of the input signal to adapt a 
set of weights based on a cost function. The cost functions in 
traditional adaptive systems use a second order statistical metric 
such as the mean square error (MSE) to derive the adaptive 
system. The second order statistics are sufficient if the input 
signal and the error signal are Gaussian. However, there are a 
number of challenging signal processing problems such as blind 
separation of sources and blind deconvolution of linear 
channels, where second order statistics are not sufficient.  Also, 
in applications like machine learning, the data does not have a 

Gaussian distribution and the adaptive system may be non-
linear. Such applications require higher order statistics of the 
input data signal.  

A new approach to adaptive signal processing is where 
second order statistics such as variance, correlation and mean 
square error are respectively replaced by Information Theoretic 
metrics such as entropy, correntropy and minimum error 
entropy. By using these Information Theoretic learning metrics, 
the adaptive system can use higher order statistics of the data to 
adapt its weight vector. Information Theoretic Learning can be 
used in both linear and non-linear adaptive signal processing 
systems and also in supervised and unsupervised machine 
learning applications 

A multilayer perceptron (MLP) is a type of feedforward 
artificial neural network that consists of an input layer, one or 
more hidden layers and an output layer.  Each layer consists of 
multiple artificial neurons laid out like a directed acyclic graph 
where neurons from one layer connect to one or more neurons 
in the next layer in a feedforward manner.  MLPs use supervised 
learning to learn a non-linear approximation function that can be 
used for classification or regression. For example, for 
classification problems, the features of the input data are 
transformed by the non-linear activation function of each neuron 
in each layer into a space where they can be linearly separated 
and identified as a specific class.  

The backpropagation algorithm is used to train MLPs [1]. 
This is a supervised learning algorithm where the weights of the 
neurons are initially set to random values and the training data 
vector is input to the neural network to generate the output 
vector. The error vector is generated from the difference of the 
target vector and the output vector and an error gradient is 
computed based on the mean square error (MSE) criterion. The 
weights of the neurons in each layer are iteratively modified 
along the direction of the gradient that minimizes the MSE.  

Information Theoretic Learning (ITL) comprises of a set of 
adaptive signal processing algorithms where the cost function is 
based on entropy and divergence of the error sample 
distribution. Instead of using a second-order statistic like the 
MSE to adapt the weights of a linear or non-linear system, ITL 
algorithms use the minimum error entropy (MEE) as the metric 
to converge to the optimal solution. Since the computation of the 
entropy involves the probability density function of the error 
samples, ITL techniques extract higher order statistics from 
these samples during system adaptation. Entropy is a measure of 
the uncertainty of a random variable. ITL algorithms train neural 
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networks by minimizing the entropy of the error samples. 
Instead of Shannon’s entropy, which is the popular information 
measuring metric for data communication applications, ITL 
techniques employ Rényi’s entropy which results in simple 
numerical algorithms to compute the entropy. 

We investigate the effects of the parameters of the Parzen 
Window estimator on the efficacy of the ITL training using 
Renyi’s Entropy and Shannon’s Entropy. We compare MLP 
using the typical backpropagation algorithm (using MSE and 
cross-entropy) and also one using ITL methods in terms of 
convergence speed of the weights, PDF estimator and the 
residual error. The application was for standard data sets (like 
the MNIST handwriting data set available on the Internet) to 
train and test the MLP using all these methods. Simulation 
results compare the Information Potential and PDF using Parzen 
window estimator with and without sigma update. 

The paper is organized as follows: In Section II, we review 
the Information Theoretic Learning concepts and in Section III, 
we present the Backpropagation algorithm for the ITL. Then in 
Section IV, we present results of our exploration of the choice 
of the parameters for the Parzen Window estimator using 
simulation. We discuss our results in Section V and present 
Conclusions in Section VI. 

II. INFORMATION THEORETIC LEARNING CONCEPTS 
The genesis of ITL is Alfréd Rényi’s pioneering work on 

generalized measures of entropy and information [2]. At the 
core of Rényi’s work is the concept of generalized mean or the 
Kolmogorov-Nagumo (K-N) mean [3][4]. For numbers 

, the K-N mean is expressed as: 

                                                       (1) 

where  is the K-N function which is continuous and 
strictly monotonic. In the general theory of means, the quasi-
linear mean of a random variable which takes the values 

with probabilities is defined as: 

                                 (2) 

From the theorem on additivity of quasi-linear means [5], if 
 is a K-N function and is a real constant, then: 

                  (3) 

if and only if is either linear or exponential.      

A. Rényi’s Entropy 
Consider a random variable which takes the values 

with probabilities . The amount of 
information generated when takes the value is given by the 
Hartley information measurement function  [6]: 

                                                    (4) 

The expected value of  yields the expression for 
Shannon’s entropy [7]: 

                                 (5)  

Rényi replaced the linear mean in (5) with the quasi-linear mean 
(2) to obtain a generalized measure of information: 

                                   (6) 

For to satisfy the entropy additivity of independent 
events, it must satisfy where  is a 

constant. From (3), this implies that  (linear) or 

 (exponential). Setting reduces (6) to 
the linear mean and yields Shannon’s equation (5). Substituting 

 and  in (6) yields the 

expression for Rényi’s entropy: 

       (7) 

The equation for Rényi’s entropy is therefore a general 
expression for entropy and comprises of a family of entropies 
for different values of the parameter . Shannon’s entropy is a 
special case of Rényi’s entropy in the limit as .  The 
argument of the logarithm function in (7) is called the 
Information Potential: 

                                                                      (8) 

Error samples at the output of the adaptive system are viewed as 
information particles by ITL algorithms. These information 
particles are analogous to charged particles in physics. Each 
information particle has an information potential associated with 
it. By substituting (8) in (7), Rényi’s entropy can be expressed 
as: 

                                            (9) 

The Information Potential is the expected value of the 
probability density function of the samples raised to : 

                              (10) 

  For in (7), we get Rényi’s quadratic entropy, which has 
the useful property that it allows us to compute the entropy 
directly from the error samples. The equations for Rényi’s 
quadratic entropy and quadratic information potential (QIP) are 
obtained by substituting in (9) and (10): 
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                (11) 

From (11), we can see that since the logarithm function is 
continuous and strictly monotonic, the quadratic entropy 

is minimized by maximizing . Also, the QIP is 
simply the expected value of the probability density function 
(PDF) which is a scalar. It is for these reasons that Rényi’s 
entropy is used in ITL algorithms instead of Shannon’s entropy. 

B. Rényi’s Quadratic Entropy Estimator 
In this paper, ITL techniques to train the MLP aim to 

maximize Rényi’s quadratic information potential (i.e. minimize 
Rényi’s quadratic entropy) of the error samples. Form (11), it is 
evident that to compute the QIP requires the knowledge of the 
PDF of the error samples. Since an analytical expression of the 
PDF is rarely available, computation of the QIP requires a non-
parametric estimator of the PDF directly from the error samples.  

The Parzen window estimator is a simple non-parametric 
estimator of the PDF of a random variable from its sample 
values. This estimator places a kernel function with its center at 
each of the sample points. The resulting output values are 
averaged over all the samples to estimate the PDF. A popular 
choice for the kernel function is the Gaussian kernel. The 
Gaussian kernel Parzen window estimator for samples 

 is expressed as: 

                                    (12)  

is the window length of the estimator and it has to be carefully 
chosen to obtain an accurate estimate of the PDF.  It has been 
proved [8] that the entropy estimated by a Parzen window 
estimator using a Gaussian kernel has a global minima in the 
direction where all the error samples are identical over the whole 
data set. In other words at the global minima, the PDF of the 
error samples is a dirac delta function.  

Rényi’s quadratic entropy for a continuous random variable 
is expressed as: 

                                                   (13) 

Substituting from (12) for in (13) as described in [9], 
we get: 

                           (14)  

This expression shows that we can compute Rényi’s quadratic 
entropy directly from the samples without first computing the 
PDF. Since, , the expression for the 
QIP estimator is: 

                                     (15) 

C. Information Potential and Information Force between 
samples 
For samples , the estimate of the quadratic 

information potential between any 2 samples  and is 
defined as: 

                                                   (16) 

The derivative of the quadratic information potential is the 
information force between the samples  and : 

                          (17) 

In ITL based training of the MLP, the information forces 
between the error samples at the output of the neural network 
are backpropagated to update the weights of the neurons in each 
layer of the network. 

 

III. TRAINING THE MLP USING ITL TECHNIQUES 
Consider the MLP with one input layer (layer h), two hidden 

layers (layers i and j) and one output layer (layer k) as shown in 
Fig 1.  

 

 

 

 

 

 

 

 

 

Each neuron of the MLP, has one or more inputs which  

 

Each neuron of the MLP has one or more inputs with weights 
associated with them as shown in Fig 2. One of the inputs is a 
bias with a fixed value of 1. 
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Figure 1: An  MLP with one input, two hidden and one output layer 

 
Figure 2: Structure of an artificial neuron  
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The sum of the weighted inputs and the bias is called the net. 
The net is passed through the activation function to generate an 
output : 

                                                          (18) 

The activation function is a non-linear function and in this 
paper it is defined as: 

                                                             (19) 

The derivative of this activation function is: 
                                                       (20) 

Consider an MLP with L layers with the input layer being 
index . Let there be neurons in layer . Therefore, the 
output layer has  neurons. Let  be the weight associated 

with the connection from the  neuron of layer  to the  
neuron of layer .  Assume that there are  training samples. 
Let  and  be sample indices. The output  of the  neuron 
of the  layer is: 

                                                            (21) 

 
The total information potential of the error samples 

 is expressed as [9]: 

                                             (22) 

Due to the Parzen window estimation of the error PDF, the 
information potential computation is done over all error sample 
pairs. The total information potential of the output errors 
summed over all the output neurons for a given sample pair 

 is defined as: 

                                               (23)    

Taking the derivative of  with respect to the output layer 
weights:  

  

 

 (24) 

The sensitivities of the local information potentials are 
denoted as and  

    

For the hidden layer  and for any arbitrary weight  
the error gradient can be written as: 

                                                                                        (25) 

  

The backpropagation algorithm to train the MLP using ITL 
techniques is as follows [9]: 

1. For and compute the 
sensitivities of the local information potential using the 
equations: 
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               (26) 

2. For  layer indices  compute the sensitivities 
of the local information potential of the hidden layers 
using the equations: 

                  (27) 

3. After all the sensitivities of the local information 
potentials have been computed, the weights of the 
neural network are updated using the equation: 

           (28) 

In the neuron weight update equation,  is the learning rate 
of the neural network. The backpropagation of the information 
forces through the neural network is done using a gradient ascent 
method, since the goal is to maximize the information potential 
(i.e. minimize the entropy) of the error samples. After the 
training is completed the error of the neural network may have 
a non-zero mean. This is because minimizing the entropy results 
in minimizing the uncertainty in the error which is achieved even 
when the error has a constant non-zero value. In order to drive 
the error to the desired level, different bias values may be added 
to each output node of the MLP. 

IV. SIMULATION RESULTS 
The ITL based MLP training algorithm was tested on the Iris 

dataset [10] and the MNIST handwriting dataset [11]. The Iris 
dataset contains 50 sample vectors from each of the 3 species of 
the Iris flower (Iris setosa, Iris virginica and Iris versicolor). 
Each sample vector consists of measurements of 4 features: 
length and width of the sepals and petals of the flower in 
centimeters. A 3-layer MLP was used to train and classify the 
Iris species type from its input feature vector. The MLP had 4 
input nodes (one for each input feature),  6  hidden nodes and 3 
output nodes (one for each classification species).   The MLP 
was trained in a batch sequential manner where the batch size 
was 150, the learning rate was 0.0275. The length of the 
Parzen  window estimator for each output node was initially set 
to different values given by the vector .  

The MLP was trained without varying the initial value for 
any of the nodes and also by varying the value for the nodes 
depending on the variance of the error of each node. The 
algorithm that varied the value, averaged the variance of the 
error at each output node over 5 epochs. If the variance of the 
error decreased from the last average value, the value of for 
that node was multiplied by a factor of 0.99. If the variance of 

the error increased from the last average value, the value of 
for that node was multiplied by a factor of 1.01.  The sensitivity 
of the MSE to the estimator’s window length can be seen in 
Figure 3. For the training example which kept the value of 
constant throughout the training, the MSE is a smooth curve. For 
the training algorithm which varied the value of , the MSE 
curve shows temporary instability as the change in results in 
a rapid increase in the information potential. This is turn causes 
a significant perturbation in the weights of the neural network 
resulting in temporary instability in the MSE. 

In order to understand the reason for the instability of the 
MSE in Figure 3 at Epoch 664,  the Information Potential and 
the delta between the error samples are plotted in Figure 4 for 
output  node 2 centered at error sample 75. Here you see for 
epoch  664 where there is an instability in the MSE. The red dots 
are the MLP output node error sample pair deltas plotted on the 
same plot as the Information potential. You can see the peak of 
this curve is close to zero (which is expected) but the error 
sample pair deltas are clustered far from 0. From this figure it 
can be seen that at Epoch 664, the delta between the sample pairs 
is clustered at locations which are far from the peak of the 
Information Potential curve. At locations where the MSE is 
stable, the error sample deltas are clustered at the peak of the 
Information Potential curve as shown in Figure 5 at Epoch 500. 
Similar results are shown in Figure 6 for Epoch 680. 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 shows that the residual MSE is smaller for the 
training algorithm that varies the of the PDF estimator. As 
the training progresses the error PDF tends to a delta function. 
Therefore, reducing the value of as the variance of the error 
reduces, results in a better estimate of the PDF. Figure 7 shows 
that the information potential of the error samples increases as 

is reduced in response to a reduction of the error variance. If 
the window length is kept constant during the training, the 
information potential remains constant and results in inaccurate 
estimate of the error pdf. 
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Figure 3: MSE of the MLP training with and without  

update 
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Figure 4: Information Potential and error sample deltas at epoch 664. 

When the delta between sample pairs is clustered away from the peak of the 
Information Potential curve, there is an instability in the MSE  

 
Figure 5: Information Potential and error sample deltas at epoch 500. 
When the delta between sample pairs is clustered at the peak of the 

Information Potential curve the MSE is stable 
 

 

 
Figure 6: Information Potential and error sample deltas at epoch 680. When 

the delta between sample pairs is clustered at the peak of the Information 
Potential curve the MSE is stable 

At the beginning of the MLP training the PDF of the error 
does not have a Gaussian distribution. As the training 
progresses, the PDF becomes Gaussian and eventually 
converges to a delta function as shown in Figure 8. The Parzen 
estimate of the error (red curve in Figure 8) closely matches the 
shape of the PDF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 3-layer MLP for the MNIST database consists of 784 
input neurons, 900 neurons in the hidden layer and 10 neurons 
in the output layer. The accuracy of the ITL trained MLP is 97% 
for the Iris dataset and 90% for the MNIST dataset. 

 

 
Figure 8: PDF of the error and the error estimate for different epochs 

at output node #1 of the MLP 
 

V. DISCUSSIONS 
It looks like the instability in the MSE occurs when the 

cluster of MLP output node error sample pair deltas are not close 
to 0. The Information Potential (which is the PDF of the error 
sample pairs) between samples pairs is always highest close to 
zero. However, if most of the error sample pair deltas are not 

 
Figure 7: Information Potential of the error samples of the MLP 
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around zero, there seems to be a corresponding instability in the 
MSE.  

From Figure 4, the plot for epoch  664 where there is an 
instability in the MSE, you can see the peak of this curve is close 
to zero (which is expected) but the error sample pair deltas are 
clustered far from 0. 

When there is no instability in the MSE, the Information 
Potential curve looks like Figures 5 and 6. In these plots, the 
error sample pair deltas are clustered around the peak of the 
Information Potential curve. 

VI. CONCLUSIONS 
ITL-based techniques to train MLPs converge to an optimal 

solution by maximizing the information potential or minimizing 
the entropy of the error samples. The MEE-based 
backpropagation algorithm is extremely sensitive to the Parzen 
window size . Adapting the value of results in temporary 
instability but eventually results in lower residual error.  

The temporary instability is caused by the output node error 
delta samples moving away from the peak of the Information 
Potential curve. The PDF of the error samples of the MLP tends 
towards a delta function as the weights converge to the optimal 
values. 

 Future work will focus on tracking the locations of the error 
sample delta clusters and moving them to the peak of the 
Information Potential curve. One of the ideas that we are 
exploring to curtail this potential instability is to use the BFGS  
(Broyden–Fletcher–Goldfarb–Shanno) of unconstrained non-
linear optimization [13][14] on the Information Potential 
surface. This will likely introduce additional computational 
complexity into the entire ITL based multi-layer perceptron 
algorithm, however, the potential instability will be curtailed. 
Results of this work will be presented in the future. 
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