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Abstract—The concept of crowdsensing enables a sensing task
to be performed by outsourcing the task to crowd participants
who are carrying devices with built-in sensors, such as sensors
embedded in smartphones. This paper presents the design of
a Sybil-proof optimal auction mechanism for incentive based
crowdsensing that can not only ensure truthful revelation of
crowd participants’ participation costs (which are sent as bids),
but also disincentivize them from adopting Sybil behavior where
participants may opt to participate in the auction mechanism
using multiple fake identities. Simulation results are also provided
to gain insights into the developed auction-based crowdsensing
mechanism.

I. INTRODUCTION

Many of today’s sensing applications allow a number of

users carrying devices with built-in sensors, such as sen-

sors built in smart phones, automobiles and smart homes to

contribute sensing data towards a sensing task. For instance,

today’s smart phones are embedded with various sensors, such

as camera, microphone, accelerometer, GPS, which can be

used in an information acquisition process. An advantage of

such architectures is that they do not need a dedicated sensing

infrastructure for different inference tasks, thereby providing

cost effectiveness. Another advantage of such architectures is

that they allow ubiquitous coverage.

Systems and applications that rely on utilizing an infras-

tructure where sensing measurements of participating users

are used are poised to revolutionize many sectors of our

life. Some example application domains include environmental

monitoring [14], green computing [9], target localization and

tracking [7], [12], [17], [20], [23], healthcare [16] (such

as predicting and tracking disease patterns/outbreaks), and

tracking traffic patterns [10], [25]. For instance, the OpenSense

project [14] involves the design of a sensing infrastructure for

real-time air quality monitoring using heterogeneous sensors

owned by the general public. GreenGPS [9] uses data from

sensors installed in automobiles to map fuel consumption on

city streets and construct fuel efficient routes between arbitrary

end-points. Various systems to estimate object locations and to

track them using smartphone sensors have also been proposed.

For instance, [17], [20] utilize built-in sensors in smartphones

such as camera, digital compass and GPS, to estimate a target

location as well as monitor the velocity of moving objects. [7],

[12], [23] use proximity sensors built-in smartphones to track

objects (such as lost/stolen devices) installed with electronic

tags (such as Bluetooth or RFID tags).

Many of the existing sensing applications and systems (for

example, [1], [7], [17], [20], [23], [25]), however, assume

voluntary participation of users (crowd participants). While

participating in a sensing task, crowd participants consume

their own resources such as energy and processing power,

which can result in an insufficient number of participants

unless suitable incentives are provided. To address such a

concern, market-based mechanisms have been explored by

past work [2]–[4], [13], [18]. In [18], the authors explored

the possibility of using economic concepts for sensor manage-

ment without explicitly formulating the problem. The authors

in [4] used the concept of the Walrasian equilibrium [19] to

model market based sensor management. In [13], the authors

proposed a market based dynamic bit allocation scheme for

target tracking in energy constrained wireless sensor networks

(WSNs) using quantized data. However, the mechanisms pro-

posed in [4], [13] are not truthful and are, therefore, prone

to market manipulations. To address this concern, some past

work (for example, [2], [3]) has considered the problem of

designing auction based mechanisms for crowdsensing that

can ensure truthful revelation of participation costs (which are

sent as bids in the auction mechanism) of crowd participants.

However, the aforementioned literature has not considered

the design of incentive-based crowdsensing mechanisms when

crowd participants may exhibit Sybil behavior by assuming

multiple fake identities to participate in a crowdsensing task.

The goal of this paper is to present an optimal auction based

mechanism for crowdsensing that can not only prevent crowd

participants from gaining an undue advantage by bidding

falsified participation costs, but also prevent them from making

an undue profit by sending (potentially falsified) bids using

multiple fake identities. We refer to such crowd participants

who can potentially send multiple bids (which can be falsified)

using fake identities as Sybil crowd participants, and to an

auction mechanism that can disincentivize such behavior as a

Sybil-proof auction. The concept of a Sybil attack, in which

one physical entity can present itself using multiple identities,

was originally described by [6] in the context of peer-to-peer

networks. Such attacks have been studied in the context of

communication networks, such as to understand network re-

source usage under such attacks [15], [24], spectrum allocation
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in wireless networks [22], and resource allocation in cloud

platforms [21]. The impact of Sybil behavior in social welfare

maximizing auctions (such as VCG auctions [11]) has been

discussed in [5]. However, to the best of our knowledge, the

problem of designing a revenue maximizing optimal auction

based mechanism for providing incentives for crowdsensing

when crowd participants may opt to adopt Sybil behavior has

not been addressed by any prior work, which is the focus of

this paper.

The rest of the paper is organized as follows. Section II

describes our system model and formulates the auction de-

sign problem. Section III analyzes the problem and presents

the optimal auction-based crowdsensing mechanism that can

incentivize crowd participants to honestly report their partic-

ipation costs without exhibiting Sybil behavior. Section IV

provides simulation results to gain insights into the developed

mechanism. Finally, Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a crowdsensing platform (CP) that wants to per-

form a sensing task by outsourcing it, with the CP deriving

a benefit vCP from having the task performed1. Consider

also that the crowdsensing platform allows creation of N

accounts (identities), say numbered {1, · · · , N}, ideally by N

different crowd participants to participate in the sensing task.

Suppose that every crowd participant i has a private value

estimate vi (that reflects its participation cost) for performing

the sensing task. The CP (who acts as the buyer) is assumed

to be unaware of the true valuations (participation costs) of

the crowd participants (who acts as the sellers) so that the

crowd participants have to announce their valuations to the

CP in the form of bids, with υ = [v1, · · · , vN ] being the

vector of announced value estimates. This gives the crowd

participants an opportunity to lie about their valuations hoping

for an extra benefit. We assume that the CP’s uncertainty about

the value estimate of bidder i can be described by a continuous

probability distribution fi : [ai, bi] → R+ over a finite interval

[ai, bi], where ai is the lowest possible valuation of i and bi is

the highest possible valuation of i with −∞ ≤ ai ≤ bi ≤ ∞.

Fi : [ai, bi] → [0, 1] denotes the cumulative distribution

function, where Fi(vi) =
∫ vi

ai

fi(ti)dti.
The optimal auction based crowdsensing mechanism

can then be described by two functions– a) q(υ) =
[q1(υ), · · · , qN (υ)], where qi(υ) is the probability of selecting

crowd participant i to perform the sensing task, and, b) p(υ) =
[p1(υ), · · · , pN (υ)], where pi(υ) is the payment made to

crowd participant i. The utility of the CP then becomes,

UCP (p,q) = E

[

vCP

N
∑

i=1

qi(υ)−
N
∑

i=1

pi(υ)

]

(1)

where, vCP (·) is the benefit the CP derives from having the

sensing task performed, with the expectation in (1) taken over

all possible combinations of the crowd participants’ valuations.

1For instance, vCP can reflect the valuation for finding a lost/stolen object
in [7], [12], [23]

The utility of crowd participant i for a given true participation

cost vi from the auction mechanism becomes,

Ui(pi, qi, υi) = E

[

pi(υ)− υiqi(υ)
]

(2)

Consider also that a crowd participant i can choose to act as

a Sybil by sending a bid wi (which need not be equal to the

true valuation υi) k times using k fake identities to receive

the utility kŨi(pi, qi, wi).

A. The Optimization Problem

Based on the above definitions, the optimal auction design

problem becomes determining the functions p and q so as

to maximize the utility of the CP (1), subject to certain

constraints. Specifically, the optimization problem can be

expressed as follows.

max
p,q

UCP (p,q)

s.t. Ui(pi, qi, vi) ≥ 0 (3a)

Ui(pi, qi, vi) ≥ kŨi(pi, qi, wi) (3b)

N
∑

i=1

qi ≤ 1 and qi ∈ {0, 1} (3c)

The constraints above can be explained as follows.

• Individual-Rationality (IR) constraint (3a), which ratio-

nalizes participation by ensuring every crowd partici-

pant’s utility to be non-negative.

• Incentive-Compatibility (IC) constraint (3b), which en-

sures that the utility of every crowd participant from

announcing its true valuation υi without exhibiting Sybil

behavior is greater than or equal to the utility the crowd

participant receives from announcing a valuation wi

(which need not be equal to υi) using k fake identities.

In other words, the IC constraint ensures that honest

reporting of value estimates without exhibiting Sybil

behavior form a Nash Equilibrium (NE) [8] in the auction

game.

• Selection constraint (3c), which ensures that the sensing

task is outsourced to at most one crowd participant.

In the next section, we analyze the aforementioned op-

timization problem and present our proposed auction-based

crowdsensing mechanism.

III. SYBIL-PROOF OPTIMAL AUCTION-BASED

CROWDSENSING

In this section, we analyze the optimization problem de-

scribed in Section II-A and present the optimal auction-

based crowdsensing mechanism that can achieve the desired

properties described earlier. We define

QS
i (qi, vi) = k · E

[

qi(vi,υ−i)
]

(4)

for every crowd participant i who can act as a Sybil by sending

a valuation vi k times using k fake identities. In (4), (vi,υ−i)
denotes N valuations, with vi being the valuation of the ith

crowd participant who can act as a Sybil and υ−i denoting all

the remaining valuations. Thus, QS
i (qi, vi) is the conditional
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probability that i is assigned the sensing task by the CP given

that it sends valuation vi k times using k fake identities.

Our first result is a simplified characterization of the IC

constraint (3b) presented in Section II-A.

LEMMA 1: The IC constraint holds only if the following

two conditions holds.

1. if vi ≤ wi, then QS
i (qi, wi) ≤ QS

i (qi, vi) (5a)

2. Ui(pi, qi, vi) = Ui(pi, qi, bi) +

∫ bi

vi

QS
i (qi, wi)dwi (5b)

Proof: Suppose vi ≤ wi. Also, suppose that, while vi
is the true valuation, crowd participant i sends the falsified

valuation wi k times using k fake identities, which makes the

utility of i to be

kE[pi(wi,υ−i)− qi(wi,υ−i)vi]

= kE[pi(wi,υ−i)− qi(wi,υ−i)wi] + k(wi − vi)E[qi(wi,υ−i)]

= kUi(pi, qi, wi) + (wi − vi)Q
S
i (qi, wi) (6)

The IC constraint (3b) states that the expected utility of a

crowd participant by reporting its true valuation once without

adopting fake identities is greater than or equal to the utility

obtained by reporting a falsified valuation using multiple fake

identities. Thus, we must have,

Ui(pi, qi, vi) ≥ kUi(pi, qi, wi) + (wi − vi)Q
S
i (qi, wi) (7)

From (7), we get,

(wi − vi)Q
S
i (qi, wi) ≤ Ui(pi, qi, vi)− Ui(pi, qi, wi) (8)

Similarly, considering wi to be the true participation cost of

crowd participant i while i sends the falsified valuation vi to

the CP k times using k fake identities, we get,

Ui(pi, qi, wi) ≥ kUi(pi, qi, vi)− (wi − vi)Q
S
i (qi, vi) (9)

From (9), we get,

(wi − vi)Q
S
i (qi, vi) ≥ Ui(pi, qi, vi)− Ui(pi, qi, wi) (10)

Using (8) and (10), we get,

(wi − vi)Q
S
i (qi, wi) ≤

Ui(pi, qi, vi)− Ui(pi, qi, wi) ≤

(wi − vi)Q
S
i (qi, vi) (11)

From (11), we can derive (5a). Moreover, defining δ = wi−vi,

we can write the inequalities in (11) for any δ → 0 as,

QS
i (qi, wi)δ ≤

Ui(pi, qi, wi − δ)− Ui(pi, qi, wi) ≤

δQS
i (qi, wi − δ) (12)

Therefore, QS
i (qi, wi) is a decreasing function of wi, and thus

Riemann integrable, based on which we get,

∫ bi

vi

QS
i (qi, wi)dwi = Ui(pi, qi, vi)− Ui(pi, qi, bi) (13)

which proves (5b). This concludes the proof of the lemma.

Next, based on Lemma 1, the optimization problem pre-

sented in Section II-A can be simplified as follows.

THEOREM 1: In the optimal auction-based crowdsensing

mechanism, q should maximize

∫

T

N
∑

i=1

[

vCP − vi − k
Fi(vi)

(fi(vi))k

]

qi(υ)f(υ)d(υ) (14)

subject to constraint (3c), where T denotes the set of all

possible combinations of crowd participants’ valuations i.e.,

T = [a1, b1] × · · · × [aN , bN ], and the payment to crowd

participant i should be given by,

pi(υ) = viqi(υ) + k

∫ bi

vi

qi(wi,υ−i)dwi (15)

Proof: We can rewrite the CP’s utility (1) as,

UCP (p,q) =

N
∑

i=1

∫

T

[

viqi(υ)− pi(υ)
]

f(υ)d(υ)

−
N
∑

i=1

∫

T

viqi(υ)f(υ)d(υ) +
N
∑

i=1

vCP

∫

T

qi(υ)f(υ)d(υ)

(16)
Now, we have,
∫

T

[

viqi(υ)− pi(υ)
]

f(υ)d(υ)

=−

∫ bi

ai

Ui(pi, qi, vi)fi(vi)dvi

=−

∫ bi

ai

[

Ui(pi, qi, bi) +

∫ bi

vi

QS
i (qi, wi)dwi

]

fi(vi)dvi

=− Ui(pi, qi, bi)−

∫ bi

ai

∫ wi

ai

fi(vi)Q
S
i (qi, wi)dvidwi

=− Ui(pi, qi, bi)−

∫ bi

ai

Fi(wi)Q
S
i (qi, wi)dwi

=− Ui(pi, qi, bi)−

∫

T

k
Fi(vi)

(

fi(vi)
)k

qi(υ)f(υ)d(υ) (17)

Substituting (17) into (16), we get,

UCP (p,q)=

N
∑

i=1

∫

T

[

vCP − vi − k
Fi(vi)

(

fi(vi)
)k

]

qi(υ)f(υ)d(υ)

−
N
∑

i=1

Ui(pi, qi, bi) (18)

In (18), p only appears in the last term of the objective

function of the CP. Also, from the IR constraint (3a) we know

that for every crowd participant i, Ui(pi, qi, bi) ≥ 0. Thus, the

best possible value of the last term in (18) can be obtained,

which is zero since the CP seeks to maximize its objective

function, as well as the IR constraint can be satisfied by having

Ui(pi, qi, bi) = 0, which implies, using (5b),

Ui(pi, qi, vi)−

∫ bi

vi

QS
i (qi, wi)dwi = 0 (19)

Using (2) and (19), we get (15). This proves the theorem.
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Fig. 1. Utility of the CP (UCP (p,q)) with varying number of crowd
participants.

Therefore, based on Theorem 1, upon receiving a set of

participation costs (valuations) from crowd participants, the

CP can find the crowd participant to whom the sensing task

should be outsourced and the corresponding payment to be

made so as to solve the optimization problem described in

Section II-A in the following manner.

• Based on the set of valuations, υ = [v1, · · · , vN ],
received from the crowd participants, the CP computes

the following quantity for all i ∈ [1, N ]

ηi(vi) = vCP − vi − k
Fi(vi)

(fi(vi))k
(20)

If maxi∈[1,N ] ηi(vi) < 0, the CP does not outsource

the sensing task to any crowd participant; otherwise,

the CP selects the crowd participant with the high-

est ηi(vi) for performing the task. In other words, if

ηi(vi) = maxr∈[1,N ] ηr(vr), then the solution to the

selection probability q is qi(υ) = 1 and qj(υ) = 0,

∀j ∈ [1, · · · , i − 1, i + 1, · · · , N ]. Ties can be broken

arbitrarily without affecting the utility of the CP.

• Based on the payment formula (15), crowd participants

who are not selected for performing the task, do not

receive any payments. This follows from the fact that if a

crowd participant i is not selected based on the participa-

tion cost vi, then we have qi(wi,υ−i) = 0, ∀wi ∈ [vi, bi].
The payment of the crowd participant who is assigned the

task can be found using (15).

In the next section, we provide simulation results to gain

insights into the developed auction mechanism.

IV. SIMULATION RESULTS

In this section, we study the dynamics of our developed

auction-based crowdsensing mechanism. In Figure 1, we show

how the utility of the crowdsensing platform varies with

varying number of crowd participants. In the figure, we con-

sider the valuations of the crowd participants to be uniformly

distributed over the range [5, 15] and the number of fake

identities every participant can opt to use to be k = 2. As

can be seen from the figure, the utility of the CP increases as
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Fig. 2. Utility of the CP (UCP (p,q)) with varying number of fake identities
(k). In the figure, N = 10.

the number of crowd participants increases. This is due to the

fact that as the number of crowd participants increases, the

chances of the CP finding a crowd participant who requires

less payment to perform the task increase. In other words,

competition among the crowd participants increases as the

number of crowd participants increases, thereby lowering the

payment needed to have the task performed in a crowdsourced

manner, resulting in the utility of the CP to increase. The

figure also shows the utility of the CP as the benefit the CP

derives from having the sensing task performed, vCP , varies.

As is intuitive, the utility of the CP increases as vCP increases

which can be seen from the figure.

In Figure 2, we show how the utility of the CP varies as

the number of fake identities (k) that every crowd participant

can use varies. The figure considers N = 10, the valuations

of the crowd participants to be uniformly distributed over the

range [5, 15], and vCP = 10. As can be seen from the figure,

the utility of the CP decreases as k increases. This is because,

as the number of fake identities that every crowd participant

can use increases, the payment required to disincentive such

behavior follows an increasing trend based on the payment

mechanism (15), thereby resulting in the utility of the CP to

decrease.

V. CONCLUSIONS

This paper considered the problem of incentive-based

crowdsensing where a crowdsensing platform (CP) provides

incentives to crowd participants who are carrying devices

with built-in sensors (such as smartphones) to perform a

sensing task in a crowdsourced manner. Specifically, the paper

designed a Sybil-proof optimal auction-based crowdsensing

mechanism that can not only ensure truthful revelation of

participation costs of crowd participants, but also prevent them

from exhibiting Sybil behavior by ensuring that participants

are unable to make an undue profit by sending multiple

(potentially falsified) bids to the CP. Simulation results pro-

vide insights into the auction-based crowdsensing mechanism

designed in the paper.
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