
Cascade and Lifting Structures in the Spectral

Domain for Bipartite Graph Filter Banks

David B. H. Tay∗ and Antonio Ortega† Aamir Anis†

∗ School of Information Technology, Deakin University, Australia.

E-mail: david.tay@deakin.edu.au
† Signal & Image Processing Institute, Ming Hsieh Department of Electrical Engineering,

University of Southern California, USA.

E-mail: ortega@sipi.usc.edu; aanis@usc.edu

Abstract—In classical multirate filter bank systems, the cascade
(product) of simple polyphase matrices is an important technique
for the theory, design and implementation of filter banks. A
particularly important class of cascades uses elementary matrices
and leads to the well known lifting scheme in wavelets. In this
paper the theory and principles of cascade and lifting structures
for bipartite graph filter banks are developed. Accurate spectral
characterizations of these structures using equivalent subgraphs
will be presented. Some features of the structures in the graph
case, that are not present in the classical case, will be discussed.

Index Terms—Polyphase Structures, Graph Filter Banks, Spec-
tral Graph Wavelets.

I. INTRODUCTION

Applications where the data are defined over irregular do-

mains, e.g. sensor, social and transportation networks, require

a new generation of signal processing techniques that are

adapted to signals over graphs. Earlier reviews of graph

signal processing (GSP) are found in [1], [2]. More recent

developments are found in [3]–[5]. In the classical regular

domain, the wavelet transform and its variants [6]–[9] are

perhaps the most popular and successful transforms in a

plethora of applications. There have been several approaches

to extend and generalize the wavelet transform to graph signals

[10]–[18]. Many graph transforms are however not critically

sampled and/or do not have an explicit spectral representation.

Graph transforms that are based on two-channel critically

sampled perfect reconstruction (PR) filter banks (FB) were

first proposed by Narang and Ortega [16], [17]. The graph FB

(GFB) in [16], [17] is defined for undirected graphs and the

’base’ matrix for filtering is the normalized Laplacian matrix.

Extension and generalization of the FB to directed graphs with

more general base matrices are found in [19].

In the classical regular domain case, the cascade polyphase

structures and lifting structures are important in the theory,

design and implementation of FBs [7]–[9]. Here, one usually

does not need to distinguish between the structure for design

and the structure for implementation. The classical Noble

identity allows one to easily move filtering operations from

the higher sampling rate to the lower sampling rate, i.e.

H(z2) → H(z), thus facilitating the derivation of the efficient

polyphase implementation structure. For graph signals the

relationship between the design and implementation structures

is however not simple. The polyphase representation matrix

(PRM), introduced in [20], is an alternative and more succinct

way to represent the GFB functions and the PR conditions.

PRMs are useful for filter design but do not provide a direct

representation of the filtering operations in the downsampled

domain. In order to address this shortcoming the concept of

the polyphase transform matrix (PTM) was then developed

in [19] as a way to represent the filtering operations in the

downsampled domain. The PRM can be viewed as a spectral

domain representation of the GFB whereas and the PTM can

be viewed as a vertex domain representation. The concept of

a cascade (product) of PRM was introduced in [20] but no

equivalent result for PTM has been published so far. Ladder

structures, which are a special case of PRM cascades and are

lifting-like, were used for filter design in [20]. However the

equivalent lifting PTM, corresponding to this class of cascades,

was not considered in [19].

In this paper we develop the cascade and lifting implemen-

tation structures for bipartite GFB. Lifting based transforms

have also been previously proposed in [13], [14] for graph

signals. However the filters in [13], [14] are defined in the

vertex domain and cannot be readily interpreted in the spectral

domain. The filters in this paper are however defined in the

spectral domain and therefore allow us to control the spectral

characteristics, e.g. low-pass, of the filters used in the ladder

structures. Furthermore, only two lifting steps were considered

in [13], [14] but the number of steps considered here is

arbitrary. This paper will formally derive the lifting implemen-

tation structures and provide accurate spectral characterization

of the signals and filters w.r.t. equivalent subgraphs.

II. DEFINITIONS AND PRELIMINARIES

A very brief overview of some graph signal processing

concepts that are relevant to this work is presented here.

More details are found in [1], [15]–[17], [19]. A graph

G = (V,E) is defined by the set of vertices V and edges E.

The adjacency matrix A is an N ×N matrix whose element

ai,j (i, j = 1, . . . , N ) is positive real and gives the weight

of the directed edge from vertex j to vertex i. For undirected

graphs ai,j = aj,i (symmetric) but we will consider the general

non-symmetric case. A signal over a graph G is a function

that maps each vertex i to a numerical value f(i). The graph
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signal can be represented as the vector f = [f(1) · · · f(N)]T .

A graph filter can be defined in terms of the spectral filter

function h(µ) where µ is the spectral variable. Although h(µ),
in principle, can be any transcendental function, in practice

it is usually a polynomial function (in the variable µ) for

efficient implementation and the localization property. For the

rest of this paper we will assume polynomial h(µ). When µ

is substituted with an N × N base matrix Ã, we have the

transformation matrix h(Ã) that can be used in the filtering

process, i.e. the filtered output fout = h(Ã) f . Commonly used

base matrices are the adjacency and the Laplacian.

The critically sampled two-channel filter bank (FB) pro-

posed in [16], [17] is defined on bipartite graphs. A bipartite

graph G = (L,H,E) is a graph whose vertices can be

partitioned into two disjoint subsets, i.e. V = L
⋃

H and

L
⋂

H = ∅, such that every edge connects one vertex from

L to one vertex from H . Downsampling of a bipartite graph

signal retains only vertices in L (or H) and discards the other

vertices in H (or L). Upsampling inserts the discarded nodes

but replaces the signal values with zeros. In [16], [17] only

undirected graphs were considered. Generalizations to directed

graphs were presented in [19]. The analysis and synthesis FBs

are shown in Figs. 1 and 2 respectively.
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Fig. 1. Analysis filter bank.
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Fig. 2. Synthesis filter bank.

Theorem 1 ( [19]): The analysis filter bank in Fig. 1 and

the synthesis bank in Fig. 2 form a perfect reconstruction (PR)

system, i.e. f = f
R if the spectral filters H0(µ), H1(µ), G0(µ)

and G0(µ) are polynomial functions satisfying

G0(µ) = H1(−µ), G1(µ) = H0(−µ) (1)

H0(µ)H1(−µ) +H0(−µ)H1(µ) = 2 (2)

and the base matrix Ã is an admissible matrix of the form:

Ã =

[
0|L| A1

A2 0|H|

]

. (3)

An alternative and more succinct way to express the PR condi-

tions is via the polyphase representation of the filter functions

[20]. In this approach each filter function is partitioned into

an even part and an odd part, e.g., for filter H0(µ), we have

He
0(µ) ≡

1

2
(H0(µ) +H0(−µ)) =

∑

k

h0(2k)µ
2k (4)

and

Ho
0 (µ) ≡

1

2
(H0(µ)−H0(−µ)) =

∑

k

h0(2k + 1)µ2k+1. (5)

The analysis polyphase representation matrix (PRM) is then

defined as

Pa(µ) =

[
He

0(µ) Ho
0 (µ)

Ho
1 (µ) He

1(µ)

]

. (6)

The following symmetric properties can be verified.

Property 1 (Symmetry):

Pa(µ) +Pa(−µ) = 2 diag(He
0(µ), H

e
1(µ)),

Pa(µ)−Pa(−µ) = 2 Ia diag(Ho
0 (µ), H

o
1 (µ)).

where Ia ≡

[
0 1
1 0

]

is the anti-diagonal unit matrix. The

synthesis PRM Ps(µ) can be similarly defined:

Ps(µ) =

[
Ge

0(µ) Go
0(µ)

Go
1(µ) Ge

1(µ)

]

. (7)

The next Lemma gives the equivalent PR conditions.

Lemma 1 ( [20]): (1) is satisfied if

Ps(µ) = Ia Pa(−µ) Ia. (8)

(2) is satisfied if

detPa(µ) = 1. (9)

A matrix satisfying Property 1 and (9) is called a valid matrix.

III. CASCADE POLYPHASE STRUCTURES

A. Dowsampled Filtering Structures

Some pertinent results from [19] are first presented. Some of

the mathematical expressions used here may appear different

from [19] but both are equivalent, and this is done for the

convenience in later development. In Figs. 1 and 2 the signals

and filters are in the upsampled domain. In [19] the polyphase

analysis of the filter bank (FB) yielded equivalent filtering

structures in the downsampled domain. The filtering in the

downsampled domain is w.r.t. the subgraphs Gα and Gβ

with adjacency matrices Aα ≡ A1A2 and Aβ ≡ A2A1,

respectively, followed by either the A1 or A2 projection

operator. Figs. 3 and 4, respectively, show the equivalent

analysis and synthesis structures [19].

The analysis subfilters are defined by the submatrices [19]:

Ĥ
e,u
0 ≡ He

0(Aα) =
∑

k

h0(2k)(Aα)
k (10)

Ĥ
o,l
1 ≡ Ho

1 (Aα) =
∑

k

h1(2k + 1)(Aα)
k (11)

Ĥ
o,u
0 ≡ He

0(Aβ) =
∑

k

h0(2k + 1)(Aβ)
k (12)
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Fig. 3. Equivalent analysis polyphase structure.

G1
o,u

G1
e,l

G0
e,u

G0
o,l

(flow

high

+

+
�

�,A

A2

A1

)

(f ,A )

�L

�H

(f

fL

fH

R

R

R

+
-A),

Fig. 4. Equivalent synthesis polyphase structure.

Ĥ
e,l
1 ≡ Ho

1 (Aβ) =
∑

k

h1(2k)(Aβ)
k (13)

The synthesis subfilters are defined by the submatrices [19]:

Ĝ
e,u
0 ≡ Ge

0(Aα) =
∑

k

g0(2k)(Aα)
k (14)

Ĝ
o,l
0 ≡ Go

0(Aα) =
∑

k

g0(2k + 1)(Aα)
k (15)

Ĝ
o,u
1 ≡ Go

1(Aβ) =
∑

k

g1(2k + 1)(Aβ)
k (16)

Ĝ
e,l
1 ≡ Ge

1(Aβ) =
∑

k

g1(2k)(Aβ)
k (17)

The filtering in the downsampled domain can be defined

succinctly using transform matrices of size N × N . The

analysis polyphase transform matrix (PTM) is defined as

TA ≡

[
H

e,u
0 A1H

o,u
0

A2H
o,l
1 H

e,l
1

]

. (18)

and the synthesis PTM is defined as

TS ≡

[
G

e,u
0 A1G

o,u
1

A2G
o,l
0 G

e,l
1

]

(19)

There is a relationship between the PRM and the PTM but it

is important to note that the two matrices are not identical -

see [19] for details. Furthermore replacing µ with Ã in Pa(µ)
and Ps(µ) does not give the transform matrices defined above.

A simple and effective way to construct spectral filters is

by a cascade (product) of PRMs.

Corollary 1 ( [20]): The product of two valid matrices

Pa,1(µ) and Pa,2(µ) is another valid matrix, i.e.

Pa(µ) ≡ Pa,2(µ)Pa,1(µ)

satisfy Property 1 and (9).

B. Cascade of Transform Matrices

The ability to express a given transform matrix as a product

of simpler matrices has the following advantages:

1) Each simple factor (matrix) can (usually) be associated

with a fundamental operation on the signal undergoing

processing, e.g. simple averaging or differencing of

neighborhood samples. This facilitates the understanding

of the effect of the transform on the input signal.

2) Fast or computationally efficient implementation can

be derived using the factorization results, e.g. lifting

structure and ’in-place’ computations.

The next two Lemmas can be used to derive cascade of

transform matrices for GFBs.

Lemma 2: Given two analysis PRMs

Pa,i(µ) =

[
He

0,i(µ) Ho
0,i(µ)

Ho
1,i(µ) He

1,i(µ)

]

i = 1, 2

with the corresponding analysis PTMs TA,1 and TA,2 respec-

tively. The product of PRMs

Pa(µ) ≡ Pa,2(µ)Pa,1(µ)

has a corresponding analysis PTM given by

TA = TA,2 TA,1 (20)

The proof of Lemma 2 is found in Appendix A. A similar

result for the synthesis bank is given by the next Lemma.

Lemma 3: Given two synthesis PRMs

Ps,i(µ) =

[
Ge

0,i(µ) Go
0,i(µ)

Go
1,i(µ) Ge

1,i(µ)

]

i = 1, 2

with the corresponding synthesis PTMs TS,1 and TS,2 respec-

tively. The product of PRMs

Ps(µ) ≡ Ps,2(µ)Ps,1(µ)

has a corresponding synthesis PTM given by

TS = TS,1 TS,2 (21)

The outline of the proof of Lemma 3 is found in Appendix B.

Note that the ordering of the matrix product in (20) is opposite

to that in (21).

Lemmas 2 and 3 can applied recursively to the product of

any number (M ) of representation matrices:

1) The transform matrix corresponding to

1∏

i=M

Pa,i(µ) is

1∏

i=M

TA,i.

2) The transform matrix corresponding to

1∏

i=M

Ps,i(µ) is

M∏

i=1

TS,i.
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IV. LIFTING STRUCTURES

Corollary 1 can be exploited for constructing spectral filter

functions via the product of simple PRMs [20]. The simple

PRMs are defined as follows:

Definition 1 (Type I valid matrix):

Ui(µ) ≡

[

1 L̃i(µ)
0 1

]

(22)

Definition 2 (Type II valid matrix):

Di(µ) ≡

[
1 0

L̃i(µ) 1

]

(23)

where the kernels L̃i(µ) (i = 0, 1, . . . ) are odd polynomial

functions satisfying

L̃i(µ) ≡
∑

k≥0

l̃i(2k + 1)µ2k+1 = −L̃i(−µ) (24)

and l̃i(2k+1) denotes the coefficient. It is easy to verify that

the Types I and II matrices above are valid.

The PTMs corresponding to the simple PRMs in (22) and

(23) are obtained next. There are four cases to consider. The

results are summarized in Table I. The steps for deriving the

results are given below.

1) When Pa(µ) = Ui(µ), H
e
0(µ) = He

1(µ) = 1, Ho
1 (µ) =

0 and Ho
o (µ) = L̃i(µ) in (6). Using (10), (11), (12) and

(13) in (18) gives the Type I analysis PTM.

2) When Pa(µ) = Di(µ), H
e
0(µ) = He

1(µ) = 1, Ho
0 (µ) =

0 and Ho
1 (µ) = L̃i(µ) in (6). Using (10), (11), (12) and

(13) in (18) gives the Type II analysis PTM.

3) When Pa(µ) = Ui(µ) (Type I), using (8), Ps(µ) =
Di(−µ) (Type II). The subfilters in (7) are Ge

0(µ) =
Ge

1(µ) = 1, Go
0(µ) = 0 and Go

1(µ) = L̃i(−µ) =
−L̃i(µ). Using (14), (15), (16) and (17) in (19) gives

the Type II synthesis PTM.

4) When Pa(µ) = Di(µ) (Type II), using (8), Ps(µ) =
Ui(−µ) (Type I). The subfilters in (7) are Ge

0(µ) =
Ge

1(µ) = 1, Go
0(µ) = L̃i(−µ) = −L̃i(µ) and Go

1(µ) =
0. Using (14), (15), (16) and (17) in (19) gives the Type

I synthesis PTM.

Note that a Type I analysis PRM gives a Type I analysis PTM

but a Type I synthesis PRM gives a Type II synthesis PTM.

The next Corollory gives the analysis lifting structure shown

in Fig. 5.

Corollary 2: If the analysis PRM is

Pa(µ) =

1∏

k=M

D2k(µ)U2k−1(µ) (25)

then the equivalent PTM is given by

TA =
1∏

k=M

T
A
D
(2k)TA

U
(2k − 1) (26)

Proof: Use first and second rows of Table I to obtain the

constituent PTMs. Then apply Lemma 2 recursively.

L 1

+

+

+�L

�H

L 

L 

f

fL

fH

flow

fhigh

3

2
�

�

A1

A2

A1

	

Fig. 5. Analysis lifting structure. L̃α
i ≡ L̃i(Aα). L̃

β
i ≡ L̃i(Aβ).

+

+ βL
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+

+

L 2M-3
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-

-

-

A2

A1
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β

α α

Fig. 6. Synthesis lifting structure. L̃α
i ≡ L̃i(Aα). L̃

β
i ≡ L̃i(Aβ).

The synthesis lifting structure shown in Fig. 6 is given by

next Corollary.

Corollary 3: If the synthesis PRM is

Ps(µ) =

1∏

k=M

U2k(−µ)D2k−1(−µ) (27)

then the equivalent PTM is given by

TS =

M∏

k=1

T
S
D
(2k − 1)TS

U
(2k) (28)

Proof: Use third and fourth rows of Table Ito obtain the

constituent PTMs. Then apply Lemma 3 recursively.

Corollary 4: The PTMs in Corollaries 2 and 3, i.e. (26) and

(28), form a perfect reconstruction system, i.e.

TSTA = IN .

Proof: Firstly it can be verified that T
S
U
(i)TA

D
(i) = I

by explicit multiplication of T
S
U
(i) and T

A
D
(i) in Table I.

Similarly, it can be verified that T
S
D
(i)TA

U
(i) = I by using

the result in Table I. Using these results on the explicit product

of (28) and (26) gives

T
S
D
(1)TS

U
(2) . . .TS

D
(2M − 1)

=I

︷ ︸︸ ︷

T
S
U
(2M)TA

D
(2M)

.TA
U
(2M − 1) . . .TA

D
(2)TA

U
(1)

= T
S
D
(1)TS

U
(2) . . .

=I

︷ ︸︸ ︷

T
S
D
(2M − 1)TA

U
(2M − 1)
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TABLE I
LIFTING POLYPHASE TRANSFORM MATRICES (PTM) FROM CORRESPONDING POLYPHASE REPRESENTATION MATRICES (PRM)

Case and Type PRM PTM

1) Type I Analysis Pa(µ) =

[

1 L̃i(µ)
0 1

]

TA
U
(i) ≡

[

I|L| A1L̃i(Aβ)
0|H|×|L| I|H|

]

2) Type II Analysis Pa(µ) =

[

1 0

L̃i(µ) 1

]

TA
D
(i) ≡

[

I|L| 0|L|×|H|

A2L̃i(Aα) I|N|

]

3) Type II Synthesis Ps(µ) =

[

1 0

−L̃i(µ) 1

]

TS
U
(i) ≡

[

I|L| 0|L|×|H|

−A2L̃i(Aα) I|N|

]

4) Type I Synthesis Ps(µ) =

[

1 −L̃i(µ)
0 1

]

TS
D
(i) ≡

[

I|L| −A1L̃i(Aβ)
0|H|×|L| I|H|

]

. . .TA
D
(2)TA

U
(1)

By continued simplification of the product of two middle

terms, a pair at a time, the final result is TSTA = IN .

A. Discussion

When designing lifting filters in the regular spatial domain,

one may not know readily what the overall filterbank response

would look like, but one will have a good interpretation of

the prediction and update filters. In the graph case, for the

designs that are based on (22) and (23), it is not immediately

obvious what the equivalent prediction and update filters are.

The results above provide an accurate characterization of the

equivalent prediction and update filters.

The structures in Figs. 5 and 6 are reminiscent of the

classical lifting for regular domain signals [21]. Just like in the

classical case, for the graph case, it can be readily shown there

is a computational complexity reduction by a factor of two

compared to the full rate implementation [19]. However, there

are important features in the graph case that are not present

in the classical case. In the classical case the ’split’ operation

results in polyphase signals with equal number of samples.

In the graph case, the equivalent bipartite decomposition

operation results in polyphase signals with an unequal number

of samples in general. The predict/update (also known as dual-

lift/lift) filters in the classical case, as far as the domains

are concerned, are indistinguishable. Both filters are defined

over the same equivalent regular line graph. For the graph

case however, the domain for the ’up’ filters (Type I analysis

and Type II synthesis) is subgraph Gα (with adjacency Aα).

For the ’down’ filters (Type II analysis and Type I synthesis)

the domain is subgraph Gβ (with adjacency Aβ). Finally,

projection operators (either A1 or A2) are needed in the graph

case to map the filtered output from one domain to another

but not in the classical case.

V. CONCLUSION

Cascade and lifting structures for bipartite graph filter banks

were derived in this work. The filtering is in the downsam-

pled domains and is w.r.t. equivalent subgraphs. Projection

operators are needed to map signals from one subgraph to

another subgraph. Going from the design structure to the

implementation structure is significantly more complicated for

the graph case compared to the classical case.

APPENDIX

A. Proof of Lemma 2

It will be shown explicitly that the R.H.S. of equation (20)

is equal to the L.H.S. of the equation. Explicit multiplication

of Pa,1(µ) and Pa,2(µ) gives
[

He
0,2(µ) Ho

0,2(µ)
Ho

1,2(µ) He
1,2(µ)

] [
He

0,1(µ) Ho
0,1(µ)

Ho
1,1(µ) He

1,1(µ)

]

=

[
He

0,2H
e
0,1 +Ho

0,2H
o
1,1 He

0,2H
o
0,1 +Ho

0,2H
e
1,1

Ho
1,2H

e
0,1 +He

1,2H
o
1,1 Ho

1,2H
o
0,1 +He

1,2H
e
1,1

]

.

=

[
He

0(µ) Ho
0 (µ)

Ho
1 (µ) He

1(µ)

]

(29)

The last line shows explicitly the symbol of each element in

the product. There are 4 elements in the matrix equation above

and each element results in scalar equation involving poly-

nomials in the variable µ, e.g. He
0(µ) = He

0,2(µ)H
e
0,1(µ) +

Ho
0,2(µ)H

o
1,1(µ) from element (1, 1). Each of the scalar equa-

tion becomes a matrix equation if µ is replaced with the

adjacency matrix Ã, e.g. from element (1, 1)

He
0(Ã) = He

0,2(Ã)He
0,1(Ã) +Ho

0,2(Ã)Ho
1,1(Ã) (30)

Lemma 4 in [19] shows that matrices with the superscript e

are block diagonal with the form

He
�
(Ã) =

[
H

e,u

�
(Ã) 0|L|×|H|

0|H|×|L| H
e,l

�
(Ã)

]

≡

[
He

�
(Aα) 0|L|×|H|

0|H|×|L| He
�
(Aβ)

]

(31)

The symbol ’�’ can be any subscript, e.g. � = 0 or � = 0, 2.

Note that He
�
(•) (Ho

�
(•)) is the even (odd) part of H�(•) as

defined in (4) ((5)). Lemma 4 in [19] shows that matrices with

the superscript o are block anti-diagonal with the form

Ho
�
(Ã) =

[
0|L| H

o,u

�
(Ã)

H
o,l

�
(Ã) 0|H|

]

≡

[
0|L| A1H

o
�
(Aβ)

A2H
o
�
(Aα) 0|H|

]

. (32)

Note also that in (31) and (32), for convenience in the sequel,

we define H
e,u

�
(Ã) ≡ He

�
(Aα), etc. There are 4 types of

matrix products in the matrix version (µ → Ã) of equation

(29): (i) ’e’ × ’e’, (ii) ’e’ × ’o’, (iii) ’o’ × ’e’ and (iv) ’o’ ×
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’o’. The generic expressions of the 4 types of products in term

of the submatrices (e.g. H
e,u
0,1 (Ã)) are derived in Appendix C.

Using the expressions from Appendix C on (30) (which is

from element (1, 1)) gives

He
0(Ã) ≡

[
H

e,u
0 (Ã) 0|L|×|H|

0|H|×|L| H
e,l
0 (Ã)

]

= (33)

[

(He,u
0,2H

e,u
0,1 +H

o,u
0,2H

o,l
0,1) 0|L|×|H|

0|H|×|L| (He,l
0,2H

e,l
0,1 +H

o,l
0,2H

o,u
0,1 )

]

where the dependence on Ã is not shown for brevity. Similarly

with element (1, 2) we have:

Ho
0 (Ã) ≡

[
0|L| H

o,u
0 (Ã)

H
o,l
0 (Ã) 0|H|

]

= (34)

[

0|L| (He,u
0,2H

o,u
0,1 +H

o,u
0,2H

e,l
1,1)

(He,l
0,2H

o,l
0,1 +H

o,l
0,2H

e,u
1,1 ) 0|H|

]

With the element (2, 1) we have:

Ho
1 (Ã) ≡

[
0|L| H

o,u
1 (Ã)

H
o,l
1 (Ã) 0|H|

]

= (35)

[

0|L| (Ho,u
1,2H

e,l
0,1 +H

e,u
1,2H

o,u
1,1 )

(Ho,l
1,2H

e,u
0,1 +H

e,l
1,2H

o,l
1,1) 0|H|

]

With the element (2, 2) we have:

He
1(Ã) ≡

[
H

e,u
1 (Ã) 0|L|×|H|

0|H|×|L| H
e,l
1 (Ã)

]

= (36)

[

(Ho,u
0,2H

o,l
0,1 +H

e,u
1,2H

e,u
1,1 ) 0|L|×|H|

0|H|×|L| (Ho,l
1,2H

o,u
0,1 +H

e,l
1,2H

e,l
1,1)

]

Using the equivalent symbols introduced in (31) and (32), e.g.

H
e,u
0 (Ã) ≡ He

0(Aα), the transform matrix TA in (18) can be

written as:

TA ≡

[
H

e,u
0 (Ã) H

o,u
0 (Ã)

H
o,l
1 (Ã) H

e,l
1 (Ã)

]

.

The expression for the submatrices in TA above can be

obtained using the 4 matrix equations above, e.g. H
e,u
0 (Ã) =

(He,u
0,2H

e,u
0,1 + H

o,u
0,2H

o,l
0,1) using equation (33). Using these

expressions we have

TA ≡

[
H

e,u
0 (Ã) H

o,u
0 (Ã)

H
o,l
1 (Ã) H

e,l
1 (Ã)

]

=

[

(He,u
0,2H

e,u
0,1 +H

o,u
0,2H

o,l
0,1) (He,u

0,2H
o,u
0,1 +H

o,u
0,2H

e,l
1,1)

(Ho,l
1,2H

e,u
0,1 +H

e,l
1,2H

o,l
1,1) (Ho,l

1,2H
o,u
0,1 +H

e,l
1,2H

e,l
1,1)

]

=

[

H
e,u
0,2 (Ã) H

o,u
0,2 (Ã)

H
o,l
1,2(Ã) H

e,l
1,2(Ã)

][

H
e,u
0,1 (Ã) H

o,u
0,1 (Ã)

H
o,l
1,1(Ã) H

e,l
1,1(Ã)

]

= TA,2 TA,1

The equivalence between the second and third lines can be

readily verified by explicit multiplication of the third line. Note

that every symbol in the equation above are matrices (and not

scalars).

B. Proof of Lemma 3

The proof is similar to the proof of Lemma 2 but with some

important differences. Only a sketch is provided here with the

emphasis on highlighting the differences. The steps are:

1) Explicit product of Ps,2(µ) and Ps,1(µ) to obtain 4

scalar equations in the variable µ that is similar to

equation (29) but the symbol H replaced with G.

2) Convert each scalar equation to a matrix equation by

the substitution µ → Ã. There is however an important

difference in the conversion here compared to the proof

of Lemma 2. The best way to describe this difference is

through an example equation. Element (1, 1) of equation

(29), with H → G, is Ge
0(µ) = Ge

0,2(µ)G
e
0,1(µ) +

Go
0,2(µ)G

o
1,1(µ). By changing the ordering of the prod-

ucts we have an equivalent Ge
0(µ) = Ge

0,1(µ)G
e
0,2(µ) +

Go
1,1(µ)G

o
0,2(µ). This might seem a trivial thing to do

but when the scalar equation is converted to a matrix

equation (via µ → Ã) the result is different. The

second form of the equation, where the ordering of the

products are reversed, is used here. The matrix equation

resulting from element (1, 1) scalar equation is therefore

Ge
0(Ã) = Ge

0,1(Ã)Ge
0,2(Ã) +Go

1,1(Ã)Go
0,2(Ã).

3) Explicit calculation using the 4 matrix equations from

the previous step will give Ge
0(Ã), etc. that is similar to

equations (33) - (36).

4) Obtain the explicit expressions for the submatrices that

make up TS in (19) from the results in the previous

step.

5) Compare the result from the previous step with the

explicit multiplication of TS,1 and TS,2 to complete the

proof.

C. Matrix products

Expressions of the matrix products, such as

He
0,2(Ã)He

0,1(Ã), in term of the submatrices, such as

H
e,u
0,2 (Ã) or H

e,u
0,1 (Ã) are derived here. The matrices have

the form as shown in (31) or (32). Generic symbols for the

matrices, such as He
i,j(Ã), and submatrices, such as H

e,l
i,j (Ã),

will be used. The first subscript i (= 0, 1) denote whether the

filter is low-pass (i = 0) or high-pass (i = 1). The second

subscript j (= 1, 2) denote whether the matrices are from the

first polyphase matrix Pa,1(µ) (j = 1) or second polyphase

matrix Pa,2(µ) (j = 2). By explicit multiplication of matrices

of the form shown in (31) or (32), the following types of

products can be obtained:

He
i,j(Ã)He

m,n(Ã) =
[

H
e,u
i,j (Ã)He,u

m,n(Ã) 0|L|×|H|

0|H|×|L| H
e,l
i,j (Ã)He,l

m,n(Ã)

]

He
i,j(Ã)Ho

m,n(Ã) =
[

0|L| H
e,u
i,j (Ã)Ho,u

m,n(Ã)

H
e,l
i,j (Ã)Ho,l

m,n(Ã) 0|H|

]

Ho
i,j(Ã)He

m,n(Ã) =
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[

0|L| H
o,u
i,j (Ã)He,l

m,n(Ã)

H
o,l
i,j (Ã)He,u

m,n(Ã) 0|H|

]

Ho
i,j(Ã)Ho

m,n(Ã) =
[

H
o,u
i,j (Ã)Ho,l

m,n(Ã) 0|L|×|H|

0|H|×|L| H
o,l
i,j (Ã)Ho,u

m,n(Ã)

]

for i,m = 0, 1 and j, n = 1, 2. Note that two of the matrices

are block diagonal and the other two are block anti-diagonal.
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