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Abstract— Replay attacks are the simplest form of spoofing 

attacks on automatic speaker verification (ASV) systems and 

consequently the detection of these attacks is a critical research 

problem. Currently, most research on replay detection focuses 

on developing a stand-alone countermeasure that runs 

independently of a speaker verification system by training a 

single common spoofed model as well as a single common 

genuine model. This paper investigates the potential advantages 

of sharing speaker data between the speaker verification system 

and the replay detection system. Specifically, it explores the 

benefits of using the claimed speaker’s model in place of the 

common genuine model. The proposed approach is validated on 

a modified evaluation set of the ASVspoof 2017 version 2.0 

corpus and show that the use of adapted speaker models is far 

superior to the use of a single common genuine model.  

I. INTRODUCTION 

The development of effective anti-spoofing countermeasures 

for use with automatic speaker verification (ASV) is an area 

of rapidly growing research interest. There are four broad 

approaches to spoofing, namely, impersonation [1], replay [2], 

speech synthesis [3] and voice conversion [4]. Here, 

impersonation refers to one person mimicking another; replay 

refers to recording the speech of a person and playing it back; 

speech synthesis refers to text-to-speech waveform 

generation; and voice conversion refers to an automatic 

system that transforms the speech of one person to sound like 

that of another. Among these, replay attacks are the simplest 

and the most easily accessible forms of attack compared to 

other three types. Studies on the vulnerabilities of state-of-

the-art automatic ASV systems to replay attacks [3, 8] show 

that replay attacks are highly effective leading to significant 

increases in both equal error rate (EER) and false acceptance 

rate (FAR). Consequently, the development of techniques for 

the detection and prevention of replay spoofing attacks 

becomes a critical area of research and is the focus of this 

paper. 

There are two broad approaches to incorporating anti-

spoofing countermeasures [5]. One approach is to have a 

‘standalone countermeasure’ that operates independently of 

the ASV system. The alternative approach is to make the 

ASV system itself more robust to a spoofing attack; this is 

called the ‘integrated approach’. Both approaches have their 

merits: the integrated system allows for a shared front-end [6], 

which could be computationally more efficient; while the 

standalone countermeasure can operate independently without 

modifying the ASV system and also allows the use of 

different front-ends and modelling techniques [5].  

There are very few studies that have investigated the 

integrated approach for speech synthesis and voice conversion 

spoofed speech [6]–[8], while no studies on integrated 

spoofing detection have been reported for replay attacks.  In 

[7] authors focussed on GMM-UBM (Gaussian mixture 

model – universal background model) framework. It uses an 

additional UBM trained on spoofed speech. Their experiments 

on the ASVspoof 2015 [9], using out-of-domain data (IDIAP 

AVspoof [10]) for training, showed that the proposed method 

was able to considerably improve the ASV performance for 

spoofing impostors compared to the baseline with or without 

a spoofing detector, without compromising the performance 

under zero-effort spoofing. On the other hand, Khoury et al. 

[6] and Sizov et al. [8] adopted standard i-vectors and a 

PLDA (probabilistic linear discrimination analysis) back-end 

for joint analysis to create spoofing detection and ASV 

system. 

Since ASVspoof 2017 challenge [11], the public 

availability of the dataset has led to an increased focus on 

standalone countermeasures for replay detection. Front ends 

based on variants of spectral features, long-term spectral 

statistics [12], time-domain features, voice source [13] and 

different variants of deep neural network based systems [14]–

[16] have been investigated, extensively. Such features 

include spectral centroid magnitude coefficient (SCMC) [17], 

constant-Q cepstral coefficient (CQCC) [18], single frequency 

filter cepstral coefficient [19], inverse-Mel cepstral 

coefficients (IMFCC) [20], rectangular filter cesptral 

coefficients (RFCC) [17], scattering coefficients [21], and 

variable length teager energy separation based instantaneous 

frequency cesptral coefficients (VESA-IFCC) [22]. 

Current research on spoofing detection system has 

primarily focused on either improving the back-end modelling, 

or the development of novel features to detect spoofed speech. 

In practice, all features employed in spoofing detection also 

exhibit variability due to a number of factors such as acoustic 

variability (including channel effects), speaker variability, 

phonetic variability, etc. These sources of variability can 

subsequently lead to less precise models and reduce the 

accuracy of spoofing detection systems. To mitigate this, the 

variability should either be incorporated into the models or it 

should be normalized. This is supported by recent work where 

by the use of cepstral mean variance normalization (CMVN) 
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improved the reliability of spoofing detection across the 

diverse variations in replay attacks [17], [18]. In this paper, 

we propose an approach where speaker variability if explicitly 

modelled rather than normalized.  

Given that replay detection will always run in conjunction 

with an ASV system, it is reasonable to expect that 

information about the claimed speaker (available to the ASV 

system in the form of enrolment data) can also be used by the 

replay detection system. Specifically, it is proposed that the 

target speaker enrolment data can be used to estimate claimed 

speaker specific models (herein referred to as speaker 

dependent models) of genuine speech that are unaffected by 

speaker variability and in turn improve the performance of 

replay detection systems. Current systems do not adopt this 

approach and instead focus on an ‘in-wild’ type of spoofing 

detection which is evaluated without taking into consideration 

the speaker verification aspect. This is reinforced by 

databases such as ASVspoof 2015 and ASVspoof 2017 where 

the speakers in enrolment and evaluation set are non-

overlapped. 

 

II. PROPOSED USE OF CLAIMED SPEAKER MODELS 

Current replay detection systems employ a ‘genuine’ 

speech model and a ‘spoofed’ speech model that is common 

across all test utterances as shown in Fig. 1. In this paper, we 

propose an alternative approach where instead of the common 

genuine model, we employ test utterance specific genuine 

models based on the claimed speaker identity (refer Fig. 2).  

 

Train Data

Speaker-independent 

Spoofing Detection

(Training phase)

Genuine

Genuine  

Spoof

Spoofing 

Detection

Spoof

Model 

Training

Model 

Training

Genuine 

Data

Spoofed 

Data

Evaluation 

data

Feature 

Extraction

Feature 

Extraction

Feature 

Extraction

 

Fig. 1: Schematic diagram of a typical stand-alone spoofing detection 

system 
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Fig. 2: Schematic of proposed modelling framework to incorporate claimed speaker models 
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The proposed approach is motivated by the fact that a 

common genuine model, typically trained on speech from 

multiple speakers, will be affected by speaker variability. 

However, in the context of replay detection for ASV, the test 

utterance is always accompanied by a claimed speaker 

identity and a genuine speech model specific to the claimed 

speaker will not be affected by any speaker variability. 

Moreover, enrolment data used to generate speaker models 

for the ASV system can be utilised to train genuine speech 

models specific to every possible claimed speaker. 

The approached proposed in this paper employs GMM 

based models of spoofed and genuine speech. Specifically, a 

background model for genuine speech is initially trained on 

genuine speech from multiple speakers, using the EM 

algorithm, and is referred to as the genuine universal 

background model (UBM). Following this, claimed speaker 

specific genuine models are adapted from genuine UBM 

using the enrolment data via MAP adaptation (refer Fig. 2). 

Given these models and a test utterance, the final decision 

about whether it is genuine speech or replayed speech can be 

based on the log-likelihood ratio between the claimed speaker 

model and the spoof model given by: 

 

𝐿𝐿𝑅(𝑋) = log 𝑃(𝑋|𝜃𝑠𝑝𝑒𝑎𝑘𝑒𝑟) − log 𝑃(𝑋|𝜃𝑠𝑝𝑜𝑜𝑓) (1) 

 

where 𝑋  denotes the set of feature vectors from a test 

utterance, 𝜃𝑠𝑝𝑒𝑎𝑘𝑒𝑟  denotes the GMM corresponding to 

claimed speaker, 𝜃𝑠𝑝𝑜𝑜𝑓  denotes the model of spoofed speech 

that is common to all test utterances. 

III. DATABASES AND DATA PREPARATION 

A. ASVspoof 2017 (Version 2.0) 

The ASVspoof 2017 corpus [11] makes use of the RedDots 

corpus [23], as well as replayed versions of the same data [24]. 

The main technical aim of the ASVspoof 2017 challenge was 

to assess spoofing attack detection accuracy ‘in-wild’ 

conditions, thereby advancing research towards generalised 

spoofing countermeasures to detect replay attacks in 

particular. This database is partitioned into training, 

development and evaluation sets as shown in Table 1 (more 

details can be found in [11], [18]). ASVspoof 2017 Version 

2.0, is released in 2018 by the challenge organisers, is an 

updated version of ASVspoof 2017 version 1.0, correcting 

several data anomalies found in the original. All reported 

experiments and analysis in this paper are conducted on 

ASVspoof 2017 version 2.0 corpus (herein referred to as 

ASVspoof 2017). Fig. 3 shows the number of utterances per 

each speaker in the evaluation set of ASVspoof 2017 corpus.  

Table 1: ASVSpoof 2017 Version 2.0 

 

Subset # Speakers # Utterances 

  Genuine Spoof 

Train 10 1507 1507 

Dev 8 760 950 

Evaluation 24 1298 12008 

 

The replayed speech in these partitions was created using 

different playback and recording devices in various 

environments. Metadata of this corpus includes the ground- 

truth labels, which indicate genuine/replayed speech, along 

with speaker ID, phrase ID, and replay configuration details 

(details about replay and recording devices and acoustic 

environments). All three subsets are non-overlapping in terms 

of data collection locations. However the same 10 phrases 

appear in all the three sets. 

B. Repartitioning of ASVspoof 2017 Evaluation set 

All three partitions of ASVspoof 2017 corpus are also non-

overlapping in terms of speakers. However, this in turn means 

that these partitions cannot be used to study the proposed 

approach since ‘Enrolment data’ corresponding to ‘claimed 

speakers’ in the test utterances would not be available during 

model training. Consequently the corpus was repartitioned to 

allow for the proposed approach to be studied.  

As shown in Fig. 4, one utterance of each passphrase of 

genuine data for every speaker in ASVspoof 2017 evaluation 

set are separated as an ‘Enrolment set’ that can be used to 

learn the speaker models (i.e. totally 10 utterances per 

speaker). Since there are only 10 genuine utterances (see Fig. 

3) for speakers from ‘M0036’ to ‘M0042’, these speakers are 
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Fig. 3: Number of utterances for each speaker in ASVspoof 2017 evaluation set 
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excluded from ‘Enrolment set’. Remaining utterances of 

speakers (from ‘M0019’ to ‘M0035’), which are not included 

in the ‘Enrolment set’ is partitioned off as ‘Speaker-specific 

Test set’. Table 2 shows the number of utterances and number 

of speakers in each data partitions which are used in this 

paper. 
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Fig. 4: Schematic diagram of repartitioned 'Enrolment set' and 'Speaker-

specific Test set' from ASVspoof 2017 evaluation set. ASVspoof 2017 
Train and Dev set remains same. Total number of utterances for each 

speaker is not represented in this figure, which is not equal to every speaker 

 

Table 2: Statistics of the ASVspoof 2017 partition which used to create 

'Enrolment set' and 'Speaker-specific Test set' 

 

Subsets #Speakers 
#Utterances 

Genuine Replay 

ASVspoof 2017 

evaluation set 
24 1298 12008 

Enrolment set¹ 17 170 0 

Speaker-specific Test 

set¹ 
17 1058 12008 

 

IV. FRONT-END FEATURES 

Three features are considered in this study: CQCCs [11], 

RFCCs [17] and joint acoustic temporal modulation spectrum 

based features. These three different features are selected for 

two main reasons: (i) they provide state-of-the-art 

performance in replay attacks; (ii) they are all extracted from 

windows of different durations - CQCCs use a very short 

feature window (~8ms), RFCCs use a standard window 

(20ms) and joint acoustic temporal modulation spectrum 

based features are extracted from an entire utterance.  

 
1
The details of ‘Enrolment set’ and the ‘Speaker-specific Test set’ can be 

found in http://www2.ee.unsw.edu.au/ASVspoof/  

A. Joint acoustic (spectro-temporal) modulation spectrum 

based features 

Long-term temporal modulation static and dynamics 

features are derived from the ‘Joint acoustic modulation 

spectrum’ (Fig. 5): modulation centroid frequency cosine 

coefficients (MCF-CC) and modulation static energy cepstral 

coefficients (MSE-CC) [25]. MCF-CC features capture the 

variation of the modulation peak energy within acoustic 

frequency bins due to spoofed speech channels. As illustrated 

in Fig. 5, the 0th modulation bin energies (𝑚 = 0) of the 

normalized modulation spectrum along the acoustic 

frequencies are retained as a feature vector, which is referred 

to as the modulation static energy (MSE). The concatenation 

of these two features is referred as the spectro-temporal 

modulation features (STMFs) for rest of this paper. This used 

as one of the front-end for the proposed framework. For more 

details readers are referred to [25]. 
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Fig. 5: Computation of Short term log Spectrogram (left) and Joint acoustic 

modulation spectrum (Right); Regions of Modulation Static (Green) and 

Dynamics information (Orange) 
 

B. Constant-Q Cepstral Coefficients (CQCC) 

CQCC features [26] are derived using a Constant-Q 

transform [27]. These features were first introduced to speech 

synthesis and voice conversion spoofing detection and have 

since becomes a standard feature set in spoofing detection 

system. 

C. Rectangular Filter Cepstral Coefficients (RFCC) 

RFCC features are similar to conventional MFCC but are 

extracted using a filter bank of equally spaced rectangular 

filters. This feature set has been shown to be effective in  

spoofing detection for not only replay attacks but also for 

speech synthesis and voice conversion attacks [17], [28]. 

V. EXPERIMENTAL SETTINGS 

A number of experiments were carried out to evaluate the 

proposed approach. In these experiments three different 
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metrics are employed to quantify performance. Namely, (a) 

‘Speaker-wise EER’ which is calculated by pooling only the 

genuine and spoof trials of the target speaker; (b) ‘Overall 

EER’ which is derived as considering all the trials in the 

corresponding evaluation set; and (c) ‘Average EER’ which is 

calculated as the average of the 17 speaker-wise EERs.  

 

A.  Front-end configurations 

The STMF features are extracted using the same 

parameters as in [25]. MCF-CC and MSE-CC features are 

chosen with 15 and 30 dimensions respectively and feature 

level concatenation is performed to obtain 45 dimensions for 

each utterance. 

RFCC features are derived along 20ms window with 50% 

overlap from speech utterances pre-emphasised by factor of 

0.97 using 30 linearly spaced rectangular filters. This feature 

vector is 90 dimensional with static, delta and delta-delta 

coefficients.  

For the derivation of CQCC features we have used the 

same configuration as used in the ASVspoof 2017 challenge 

baseline [11]. A Constant-Q Transform is applied with a 

maximum frequency of  𝑓𝑚𝑎𝑥 = 8𝑘𝐻𝑧, which is the Nyquist 

frequency and the minimum frequency 

(a)

%
E

E
R

(b)

(c)

%
E

E
R

%
E

E
R

Speaker

        Proposed system      Baseline system          Overall EER of proposed system            Overall EER of baseline system

 

Fig. 6: Comparison of (a) STMF (b) CQCC and  (c) RFCC features as front-end for proposed and baseline approaches with respect to speaker-wise EER 

and Overall EER in ‘Speaker-specific Test set’ 
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𝑓𝑚𝑖𝑛 = 𝑓𝑚𝑎𝑥 29  ≈ 15Hz ⁄ , where 9 is the number of octaves). 

The number of bins per octave is set to 96. Resampling is 

applied with a sampling period of 16 bins in the first octave. 

The CQCC feature dimension is set to 90 coefficients (static 

including 𝑐0, delta and delta-delta coefficients). 

 Normalisation techniques are not applied to any of the 

features in this work. The Cepstral mean and variance 

normalization (CMVN) is commonly employed as a feature 

normalisation technique [17]. However, CMVN generally 

aims to reduce channel effects, which is counter-intuitive for 

replay detection which is essentially based on channel 

discrimination. 

B. Back-end configurations 

In the proposed system, the spoofed speech model and the 

genuine UBM are implemented as 512 mixture Gaussian 

mixture models (GMMs) for RFCC and CQCC features and 4 

mixture GMMs for STMF features trained using the EM 

algorithm with random initialization. ASVspoof 2017 train 

and dev set used to model the genuine UBM and spoofed 

speech models (no overlap with test speaker data). The 

genuine speech models specific to each claimed speaker are 

then estimated from the genuine UBM via MAP adaptation 

(mean, variance and weights with a relevance factor of 1 were 

chosen based on dev set results) based on the available 

Enrolment data (refer section III).  

The baseline systems (using a single common genuine 

model) also use 512 mixtures (identical to the ASVspoof 

2017 baseline) for modelling RFCC and CQCC features. The 

baseline system employing STMF features uses GMMs with 4 

mixture components. 

VI. RESULTS AND ANALYSIS 

The primary metric for evaluation is the equal error rate 

(%EER). Overall EER (i.e pooled EER) is derived by using 

the entire ‘Speaker-specific Test Set’ (refer section V-B), 

unless otherwise indicated. 

A. Comparison of experimental results with state-of-the-art 

features 

The performance of the proposed and baseline approaches 

are compared in Table 3 for all three front-ends. It can be seen 

from these results that the proposed approach outperforms the 

baseline by a significant margin in all three cases. It is also 

interesting to note the long term STMF features are superior 

to short term RFCC and CQCC features, both when using the 

baseline approach and when using the proposed approach. 

Fig. 6 illustrates individual performances of the proposed 

and baseline systems using STMF, CQCC and RFCC features. 

These plots reveal that the proposed approach of using 

claimed speaker models of genuine speech is consistently 

superior to the baseline. Here it should be noted that the 

number of trials (per speaker) used to estimate the speaker 

specific EERs is significantly lower than the number of trials 

in the standard ASVspoof test set and consequently these 

speaker specific EERs should be considered as indicative 

results only. However, the overall EERs shown in Fig 6 are 

estimated from more or less the same number of trials as the 

standard ASVspoof test set and should have similar 

confidence intervals. 

Table 3: Comparison of the STMF, CQCC and RFCC features with 

proposed and baseline approaches in terms of %EER in ASV spoof 2017 

‘Speaker-specific Test set’ 

 

Features 

Speaker-independent 

(Baseline) system 

Speaker-dependent 

(Proposed) system 

Overall EER Overall EER 

  STMF 7.75 3.54 

CQCC 23.81 11.51 

RFCC 22.84 14.82 

 

B. Analysis of Model Separation 

The proposed approach is based on the hypothesis that the 

use of genuine models specific to the claimed speaker 

eliminates speaker variability from the genuine model. 

Results reported in the previous section support this 

hypothesis with the proposed approach consistently 

outperforming the baseline system. Additionally, in an 

attempt to discern if the proposed approach leads to better 

discriminability, we directly estimate the separation between 

genuine and spoofed models as the Kullback-Leibler (KL) 

divergence between the corresponding GMMs. Specifically, 

we compare the KL divergence between genuine models 

corresponding to the claimed speakers and the spoofed model 

to the KL divergence between the single genuine model and 

the spoofed model of the baseline system. 

KL divergence is generally used to measure the distance 

between two probabilistic models ( 𝒫1 , 𝒫2 ). Given a D-

dimensional feature vector 𝑋 𝜖 ℝ𝐷 , the KL divergence is of 

𝒫2 from 𝒫1 is defined as [29]: 

 

𝐾𝐿(𝒫1, 𝒫2) =  ∫ 𝒫1(𝑋) ln (
𝒫1(𝑋)

𝒫2(𝑋)
)

𝑋

 (2) 

As 𝐾𝐿(𝒫1, 𝒫2)  is an asymmetric divergence measure, i.e 

𝐾𝐿(𝒫1, 𝒫2)  ≠  𝐾𝐿(𝒫2 , 𝒫1) , a symmetric KL divergence is 

defined as [29]: 

 

𝑆_𝐾𝐿(𝒫1, 𝒫2) =
1

2
(|𝐾𝐿(𝒫1, 𝒫2) +  𝐾𝐿(𝒫2, 𝒫1)|)  (3) 

 

A Monte Carlo approximation based symmetric KL 

divergence [30] is used to measure the distance between 

spoofed and genuine speech models. It should be noted that a 

set of GMMs that perform well as a classifier will have a 

large degree of mutual dissimilarity and consequently a large 

KL value when compared with a set of GMMs that are more 

similar to each other. The KL divergence between the spoofed 

model and each of the claimed speaker genuine models in the 

proposed approach are shown in Fig. 7. This can be compared 

to the KL divergence between the spoofed and genuine 

models of the baseline system shown as a red line in Fig. 7. In 
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this analysis both the proposed and the baseline systems used 

the STMF front-end since that had the best performance 

among the three front-ends. 

 

 
Fig. 7: Comparison of KL divergence of STMF features from the spoof UBM 

to the genuine UBM and from the spoof UBM to speaker models 

 

C. Investigating the system performance in terms of 

different replay configuration 

 

%
E

E
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Fig. 8: Comparison of results of STMF features grouped by the acoustic 

environment into low, medium and high threat attacks for speaker 

independent (baseline) and speaker-dependent (proposed) systems. 
 

The ASVspoof 2017 database contains recordings 

collected with diverse replay configurations (RCs), each 

comprising of one recording device, one playback device, and 

one acoustic environment. In order to aid analysis, the distinct 

RCs were reduced by grouping together overlapping 

configurations [18]. To analyse how well the proposed 

speaker-dependent system performs compared to speaker 

independent system, replay detection performance in terms 

of %EER for different qualities of environments, play-back 

and recording devices are evaluated. 

 

%
E

E
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        Proposed system      Baseline system          

Speakers

Low Threat

Medium Threat

High Threat

 
 

Fig. 9: Comparison of the results of STMF features grouped by the playback 

device into low, medium and high threat attacks for speaker independent 

(baseline) and speaker-dependent (proposed) systems. 
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High Threat

 
Fig. 10: Comparison of the results of STMF features grouped by the 

recording device into low, medium and high threat attacks for speaker 
independent (baseline) and speaker-specific (proposed) systems. 

 

Fig. 8-10 show results of STMF features grouped by 

acoustic environment, playback device, recording device into 

low, medium and high threat attacks for speaker independent 

(baseline) and speaker-dependent (proposed) systems 

respectively. It is evident that the proposed speaker-dependent 

system not only superior in terms of overall EER and speaker-

dependent EER (refer Fig. 6), also it outperforms the baseline 
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in most of the replay configurations for all of the speakers. 

However, number of test trails in all the replay configurations 

is not same for each speaker, so that the direct comparison can 

be biased to the group which has more trials. In addition to 

that, high threat replay configurations show higher EER 

compared to low and medium replay configurations, similar 

to baseline systems. Hence, a system that could detect the 

artefacts for high threat replay configurations will be 

interesting future area to work with. 

 

D. Investigating the effect of amount of adaptation data 

All of the previous experiments reported in this paper are 

based on the ‘Speaker-specific Test set’ from ASVspoof 2017 

where each speaker model is adapted using 10 utterances (one 

per passphrase). In this section we analyse the effect of using 

a larger enrolment set for adaptation. To analyse this effect, 

experiments are carried out with different set of enrolment 

data. As further utterances are added to the enrolment set 

partition, they should be excluded from the ‘speaker-specific 

Test set’ to ensure both sets are non-overlapped. To compare 

the performance with the constant test set, smallest one 

correspond to the largest adaptation data (50%), is used as 

‘speaker-specific test set’ for only the experiments reported in 

section. 

Table 4: Comparison of STMF feature performance for the different 
amount of data used for the speaker adaptation (in terms of %EER). 

Constant test set, smallest one correspond to the 50% adaptation data, is 

used as ‘speaker-specific test set’ for evaluation. 

 

#utterance use 

for adaptation 

for each 

speaker 

Speaker-

independent 

(Baseline) system 

Speaker-

dependent 

(Proposed) 

system 

Avg 

EER 

Overall 

EER 

Avg 

EER 

Overall 

EER 

No adaptation  

[25] 

   5.25 7.32 

N/A N/A 

10 utterance 2.52 3.12 

20% of the 

total utterance 
2.38 2.48 

20 utterance 1.87 2.18 

50% of the 

total utterance 
1.45    1.66 

 

Since STMF features performed better than CQCC and 

RFCC in the previous experiments, only the performance of 

STMF features is tabulated in Table 4. However, the same 

trends as STMF features, which is larger the adaptation  data, 

better the performance, were observed for CQCC and RFCC 

features when increasing the number of utterances used for 

speaker model adaptation. Also, it is observed that the 

performance of the proposed system for all nine replay 

configurations improved for all the speakers with the 

proportional to the amount of adaptation data. Hence, high 

threat conditions of replay attack can be detected with high 

accuracy, if larger amount of adaptation data used. 

VII. CONCLUSIONS 

This work investigates the effect of incorporating speaker 

specific information into a replay spoofing detection system 

by using claimed speakers’ models which can be estimated 

from enrolment data that would be available to any speaker 

verification system. A single model of genuine speech, as 

would be employed in most current replay detection systems, 

would always be affected by speaker variability, since it 

would be trained on data from multiple speakers. However, in 

the proposed approach claimed speaker specific models of 

genuine speech are employed (trained on enrolment data 

corresponding to that speaker), thus significantly reducing 

speaker variability. Experimental results based on the 

ASVspoof 2017 corpus show that the proposed approach 

reduces equal error rates by a factor of two when compared to 

the use of a single common genuine model.  Further, this 

study proved that STMF features show superior performance 

in replay detection not only for speaker independent models 

but also for speaker-specific models. Outcomes from our 

work motivate the study of spoofing detection systems that 

include speaker-specific information. 
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