
Extended Constant-Q Cepstral Coefficients for
Detection of Spoofing Attacks

Jichen Yang, Rohan Kumar Das and Haizhou Li
National University of Singapore, Singapore

E-mail: nisonyoung@gmail.com, {rohankd, haizhou.li}@nus.edu.sg

Abstract—The constant-Q cepstral coefficients (CQCC) feature
is one of the most effective feature in the field of spoof speech
detection. The extraction of this feature involves constant-Q
transform that captures long range information from the signal.
It is followed by uniform resampling of the octave power
spectrum to have linear power spectrum from which the CQCC
features are obtained. However, we hypothesize that the infor-
mation obtained from octave power spectrum is complementary
with that captured by the linear spectrum. In this regard,
we propose to combine the coefficients generated using both
linear and octave power spectrum. The combined feature is
referred to as extended CQCC (eCQCC) which is hypothesized
to have better discriminative information for detection of spoof
attacks. The studies for spoof detection are conducted on both
synthetic voice and replay based spoofing attacks using ASVspoof
2015 and ASVspoof 2017 Version 2.0 database, respectively. The
studies confirm that the proposed eCQCC feature consistently
outperforms the baseline CQCC feature in all tasks.

I. INTRODUCTION

The recent works in the field of automatic speaker veri-
fication (ASV) have shown feasibility for practical systems.
With this the detection of spoofing attacks has become a
critical issue for successful speaker verification deployments.
There are mainly four types spoofing attacks in ASV. They
are text-to-speech synthesis [1], [2], voice conversion [3], [4],
replay [5]–[8] and impersonation [9], [10]. In order to make
ASV systems practically viable, there is a need to detect
such attacks. To effectively detect spoofing voice, it is very
important to seek the features that can discriminate natural and
spoofed speech [3]. For synthetic speech detection, the goal
is to seek the artifacts between natural and spoofed speech,
which is generated by text-to-speech (TTS) system or voice
converted speech [1]–[3]. While for replay speech detection,
the goal is to seek the device and environment information
between genuine and playback speech, which gets added to the
genuine speech in the process of playback speech generation
because of environment effect and the usage of playback and
recording devices [11]–[13].

Many countermeasures have been proposed for the detection
of spoofing attacks. These are either based on front-end
feature or back-end classifier. Further, feature plays the role
of extracting effective representation and classifier plays the
role of binary classifier in the task of spoof speech detection.
The work [14] suggests that more efforts must be used in
designing countermeasures from feature rather than complex

and advanced classifiers. Therefore, in this paper, we focus
on feature level exploration. A new feature that can cap-
ture improved discriminative information between natural and
spoofed speech from that of the existing features is explored.

Next, we provide a brief survey on the past works on the
features level countermeasures. According to the features used,
countermeasures may be mainly classified into two categories:
one is based on power spectrum [14]–[16] and another is based
on phase spectrum [17], [18]. In spoofing attack detections,
the performance of phase spectrum based feature is worse
than traditional power spectrum based features (for example,
mel-frequency cepstral coefficients (MFCC) and constant-Q
cepstral coefficients (CQCC)). Therefore, the phase spectrum
based features are often combined with power spectrum based
features for enhanced performance [17], [18].

There have been studies of different power spectrum based
features for spoofing attack detections, for example, MFCC,
inverted mel-frequency cepstral coefficients, mel-warped over-
lapped block transformation [15], speech-signal frequency
cepstral coefficients [15] and CQCC [14], etc. Among them,
MFCC and CQCC are the most widely used features in
spoofing attack detections. In addition, CQCC have shown
effectiveness for spoofing attack detections [14], [19]–[21].
The reason may be that it can seek some artifacts in synthetic
speech detection and also capture some devices and environ-
ment information in replay speech detection.

Traditional features are mostly extracted based on linear
power spectrum. The CQCC as studied in [14], [16], uses
uniform resampling to convert the octave power spectrum into
linear power spectrum, then applies discrete cosine transform
(DCT) on linear power spectrum to obtain CQCC. The ra-
tionale behind this is that DCT cannot be applied on octave
power spectrum directly as every frequency bin has different
bandwidth. However, we do believe that DCT can be applied
over octave power spectrum to de-correlate the features. We
note that the octave power spectrum doesn’t offer the same
level of detail as linear power spectrum, but octave power
spectrum and linear power spectrum may offer complementary
information. Further, octave power spectrum can reflect some
characteristics of human auditory system, for instance, higher
frequency resolution at low frequency and higher temporal
time resolution at high frequency, unlike the linear spectrum.
We hypothesize that if information from octave spectrum can
be collectively used with that obtained with uniform sampling,
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Fig. 1. Schematic diagram for extraction of extended constant-Q cepstral
coefficients (eCQCC).

it can contribute towards better discrimination of natural and
spoofed speech.

With the stated motivation in order to have a better discrim-
inative characteristics for detection of spoof attacks, the infor-
mation from linear power spectrum and octave power spectrum
are used together. In other words, we propose a feature, which
is extracted not only from linear power spectrum but also using
octave power spectrum. We refer to this proposed feature as
extended constant-Q cepstral coefficients (eCQCC), which is
the main contribution of this work. A deep neural network
(DNN) based classifier is used in the back-end as it not
only has a classifier function but also has a feature learning
ability [22]. The studies are performed for both synthetic
and replay based spoofing attacks using ASVspoof 2015 and
ASVspoof 2017 V2.0 database, respectively.

The remainder of the paper is organized as follows. Section
II introduces the feature eCQCC in detail. Section III and
IV mention the experimental results and their analysis are
reported based on synthetic and replay speech detection,
respectively. Finally, Section IV concludes the paper.

II. INTRODUCING EXTENDED CONSTANT-Q CEPSTRAL
COEFFICIENTS

In this section, we introduce the extraction process of
eCQCC features in detail. Fig. 1 shows the block diagram
for the extracting eCQCC features. It can be observed that
there are six modules involved in the process, which consists
of CQT, power spectrum, log, uniform resampling, DCT and
feature concatenation.

The module of CQT is used to transform speech from the
time domain into the frequency domain. Then power spectrum
is used to calculate octave power spectrum value on the basis
of CQT. The module of Log is used to obtain logarithm octave

power spectrum, followed by uniform resampling to convert
logarithm octave power spectrum into logarithm linear power
spectrum. Finally, DCT is used to de-correlate the feature
dimensions and concentrate energy of logarithm octave power
spectrum and logarithm linear power spectrum, respectively.
Finally, the two DCT outputs are concatenated to form the
eCQCC feature vectors. Next, we discuss the extraction pro-
cess in detail.

A. Constant-Q transform

CQT is proposed in [23] and [24]. It is different from DFT
as the ratio of center frequency to bandwidth is constant in
CQT. As a result, CQT has a higher frequency resolution
in low frequency and higher temporal resolution for higher
frequency.

For a discrete time domain signal x(n), its CQT Y(k, n)
is defined as:

Y(k, n) =

n+
Nk
2∑

j=n−Nk
2

x(j)a∗k(j − n−
Nk

2
) (1)

where k = 1, 2, ...,K is the frequency bin index, Nk are the
variable window lengths, a∗k(n) denotes the complex conjugate
of ak(n). The basic functions of ak(n) are complex-valued
time-frequency atoms and are defined by

ak(n) =
1

C
ν(

n

Nk
) exp[i(2πn

fk
fs

+ φk)] (2)

where fk is the center frequency of bin fk, fs is the sampling
rate, and ν(t) is a window function (e.g. Hanning window)
and φk is a phase offset. The scaling factor C is computed as

C =

Nk
2∑

m=−Nk
2

ν
(m+ Nk

2

Nk

)
(3)

In addition, a bin spacing corresponding to the equal tem-
perament is desired in CQT, the center frequency (consider
fk) of kth frequency bin obeys the following

fk = f12
k−1
B (4)

where f1 is the centre frequency of the lowest-frequency bin
and B is the number of bins of per octave.

In this way, we can obtain the frequency region (consider
δf ) of kth frequency bin in the following way

δf = fk+1 − fk
= f12

k
B − f12

k−1
B

= f12
k−1
B (2

1
B − 1) (5)

From Eq. (5), we can observe that each frequency bin
corresponds to a different frequency range in the CQT. As
k increases its bandwidth also increases. This is different
from the DFT, where all the frequency bins have the same
bandwidth.
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B. Uniform resampling

Uniform resampling is used to convert logarithm octave
power spectrum into logarithm linear power spectrum, its more
details can be found in [14]. For Y(k, n), its logarithm octave
power spectrum is log|Y(k, n)|2, in which log(·) represents
logarithm operation. In addition, we consider that logarithm
linear power spectrum of log|Y(k, n)|2 is log|Y(l, n)|2.

C. Discrete cosine transform

DCT is used to de-correlate the feature dimensions and
concentrate energy of logarithm octave power spectrum and
logarithm linear power spectrum, respectively. We also can
take Y(k, n) as an example. After DCT is employed on
log|Y(k, n)|2 and log|Y(l, n)|2, we obtain the coefficients as

CO(0) =
1√
NO

NO∑
k=1

log|Y(k, n)|2 (6)

CO(z) =

√
2

NO

NO∑
k=1

log |Y(k, n)|2 cos
{
(2k − 1)zπ

2NO

}
(7)

CL(0) =
1√
NL

NL∑
l=1

log |Y(l, n)|2 (8)

CL(z) =

√
2

NL

NL∑
l=l

log |Y(l, n)|2 cos
{
(2l − 1)zπ

2NL

}
(9)

where CO(0) and CO(z) represent 0th and zth order coef-
ficients obtained from octave spectrum; CL(0) and CL(z)
represent 0th and zth order coefficients obtained for linear
spectrum, respectively; z is a positive integer and ranges from
1 to Z-1, where Z is the number of coefficients selected as
feature vector dimension. NO and NL are the dimensions of
log|Y(k, n)|2 and log|Y(l, n)|2, respectively. In addition, l
represents linear frequency bin number, l = 1, 2, ..., Nl.

D. Concatenation

Finally, we concatenate the information from logarithm
octave power spectrum and logarithm linear power spectrum
together to form eCQCC features. For x(n), we can obtain its
eCQCC feature, say eCQCCx, in the following way

eCQCCx =
[
CO(0) CO(z) CL(0) CL(z)

]
(10)

where z ranges from 1 to Z-1.

III. STUDIES ON SYNTHETIC SPEECH DETECTION

In this section, the studies related to synthetic speech
detection using eCQCC features are reported on ASVspoof
2015 database. We describe the experimental setup and report
the results next.

TABLE I
ASVSPOOF 2015 DATABASE SPECIFICATIONS

Subset # Speakers # Utterances
Male Female Genuine Spoofed

Training 10 15 3,750 12,625
Development 15 20 3,497 49,875

Evaluation 20 26 9,404 184,000

TABLE II
RESULTS (AEER(%)) ON ASVSPOOF 2015 DEVELOPMENT SET USING

ECQCC FEATURES UNDER DIFFERENT CONFIGURATIONS.

SDN FC S1 S2 S3 S4 S5 AEER
D 0.0 0.0 0.0 0.0 0.010 0.002

26 A 0.0 0.0 0.0 0.0 0.0 0.0
DA 0.0 0.0 0.0 0.0 0.028 0.006
D 0.0 0.0 0.0 0.0 0.0 0.0

40 A 0.0 0.0 0.0 0.0 0.0 0.0
DA 0.0 0.0 0.0 0.0 0.0 0.0
D 0.0 0.0 0.0 0.0 0.0 0.0

60 A 0.0 0.0 0.0 0.0 0.0 0.0
DA 0.0 0.0 0.0 0.0 0.0 0.0

A. Database description

The ASVspoof 2015 corpus is constituted by three subsets:
training set, development set and evaluation set, each part
consists of natural and spoofed speech. The spoofed speech
is generated from original genuine speech with different voice
conversation and speech synthesis algorithms. There are 10
spoofing-attack algorithms (referred as S1 to S10) to generate
the spoofed utterances, their more details can be found in [1],
[2]. In addition, all the three subsets contain spoofing type
S1 to S5, which are denoted as known attacks, whereas S6
to S10 only appear in the evaluation subset and are referred
as unknown attacks. ASVspoof 2015 corpus is often used for
synthetic speech detection based studies. Table I summarizes
the composition of the database.

B. Evaluation protocol

According to the ASVspoof 2015 challenge protocol, there
are 3,750 genuine utterances and 12,625 spoofed utterances
from the training set that are used to train respective models.
Development data can be used to tune the model parameters.
Equal error rate (EER) for individual condition and average
equal rate (AEER) across all the conditions are used as
evaluation metrics for this database.

C. Experiment setup

In CQT, all parameters are set according to [14], which
are the number of bins per octave set to 96, the number of
octaves set to 9, the sampling period set to 16 and the gamma
set to 3.3026. In speaker recognition and speech recognition,
13 and 20 are often selected as the feature static dimension
number (SDN). In addition, high number, for example, 30, can
be used to investigate whether higher order coefficients contain
additional useful information [14]. Thus, Z is set as 13, 20 and
30 in our work. In other words, 13, 20 and 30 dimensional
feature vectors are obtained from linear power spectrum and
octave power spectrum, respectively. We have used the equal
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TABLE III
EXPERIMENT RESULTS (AEER(%)) ON ASVSPOOF 2015 EVALUATION SET USING ECQCC-A UNDER DIFFERENT SDNS.

SDN Known attack Unknown attack AEERS1 S2 S3 S4 S5 S6 S7 S8 S9 S10
26 0.0 0.007 0.0 0.0 0.005 0.005 0.0 0.004 0.0 0.30 0.035
40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.037 0.0 0.791 0.083
60 0.0 0.006 0.0 0.0 0.005 0.005 0.005 0.083 0.004 0.756 0.087

dimensions from both the power spectra that results in 26, 40
and 60 as the feature SDN in case of eCQCC.

As found in [14], static features may be counter effective
in spoofing detection. Here we only use delta (D) and accel-
eration (A) in eCQCC. We are interested in the performance
of eCQCC-A, eCQCC-D and eCQCC-DA as different feature
combinations. The computational network Toolkit (CNTK)
is used to train DNN, which is used as classifier in our
experiment. In addition, during the DNN training process,
stochastic gradient descent (SGD) is used. A series of 6-layer
DNN classifier is trained, which has 4 hidden layer with 512
nodes at every layer along with output layer with 2 nodes and
the input node is constituted by a 11-frame context window
of the input feature vector.

D. ASVspoof 2015 development set: Results and analysis

Table II shows the experimental results on the develop-
ment set of ASVspoof 2015 database using different feature
combinations (FC) of eCQCC features under different SDNs.
We have several observations from Table II: (1) When SDN
equals 26, eCQCC-A performs much better than eCQCC-D
and eCQCC-DA according to AEER. (2) When SDN equals
40 or 60, the performance of eCQCC-A, eCQCC-D, eCQCC-
DA is the same, which suggests that eCQCC captures the
artifacts well in ASVspoof 2015 development set. (3) Finally,
eCQCC-A consistently outperforms others, suggesting that it is
a more reliable representation. Therefore, we have decided to
use eCQCC-A as the feature for run-time testing on ASVspoof
2015 evaluation set.

E. ASVspoof 2015 evaluation set: Results and analysis

In this subsection, eCQCC-A is used as a feature to
evaluate eCQCC performance on synthetic speech detection
under ASVspoof 2015 evaluation set. Table III shows the
experiments under different SDNs using eCQCC-A. It can
be seen that eCQCC-A provides the best performance on
ASVspoof 2015 evaluation set when SDN equals 26. An
AEER of 0.035% is obtained, which suggests that eCQCC-A
well characterizes the artifacts in ASVspoof 2015 evaluation
set. In addition, we can observe that the higher order of coeffi-
cients doesn’t lead to better performance, which suggests that
the discriminative information in ASVspoof 2015 evaluation
set mainly locates in around the low order coefficients.

F. Features based on different power spectra: A comparison

Now we compare the group of features based on power
spectrum for synthetic speech detection. In Fig. 1, let us
consider the DCT coefficients obtained using only the oc-
tave power spectrum and we refer as constant-Q coefficients

TABLE IV
COMPARISON OF ECQCC-A WITH CQC-A AND CQCC-A ON ASVSPOOF

2015 EVALUATION SET IN TERMS OF AEER(%).

Feature Power spectrum AEER
CQC-A Octave 0.52

CQCC-A Linear 0.11
eCQCC-A Octave and linear 0.04

(CQC). Additionally, when we do not consider the modules
related to the octave power spectrum in Fig. 1, the CQCC
feature is obtained using only the linear power spectrum. We
remind here that as the mentioned earlier, eCQCC feature is
obtained using both linear power spectrum and octave poser
spectrum.

Table IV provides a comparison among CQC-A, CQCC-
A and eCQCC-A, in which the SDN of CQC, CQCC and
eCQCC are considered as 13, 13 and 26, respectively. In
addition, CQC-A and CQCC-A have their own DNN classifiers
for ASVspoof 2015 evaluation set. Their training methods
are the same as eCQCC DNN classifiers for ASVspoof 2015
evaluation set.

From Table IV, it can be seen that eCQCC-A performs
better than CQC-A and CQCC-A on ASVspoof 2015 evalua-
tion set in terms of AEER. The performance with eCQCC-
A improves by 92.3% when compared to CQC-A, which
indicates that the linear power spectrum has complementary
information from the octave power spectrum for synthetic
speech detection. Additionally, with respect to CQCC-A the
AEER of eCQCC-A reduces by 64%, this too proves the
additional information carried by both the power spectra. In
conclusion, the linear power spectrum has complementary
information from octave power spectrum for synthetic speech
detection. Thus, when the information obtained from both
of them are combined, it results into an improvement that
confirms our hypothesis.

IV. STUDIES ON REPLAY SPEECH DETECTION

In this section, the studies related to replay attacks using
eCQCC features are reported on ASVspoof 2017 Version 2.0
database (ASVspoof 2017 V2) for replay speech detection.
The details are mentioned in the following subsections.

A. Database description

The ASVspoof 2017 corpus is collected using 26 playback
devices and 25 recording devices in 26 different environ-
ments [12], [13]. It was originally released for the ASVspoof
2017 challenge [11]. However, the organizers found some
zero-value samples and silence in ASVspoof 2017 corpus
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TABLE V
ASVSPOOF 2017 V2 DATABASE SPECIFICATIONS.

Subset # Speakers # Utterances # Genuine # Spoofed
Training 10 3,014 1,507 1,507

Development 8 1,710 760 950
Evaluation 24 13,306 1,298 12,008

TABLE VI
EXPERIMENTAL RESULTS (EER(%)) ON ASVSPOOF 2017 V2

DEVELOPMENT SET USING DIFFERENT FEATURE COMBINATIONS OF
ECQCC DYNAMIC FEATURES UNDER DIFFERENT SDN, RESPECTIVELY.

SDN Feature combinations
D A DA

26 18.53 14.91 16.35
40 17.23 13.90 17.59
60 17.26 13.43 13.97

that can affect the result of playback detection. In 2018, the
organizers updated ASVspoof 2017 by removing those zero-
value samples and silence, and named the corrected version
as ASVspoof 2017 V2 [13]. This database is constituted by
three subsets: training, development and evaluation set. Table
V summarizes the composition of the ASVspoof 2017 V2
database.

B. Evaluation protocol

According to ASVspoof 2017 challenge protocol, the per-
formances are to be reported on two sets, namely, development
and evaluation set. The results on the development set can
be used for tuning the performance of the evaluation set.
Additionally, EER is used as the primary evaluation metrics.

C. Experiment setup

The experimental setup for replay attack based studies fol-
lows the same that is considered for synthetic speech detection.

D. ASVspoof 2017 V2 development set: Results and analysis

Table VI shows the experimental results on ASVspoof
2017 development set using different feature combinations of
eCQCC dynamic features. The table infers to the following:
(1) For all SDN setups, eCQCC-A always gives the best
performance followed by eCQCC-DA. (2) When SDN equals
60, the EER of eCQCC-A reaches minimum. In conclusion,
when SDN equals 60, eCQCC-A and eCQCC-DA can be used
as features to evaluate ASVspoof 2017 V2 evaluation set.

E. ASVspoof 2017 V2 evaluation set: Results and analysis

Fig. 2 demonstrates the experimental results on ASVspoof
2017 V2 evaluation set using eCQCC-A and eCQCC-DA
when SDN equals 60. It can be seen that the performance of
eCQCC-DA is much better than eCQCC-A unlike the trend of
results obtained on the development set. This may be due to
the fact that the replay and playback devices along with the
environments used are very different for evaluation set than
that used in development set.

eCQCC-A eCQCC-DA
16.94 13.38

0 5 10 15 20

EER eCQCC‐A eCQCC‐DA

Fig. 2. Experimental results (EER(%)) on ASVspoof 2017 V2 evaluation set
using eCQCC-A and eCQCC-DA.

TABLE VII
COMPARISON OF ECQQCC-DA WITH CQC-DA AND CQCC-DA ON

ASVSPOOF 2017 V2 EVALUATION SET IN TERMS OF EER(%).

Feature Power spectrum EER
CQC-DA Octave 18.73

CQCC-DA Linear 15.46
eCQCC-DA Octave and linear 13.38

F. Features based on different power spectra: A comparison

In this subsection, the performance of CQC-DA, CQCC-DA
and eCQCC-DA is compared to observe if it follows similar to
that obtained for synthetic speech detection. Table VII shows
the comparison of eCQCC-DA with CQC-DA and CQCC-DA
ASVspoof 2017 V2 evaluation set, in which the SDN of CQC,
CQCC and eCQCC are 30, 30 and 60, respectively. Further,
CQC-DA and CQCC-DA based systems have their individual
DNN classifiers for ASVspoof 2017 V2 evaluation set. Their
training methods are the same as that of eCQCC based DNN
classifiers for ASVspoof 2017 V2 evaluation set.

From Table VII, it can be seen that eCQCC-DA performs
better than CQC-DA and CQCC-DA on ASVspoof 2017 V2
evaluation set in terms of EER. The performance with eCQCC-
DA improves by 34% when compared to CQC-DA features.
Additionally, on comparing with CQCC-DA performance,
EER of eCQCC-DA reduces by 20%. This indicates the
complementary nature of information being carried by linear
and octave power spectra. Thus, this confirms our hypothesis
for replay attack based spoof detection similar to the case
of synthetic speech detection. Finally, the studies under both
the databases for synthetic and replay attacks confirms the
importance of having a feature representation in terms of
eCQCC feature for improved detection of spoofing attacks.

V. CONCLUSIONS

This work proposes a new feature referred to as eCQCC,
which is obtained by using both linear power spectrum and
octave power spectrum. The conventional CQCC features
extracted only using linear power spectrum are found to
dominate in the field of spoof detection. The proposed eCQCC
feature is hypothesized to carry additional information due
to use of coefficients extracted using octave power spectrum
along with that obtained from linear power spectrum. The
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studies are conducted on both synthetic and replay attack
based databases ASVspoof 2015 and ASVspoof 2017 V2,
respectively. The experiments depict that the eCQCC feature
is able to have better discriminative ability for detection of
spoofing attacks than the original CQCC features. This shows
the complementary and useful information carried by the oc-
tave power spectrum. The future work will focus on combining
the information from octave and linear power spectrum in a
more effective manner to have the maximum benefit out of it.
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