
Doubly Sparse Bayesian Kernel Logistic Regression
Atsushi Kojima and Toshihisa Tanaka

Department of Electrical and Electronic Engineering
Tokyo University of Agriculture and Technology, Tokyo, Japan

E-mail: kojima15@sip.tuat.ac.jp, tanakat@cc.tuat.ac.jp
Tel/Fax: +81-42-388-7123

Abstract—When input patterns have redundant features in re-
gression analysis or pattern recognition, the prediction accuracy
is likely to be lowered. For a kernel regression in a reproducing
kernel Hilbert space, as the number of observed input patterns
increases, the dimension of parameters increases since a kernel
regression model using the kernel method is represented by
the linear sum of kernel functions corresponding to input
patterns. This can yield overfitting. This paper proposes a method
for simultaneously selecting features and model coefficients. To
express a sparsity of the features and the weight coefficients, we
generate binary vectors, where all the elements are 0 or 1 sampled
from the beta process. The proposed method can select effective
features and estimate sparse weight coefficients by introducing
the binary vectors into the kernel regression model. Numerical
examples support the efficacy of the proposed method.

I. Introduction

Supervised learning is the machine learning task of inferring
a function from labeled training data. The training data consist
of a set of training examples. In supervised learning, each
example is a couple of an input object and the desired output
value. The supervised learning analyzes the training data and
produces an inferred function, which can be used for mapping
new examples. We use a technique called regression analysis.
Regression analysis is a statistical technique for investigating
and modeling the relationship between two variables. This
technology can extract hidden patterns from large amounts
of data and classify and predict unknown data.

The goal is to learn input-output mapping function based
on the set of N training examples, {(x(1), y(1)), . . . , (x(N), y(N))},
where x(i) is the feature vector of the i-th example and y(i) is
its label. We employ the square error or the cross-entropy as
the error function depending on the problem to be solved. In
general, in the case of the regression problem, we use a square
error and regard the linear regression model as a regression
model. Also, in the case of the classification problem, we
employ the cross-entropy and regard the logistic regression [1]
as the regression model. The logistic regression model is a well
known two-value classification method in the field of machine
learning. This model predicts the probability of the categorical
dependent variables.

Many situations require nonlinear regression models since
systems in the real environments can be modeled nonlinear.
One of the nonlinear regression models is a regression model
using a kernel method [2] in a reproducing kernel Hilbert space
(RKHS). It is possible to construct the nonlinear regression

model effectively by the RKHS space and positive definite
kernel by using the kernel method. Applying the kernel
method to the logistic regression as done for support vector
machine (SVM) [3], [4], a robust non-linear version of the
logistic regression is obtained called kernel logistic regression
(KLR) [5].

When the observed patterns have redundant feature values
or irrelevant feature values to object variable, the prediction
accuracy of the model is reduced. Hence, it is necessary to
select useful feature for improving the prediction accuracy [6].
Traditional feature selection methods can be classified into
three types; filter method, wrapper method, and embedded
method by the selection criteria [6]. The filter method selects
features as a pre-treatment independently of the learning the
classifier. Typical techniques include Fisher Score [7], Lapla-
cian Score [8], a technique based on correlation of each feature
and label [9], and a technique based on mutual information of
each feature and label are proposed [10]. These techniques
computational cost are low, but the accuracies of the models
are low since they dont require the constructing of learning
models.

Another implementation of KRL is the model selection.
KLR algorithms have linearly growing structures with number
of training samples since their regression models are repre-
sented by the linear sum of kernel functions corresponding to
input patterns. This poses both computational issues. Hence,
it is necessary to select the appropriate model for the kernel
regression model in RKHS.

One model selection method is to use an `0-norm or an `1-
norm [11]–[19]. Another is to use Bayesian inference to obtain
sparse parameter [20]. The effectiveness of these techniques
have been confirmed. In terms of Bayesian inference, the
regularization using the `1-norm assumes the Laplace distri-
bution to the prior distribution of parameters. In the Laplace
distribution, parameters of the model are closer to 0, and
the higher probability is assigned. However, according to the
definition of sparsity, it is necessary to assume a probability
distribution with 0 or non-zero binary variable. Since the
model selection using Bayesian estimation is dependent on
the prior distribution of setting parameters, the model selection
by the regularization using the `1-norm cannot be assumed the
process of generating the appropriate model. Therefore, in the
sparse parameter estimation, a nonparametric Bayesian method
using beta process has been proposed. In recent studies, it
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was reported that we can get sparse parameters in a factor
analysis [21], sparse linear regression [22], and sparse kernel
regression [23].

This paper proposes a dual sparsification method, which
is based on sampling, for regression coefficients and feature
values of the input pattern in the KLR model in RKHS. In the
proposed method, to express a sparsity of the features and the
weight coefficients, we generate binary vectors, where all the
elements are 0 or 1 sampled from the beta process. We can
estimate the binary vectors by deriving an estimation algorithm
of the posterior distribution using Gibbs sampling [24]. Nu-
merical examples support the efficacy of our proposed method.

II. Kernel Logistic Regression in RKHS

It is a well known two-value classification method in the
field of statistical learning. The logistic regression predicts the
probability of the categorical dependent variables. Let X ⊂ RD

and x ∈ X denote the input space and the input pattern. Given
the set of N training data

{
x(i)

}N−1

i=0
and the corresponding

label
{
t(i)

}N−1

i=0
, t(i) ∈ {0, 1}. Consider the problem of solving

the discriminant function f (x) to give y = σ ( f (x)), where{
y(i)

}N−1

i=0
is outputs of the logistic regression model and σ(·) is

a sigmoid function. The logistic regression model is described
as

f (x) =

D−1∑
j=0

w jx j, (1)

y = σ( f (x)) =
1

1 + exp (− f (x))
, (2)

where w j ∈ R is the regression parameter. Let the regression
function f be the elements in RKHS H . By representer
theorem [2], f (x) is described as

f (x) =

N−1∑
j=0

α( j)k(x( j),x), (3)

where k(·, ·) ∈ H is a reproducing kernel and meets repro-
ductive property f (χ) = 〈 f (x), k(x,χ)〉 and α ∈ RN is the
coefficient vector.

In the kernel logistic regression, a single output variable
t(i) follows a Bernoulli probability function that tales on the
value 1 with probability σ( f (x(i))) and 0 with probability
1 − σ( f (x(i))). We use maximum likelihood to determine the
parameters of the logistic regression model. The likelihood
function with respect to y is described as

p(t|y) ∼
N−1∏
i=0

Bernoulli
(
t(i)|y(i)

)
(4)

=

N−1∏
i=0

{
y(i)

}t(i) {
1 − y(i)

}1−t(i)

. (5)

The optimal model parameters are found by minimizing the
error function representing the negative log-likelihood of the

data. The error function is given by cross-entropy as

E(α) = − ln p(t|y) = −

N−1∑
i=0

{
t(i) ln y(i) + (1 − t(i)) ln (1 − y(i))

}
.

(6)

III. Sparse Kernel Logistic Regression Based on Graphical
Model

We formulate the problem of finding sparse input feature xk

and the coefficient vector α. To solve the problem, we propose
a method for feature selection and model selection in sparse
kernel regression model.

A. Formulation of Sparse Kernel Logistic Regression in RKHS

In [25], the binary vectors ζ and z, where all elements are
either 0 or 1, are introduced to promote the sparsity of the
KLR model in RKHS. The model is given as

f (x) =

N−1∑
j=0

(α( j) � z( j))k(x � ζ,x( j) � ζ), (7)

y = σ ( f (x)) =
1

1 + exp (− f (x))
. (8)

B. Generative Model

Assume that the parameters in (7) are generated from the
beta process model [23] in sparse KLR:

y|t, ζ ∼
N−1∏
i=0

Bernoulli
(
y(i)|t(i), ζ

)
, (9)

y|t, z ∼
N−1∏
i=0

Bernoulli
(
y(i)|t(i), z(i)

)
, (10)

α ∼ N(0, ξ−1IN), (11)
ζk |ηk ∼ Bernoulli(ηk), (12)
ηk ∼ Beta(τ, υ), , (13)

z(i)|q(i) ∼ Bernoulli(q(i)), (14)

q(i) ∼ Beta(β, γ), (15)

where IN is the identity matrix of size N. The graphical model
for the above generative model is illustrated in Fig. 1. In the
above equations, ζk denotes the Bernoulli distribution with
hyperparameter ηk and z(i) denotes the Bernoulli distribution
with hyperparameter q(i), where ηk and q(i) have the beta
distribution that is the conjugate prior of Bernoulli distribution.
Besides α is the Gaussian distribution with average 0 and
covariance matrix ξ−1IN , where ξ is a hyperparameter for the
variance of α.

IV. Inference

When we observe y, the posterior with respect to ζ is given
by,

p(ζ |t,y) ∝ p(y|t, ζ)p(ζ). (16)

We find ζ by maximizing this posterior distribution. Then, the
posterior with respect to z is also given by

p(z|t,y) ∝ p(y|t, z)p(z). (17)
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⇣k ⌘k ⌧, ⌫y(i)t(i)

Fig. 1: Graphical model for observed patterns.

We find z by maximizing this posterior distribution. Finally,
we estimate α from the posterior distribution:

p(α|t,y) ∝ p(y|t, z)p(z). (18)

In the following, these parameters are derived.

A. Prior Distribution for Binary Vectors

Prior distributions of ζ and z are derived from (12)–(15).
When we choose τ =

aζ
D , υ = 1 in (13), we get corresponding

prior distribution p(ζ) by marginalizing p(ζ,η) using (12) and
(13) which is described as

p(ζ) =

∫
p(ζ,η)dη

=

∫
p(ζ |η)p(η)dη

=

∫ D−1∏
k=0

p(ζk |ηk)p(ηk)dηk

=
aζ
D
·

Γ(
∑D−1

k=0 ζk + aζ)Γ(D −
∑D−1

k=0 ζk + 1)
Γ(D + aζ + 1)

. (19)

Conversely, when we choose β =
az
N ,γ = 1 in (15), we get

corresponding prior distribution p(z) by marginalizing p(z, q)
using (12) and (13) which is described as

p(z) =

∫
p(z, q)dq

=

∫
p(z|q)p(q)dq

=

∫ N−1∏
i=0

p(z(i)|q(i))p(q(i))dq(i)

=
az

N
·

Γ(
∑N−1

i=0 z(i) + az)Γ(N −
∑N−1

i=0 z(i) + 1)
Γ(N + az + 1)

. (20)

As p(ζ) and p(z) do not change even if replacing 1 and 0 or ζ
and z themselves with each other in the ζ and z, it is necessary
to consider ζ and z which are equivalent even if interchanging
elements. D0 and D1 are the numbers of zero and one included
in ζ, respectively. N0 and N1 are the numbers of zero and
one included in z. Since the number of combinations of the
elements in ζ and z are D!

D0!D1! and N!
N0!N1! , respectively, the

distribution of ζ and z are equivalent to the distributions of

D1 and N1:

p(ζ) = p(D1)

=
D!

D0!D1!
aζ

Γ(D1 + aζ)Γ(D − D1 + 1)
Γ(D + aζ + 1)

, (21)

p(z) = p(N1)

=
N!

N0!N1!
az

Γ(N1 + az)Γ(N − N1 + 1)
Γ(N + az + 1)

, (22)

where aζ and az are parameters of the Poisson distribution.

B. Likelihood Function for Observed Pattern

The likelihood function to select feature for the model is
given as

p(y|t, ζ)

∼

N−1∏
i=0

Bernoulli
(
y(i)|t(i), ζ

)
=

N−1∏
i=0

(
1

1 + exp (− f f e(x(i)))

)t(i) (
1 −

(
1

1 + exp (− f f s(x(i)))

))1−t(i)

,

(23)

where f f s(x(i)) is the discriminant function for feature selec-
tion (fs) by given as

f f s(x(i)) =

N−1∑
j=0

α( j)k(x(i) � ζ,x( j) � ζ). (24)

Then, the likelihood function to select sparse logistic regres-
sion coefficients is given as

p(y|t, z)

∼

N−1∏
i=0

Bernoulli
(
y(i)|t(i), z(i)

)
=

N−1∏
i=0

(
1

1 + exp (− fms(x̃(i)))

)t(i) (
1 −

(
1

1 + exp (− fms(x̃(i)))

))1−t(i)

,

(25)

where x̃ = x�ζ is input after feature selection represented as

x̃ = x � ζ, (26)

and f f s(x̃(i)) is the discriminant function for model selection
(ms) by given as

fms(x̃(i)) =

N−1∑
j=0

(α( j) � z( j))k(x̃(i), x̃( j)). (27)

C. Maximization of Posterior Distribution by MCMC

We maximize (16) with respect to ζ and (17) with respect
to z. Since it is difficult to directly sample from posterior
p(ζ |t,y) and p(z|t,y), we find the posterior of ζk and z(i)

from p(ζk = 1|t, ζ−k,y) and p(z(i) = 1|z(−i), t,y) by Gibbs
sampling (GS) [24] which is one of The Markov Chain Monte
Carlo (MCMC) algorithm. We show an algorithm for proposed
method to Algorithm 1.
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Here, ζ−k is ζ−k = {ζ0, . . . , ζD−1} − {ζk}. Then, from Bayes’
theorem, p(ζk = 1|t, ζ−k,y) is given as

p(ζk = 1|ζ−k, t,y) ∝ p(ζk = 1|ζ−k)p(t|ζk = 1, ζ−k,y). (28)

Similarly, z(−i) is z(−i) =
{
z0, . . . , zN−1

}
−

{
z(i)

}
. Then, from

Bayes’ theorem, p(z(i) = 1|z(−i), t,y) is given as

p(z(i) = 1|z(−i), t,y) ∝ p(z(i) = 1|z(−i))p(t|z(i) = 1, z(−i),y).
(29)

Then, the posterior of α is given as

p(α|t,y) ∝ p(t|α,y)p(α). (30)

Since it is also difficult to directry sample from posterior, we
estimate the parameters of the KLR by using a variatoinal
Bayesian (VB) inference [20]. In [20], we can obtain the
corresponding variational approximation q(α) to the posterior
of regression parameters α using EM algorithm, giving a
Gaussian variational posterior of the form:

q(α) = N(α|mN , S N). (31)

E-step:

mN = S N

S −1
0 m0 +

N−1∑
i=0

(t(i) −
1
2

)Ki

 , (32)

S N = S −1
0 + 2

N−1∑
i=0

λ(ρ(i)
old)KiK>i , (33)

λ(ρ(i)
old) = −

1

4ρ(i)
old

tanh

ρ(i)
old

2

 , (34)

M-step:

ρnew =

√
K>(S N +mNm

>
N)K, (35)

where K is the kernel gram matrix defined Ki j = k(x(i),x( j)).

V. Numerical examples

Experiments were conducted to confirm the proposed meth-
ods. We used a handwritten numeric data set plus the artificial
noise to confirm the validity of feature selection by the
proposed methods. Furthermore, we used public data sets to
consider the application to pattern recognition problems. We
used public data sets to consider the application to pattern
recognition problems. Throughout the experiments, we chose
the kernel function as

k(x(i),x( j)) = exp(−δ‖x(i) − x( j)‖2). (36)

For comparison, we chose
• linear logistic regression with `1 (Linear LR-`1),
• support vector machine (SVM-RBF) [4],
• kernel logistic regression with `1 regralization (SKLR-`1),
• feature selection sparse kernel regression using sampling

(FS-SKR-Sa) [25],
• sparse kernel logistic regression using sampling and VB

(SKLR-SaVB),

Algorithm 1 Estimation binary vectors ζ and z by Gibbs
sampling

Input: Initial ζinit, Initial zinit, Initial αinit

Output: ζ, z,α
for t = 1 to Tgs f s do

for k = 1 to D do
Caluculate the posterior of ζk = 1 from (28).
if (28) > U(0, 1) then
ζk = 1

else
ζk = 0

end if
end for
Caluculate α by using VB
Caluculate the posterior of ζ[t] from (16)

end for
Select ζ and α which are the largest among[
ζ[0], . . . , ζ[Tgs f s]

]
.

for τ = 1 to Tgsms do
for i = 1 to N do

Caluculate the posterior of z(i) = 1 from (29).
if (29) > U(0, 1) then

z(i) = 1
else

z(i) = 0
end if

end for
Caluculate α by using VB
Caluculate the posterior of z[τ] from (17)

end for
Select z and α which are the largest among[
z[0], . . . ,z[Tgsms]

]
.

Algorithm 2 Estimation parmeter α by (VB) inference

Input: Initial αinit, Initial ρinit ∼ U(0, 1), Initial S 0 = ξ−1IN

Output: α
for t = 1 to Tvb do

E-step: Compute the variational posterior using ρold.
Caluculate λ[t](ρold) from (34).
Caluculate S [t] from (33).
Caluculate m[t] from (32).
M-step: Re-estimate ρnew.
Caluculate ρ[t]

new from (35).
end for
Sampling α from (31).

• feature selection sparse kernel logistic regression using
sampling and VB (FS-SKLR-Sa).

All parameters were adjusted such that all methods result in
similar sparsities.

A. Dataset

1) Handwritten numeric dataset with noise: We use a hand-
written numeric dataset from the scikit-learn [26] of Python. In

APSIPA ASC 2018980

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



TABLE I: Summary of the characteristics of the UCI datasets

Datasets #Example #Examples/Classes #Features

australian 690 383 − 307 14
breast canser 683 444 − 239 9

heart 270 150 − 120 13
diabetic 1151 540 − 611 19

ionosphere 351 225 − 126 34
sonar 208 97 − 111 60

this experiment, we chose two numbers: “3” and “8” since they
are relatively similar. They are grayscale images scaled to the
range between zero and one. To confirm the robustness against
noise, a rondom noise generatred from uniform distribution
∼ U(0, 1) was added to the input patterns. Fig. 2 shows
the digits without and with additive noise, respectively. The
numbers of “3” and “8” in the dataset are 183 and 174.

2) UCI machine learning repositry dataset: The perfor-
mances of proposed methods are tested on six real benchmark
datasets from UCI machine learning repository [27]. The 10
datasets are:

1) Australian Sign Language signs Data Set (australian)
2) Breast Cancer Data Set (breast canser)
3) Heart Disease Data Set (heart)
4) Diabetic Retinopathy Debrecen Data Set (diabetic)
5) Ionosphere Data Set (ionosphere)
6) Connectionist Bench (Sonar, Mines vs. Rocks) Data Set

(sonar)
The main characteristics of these datasets are illustrated in
Table I, which presents, for each dataset: number of exam-
ples (#Examples), number of examples per class (#Exam-
ples/Classes), number of features (#Features).

B. Evaluation of Model

To test the proposed methods, we have used the classifica-
tion Accuracy and F1-value (F1) in five-fold cross validation.
The F1 is the ability to correctly retrieve the positive data by
combining the precision defined by (37) and recall defined by
(38) obtained for the positive class.

Precision =
T P

T P + FP
, (37)

Recall =
T P

T P + FN
, (38)

Accuracy =
T P + T N

T P + FP + T N + FN
, (39)

F1 = 2 ·
Precision × Recall
Precision + Recall

, (40)

In the (37), (38), and (39), TP refers to the number of true
positive examples in test data, FP is the number of false
positive examples and FN stands for the number of false
negative exmamples.

C. Result

Table II shows the result of five-fold cross validation for
digits with noise. Fig. 3 shows the result of feature selection
using the proposed method (FS-SKLR-SaVB). It is seen that

TABLE II: Results of 2-class classification for digit with noise.

Algorithm Accuracy F1-value Sparsity

Linear LR-`1 0.938 ± 0.824 0.940 ± 0.00779 0.302 ± 0.0219
KLR-`1 0.959 ± 0.00891 0.959 ± 0.00912 0.282 ± 0.239

SVM-RBF 0.954 ± 0.00600 0.953 ± 0.00683 0.257 ± 0.0372
FS-SKR-Sa 0.925 ± 0.0713 0.928 ± 0.00669 0.198 ± 0.0396

SKLR-SaVB 0.960 ± 0.0130 0.952 ± 0.0291 0.407 ± 0.0390
FS-SKLR-SaVB 0.976 ± 0.0926 0.972± 0.0761 0.547 ± 0.0909

the proposed method (FS-SKLR-SaVB) achieves higher F1-
value than the others. This implies the efficacy of feature
selection. In addition, it is reasonable to assume that the like-
lihood function of the observed patterns follows the Bernoulli
distribution in the classification problem since the FS-SKLR-
SaVB shows better model performance than FS-SKR-Sa.

Table III shows the results of five-fold cross-validation in
the UCI dataset. The FS-SKLR-Sa achieved high F1-value in
some datasets.

VI. Conclusion

This paper proposed a method for simultaneously selecting
features and model coefficients for kernel logistic regression
in RKHS. In order to express a sparsity of the features and
the weight coefficients, we generate a binary vector where all
the elements is either 0 or 1 sampled from the beta process. It
was shown that the proposed method could effective features
and estimate sparse weight coefficients. Numerical examples
supported the efficacy of the proposed method.
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[13] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani, “Pathwise coor-
dinate optimization,” The Annals of Applied Statistics, vol. 1, no. 2, pp.
302–332, 2007.

[14] C. Kang, S. Liao, S. Xiang, and C. Pan, “Kernel sparse representation
with local patterns for face recognition,” in 18th IEEE International
Conference on, Image Processing (ICIP), 2011, pp. 3009–3012.

[15] S. Gao, I. W. Tsang, and L.-T. Chia, “Sparse representation with
kernels,” IEEE Transactions on Image Processing, vol. 22, no. 2, pp.
423–434, 2013.

[16] J. Goodman et al., “Exponential priors for maximum entropy models.”
in HLT-NAACL, 2004, pp. 305–312.

[17] S.-I. Lee, H. Lee, P. Abbeel, and A. Y. Ng, “Efficient l1 regularized
logistic regression,” in AAAI, vol. 6, 2006, pp. 401–408.

[18] G. C. Cawley and N. L. Talbot, “Gene selection in cancer classification
using sparse logistic regression with bayesian regularization,” Bioinfor-
matics, vol. 22, no. 19, pp. 2348–2355, 2006.

[19] K. Koh, S.-J. Kim, and S. Boyd, “An interior-point method for large-
scale l1-regularized logistic regression,” Journal of Machine Learning
Research, vol. 8, no. Jul, pp. 1519–1555, 2007.

[20] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[21] J. Paisley and L. Carin, “Nonparametric factor analysis with beta process
priors,” in Proceedings of the 26th Annual International Conference on
Machine Learning. ACM, 2009, pp. 777–784.

[22] B. Chen, J. Paisley, and L. Carin, “Sparse linear regression with beta

process priors,” in 2010 IEEE International Conference on, Acoustics
Speech and Signal Processing (ICASSP). IEEE, 2010, pp. 1234–1237.

[23] A. Kojima, S. Yasutomi, and T. Tanaka, “Sparse kernel regression based
on nonparametric bayesian model,” IEICE SIP, pp. 335–340, Mar. 2016.

[24] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions,
and the bayesian restoration of images,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 721–741, 1984.

[25] A. Kojima, T. Wadai, and T. Tanaka, “Dual-sparsification of kernel
regression based on graphical model,” in ITC-CSCC: International Tech-
nical Conference on Circuits Systems, Computers and Communications,
2017, pp. 192–195.

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al.,
“Scikit-learn: Machine learning in python,” The Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[27] K. Bache and M. Lichman, “UCI machine learning repository,” 2013.
[Online]. Available: http://archive.ics.uci.edu/ml

APSIPA ASC 2018982

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii


		2018-10-19T10:54:49-0500
	Preflight Ticket Signature




