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Abstract—In this paper, we deal with the signal recovery
problem in compressed sensing, that is, the problem of estimating
the original signal from its linear measurements. Recovery
algorithms can be mainly classified into two types, optimization
based algorithms and statistical modeling based algorithms. Basis
pursuit (BP) or basis pursuit denoising (BPDN) is one of the
most widely used optimization based recovery algorithms, that
minimizes the ℓ1 norm of the signal or its coefficients in some
basis under the constraint that its linear transform is equal to
or close to the observation signal. There are various extensions
of those algorithms depending on the problem structure. When
the original signal is an image, the objective function is often the
sum of the ℓ1 norm of the coefficients of the signal in some basis
and a total variation (TV) of the image. It can be considered that
it requires the image to be sparse in both the specific transform
domain and finite differences at the same time. In this paper, we
propose a statistical model that represents those sparsities and
the signal recovery algorithm based on the variational method.
One of the advantages of the statistical approach is that we can
utilize the posterior information of the original signal and it is
known that it can be used to construct the compressed sensing
measurements adaptively. The proposed recovery algorithm and
adaptive construction of the compressed sensing measurements
are validated on numerical experiments.

I. INTRODUCTION

In this paper, we consider the following linear model,

y = Ax+ ϵ, (1)

where x ∈ Rn is an original signal and it is linearly
transformed by measurement matrix A ∈ Rm×n and then a
noise ϵ is added. As a result, we obtain an observation signal
y ∈ Rm. We assume that the noise vector follows multivariate
Gaussian distribution N (0, s−1Im), where Im is an m × m
identity matrix and s is the precision parameter of the noise
and N (µ,Σ) denotes multivariate Gaussian distribution with
mean vector µ and covariance matrix Σ. In the problem of
compressed sensing, it is assumed that x is sparse in some
basis. More precisely, let n×n matrix W represent a sparsity
inducing linear transform such as the wavelet transform and
the linear transform z = Wx is assumed to be sparse.
Recovery algorithms estimate the original signal x from the
observation signal y and existing algorithms can be mainly
classified into two types, optimization based algorithms and
statistical modeling based algorithms.
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Basis pursuit denoising (BPDN) is one of the most widely
used optimization based recovery algorithms and the recov-
ered signal is obtained by solving the following constrained
optimization problem [1]1:

minimize ||Wx||1
s.t. ||y −Ax||2 < δ,

(2)

where δ is the threshold parameter and it is usually set below
the expected noise level.

Let x represent some kind of gray scale 2-D image. That
is, let xj,k represent the signal value of (j, k) pixel of J ×
K image and x is a vector formed by rearranging them. In
such a case, total variation (TV) is used as a sparsity inducing
transform. TV for x is defined as

TV (x) =
∑
j,k

√
|xj+1,k − xj,k|2 + |xj,k+1 − xj,k|2. (3)

An anisotropic version is sometimes used since it may some-
times be easier to minimize and it is defined as

TV (x) =
∑
j,k

(|xj+1,k − xj,k|+ |xj,k+1 − xj,k|) . (4)

Hereafter, TV (·) denotes the anisotropic version of total vari-
ation. By adding TV penalty, the estimated values of adjacent
pixels tend to take similar values. It is often useful to combine
other sparsity inducing linear transform with TV penalty [2]
[3]. This is considered as requiring the image to be sparse in
both the specific transform domain and finite differences at
the same time. In this case, the recovered signal is obtained
by solving the following optimization problem:

minimize ||Wx||1 + λTV (x)
s.t. ||y −Wx||2 < δ,

(5)

where λ trades sparsity in the domain of W with finite
differences sparsity. This optimization problem can be seen
as the optimization problem in graph guided fused lasso [4].

In statistical modeling approach, it models the probability
distribution of the original signal x. It is well known that
solving (2) is equivalent to finding a maximum a posterior
(MAP) estimator of x assuming Laplace prior [5],

p(x) ∝
n∏

i=1

exp
(
−α

2
|wT

i x|
)
, (6)

1In general, it is assumed that W = In.
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where wi is the i-th row of W . It is beneficial to consider
the problem of finding not only the MAP estimator but also
the posterior distribution of the original signal since its infor-
mation is useful to many decision making problems, such as
adaptive compressed sensing [5]. However, it is very difficult
to find the posterior distribution of the original signal since it
does not have an analytic form. Figueiredo used the fact that
the Laplace distribution can be expressed as a Gaussian scale
mixture and developed an estimator using the EM algorithm
[6]. Similar model is assumed in [5] [7] [8] [9], but type-II ML
estimator is used in [5], variational method is used in [7] [8],
and Gibbs sampling is used in [9]. Similarly, Gibbs sampling
for group lasso, fused lasso, and elastic net is proposed in [10]
and variational method for group lasso is proposed in [11].

In this paper, we propose a hierarchical prior model that
expresses the following properties:

• The original signal is sparse in the transform domain with
the linear transform W .

• The adjacent pixels of the original signal tend to take
similar values. In other words, the original signal is
locally almost constant over 2-D grid.

It is a statistical model that corresponds to the optimization
problem (5) and it is also a generalization of the model
proposed in [10]. We also propose an approximation algorithm
to find the posterior distribution of the original signal based on
the variational method. As an output of the algorithm, not only
the estimator of the original signal but also an approximate
covariance matrix of its posterior distribution is obtained. As in
[5] [8], this information can be used to design the measurement
matrix adaptively.

The rest of the paper is organized as follows. In Section 2,
we describe the hierarchical model for the signal that is sparse
in some specific transform domain and locally almost constant
over a predefined graph. In Section 3, we establish an approx-
imation algorithm for computing the posterior distribution of
the original signal based on the variational method. We briefly
review how the information of the posterior distribution can be
used for the adaptive design of the measurements in Section
4. Some performance analysis of the proposed algorithm and
adaptive design based on numerical experiments are made in
Section 5. We conclude the paper in Section 6.

II. HIERARCHICAL MODEL FOR SPARSE AND LOCALLY
CONSTANT SIGNAL AND OBSERVATION MODEL

Solving the optimization problem (5) is equivalent to finding
the MAP estimator with the assumption that the prior distri-
bution of x is the following distribution and the parameters
are appropriately set.

p(x) ∝
n∏

i=1

exp
(
−α

2
|wT

i x|
) ∏

(j,k)∈E

exp

(
−β

2
|xj − xk|

)
,

(7)

where E is the set of pairs (j, k) such that xj and xk are adja-
cent pixels if (j, k) ∈ E. Unfortunately, if the prior distribution

(7) is assumed, it is very difficult to calculate the posterior dis-
tribution even if we resort to approximation methods. Instead
of that, we assume the following hierarchical prior distribution.
Conditioned on the parameters τ = (τ1, . . . , τn) ∈ Rn,
ν = (νjk)(j,k)∈E ∈ R|E|, we assume that x follows the
following distribution.

p(x|τ ,ν) ∝
n∏

i=1

exp

(
− (wT

i x)
2

2τi

) ∏
(j,k)∈E

exp

(
− (xj − xk)

2

2νjk

)
. (8)

This is equivalent to assume that p(x|τ ,ν) is the multivariate
Gaussian distribution N (0, S−1

τ ,ν), where Sτ ,ν is the matrix
defined by

Sτ ,ν = WT diag(τ−1
1 , . . . , τ−1

n )W + Lν , (9)

and Lν is the matrix whose (j, k) element is given by

(Lν)j,k =


∑

(j′,k′)∈N(j)

ν−1
j′k′ if j = k

−ν−1
jk if (j, k) ∈ E

0 otherwise,

(10)

where N(j) = {k | (j, k) ∈ E or (k, j) ∈ E}. We further
assume that τ and ν follow the following distributions.

p(τ |aτ , bτ , ρτ ) =
n∏

i=1

GIG(τi|aτ , bτ , ρτ ), (11)

p(ν|aν , bν , ρν) =
∏

(j,k)∈E

GIG(νjk|aν , bν , ρν), (12)

where GIG(·|a, b, ρ) denotes the generalized inverse Gaussian
distribution with parameters a, b, ρ. The probability density
function of the generalized inverse Gaussian distribution is
given by

GIG(x|a, b, ρ) ∝ xρ−1 exp

(
−1

2
(ax+ bx−1)

)
. (13)

As a special case, the generalized inverse Gaussian distribution
coincides with the exponential distribution when b → 0 and
ρ = 1. In such a case, the marginal distribution of x is given
by

p(x|aτ , aν) ∝
n∏

i=1

exp

(
−
√
aτ
2

|xi|
) ∏

(j,k)∈E

exp

(
−
√
aν
2

|xj − xk|
)
.

(14)

Thus, the proposed model (8) (11) (12) is an extension of
(7). Another important case is when a → 0 and ρ < 0,
and in this case, the generalized inverse Gaussian distribution
coincides with the inverse gamma distribution. Consequently,
the proposed model includes various models in the past
studies.

• When W = In, ν = 0, aτ → 0, and ρτ < 0, the
proposed model coincides with the model in [5] [7] [9].
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• When W = In, E = {(1, 2), (2, 3), . . . , (n− 1, n)},
aτ , aν → 0, and ρτ , ρν < 0, the proposed model
coincides with the model in [10].

For the observation signal y, we assume the model (1) and
the conditional distribution of y conditioned on x and s is
given by

p(y|x, s) = N (y|Ax, s−1Im). (15)

For the precision parameter s of the noise, we assume the
gamma distribution so that it is conjugate prior for p(y|x, s),
so

p(s|ks, θs) = Ga(s|ks, θs) ∝ sks−1 exp(−θss) (16)

In summary, the following joint distribution is obtained.

p(y,x, τ ,ν, s) = p(y|x, s)p(x|τ ,ν)·
p(τ |aτ , bτ , ρτ )p(ν|aν , bν , ρν)p(s|ks, θs). (17)

In this paper, ks, θs, aτ , aν , bτ , bν , ρτ , ρν are treated as hyper-
parameters.

III. VARIATIONAL INFERENCE

Given the joint distribution (17), what we want is the
posterior distribution p(x|y), however, we have to perform a
complex integral calculation to find the posterior and it is very
hard. In this paper, we give an approximation algorithm based
on the variational Bayesian method [12]. Let ξ = (x, τ ,ν, s)
and the variational Bayesian method finds an approximation
distribution q(ξ) that approximates p(ξ|y). More specifically,
the goal is to find q(ξ) that minimizes the Kullback-Leibler
divergence KL(q(ξ)||p(ξ|y)):

q∗(ξ) = argmin
q(ξ)

∫
q(ξ) ln

q(ξ)

p(ξ|y)
dξ (18)

= argmin
q(ξ)

∫
q(ξ) ln

q(ξ)

p(ξ,y)
dξ. (19)

However, it is difficult to minimize (19) for arbitrary prob-
ability distributions. In this paper, we limit the optimization
distributions to q(ξ) that can be factorized as follows.

q(β, τ ,ν, s) = q(β)q(τ ,ν)q(s). (20)

For ξk ∈ ξ, the variational Bayes method minimizes (19) by
updating q(ξk) sequentially. With the distribution q(ξ \ ξk) of
ξ \ ξk fixed, the update equation of q(ξk) is given as follows
[12].

ln q∗(ξk) = Eq(ξ\ξk) [ln p(y, ξ)] + const. (21)

In the following, we describe concrete update equation of each
q(ξk). To keep the description concise, for functions f(ξk) of
ξk, the expectation taken by q(ξk) at the point is written as
⟨f(ξk)⟩.

A. Update equation of q(x)

From (21), the update equation of q(x) is

ln q∗(x) = Eq(ξ\x) [ln (p(y|x, s)p(x|τ ,ν))] + const.. (22)

Using the model assumption that p(y|x, s) and p(x|τ ,ν) are
Gaussian distributions, we obtain

q∗(x) = N (x̄,Σx), (23)

x̄ = ⟨s⟩ ΣxA
Ty, (24)

Σx =
(
⟨s⟩ATA+ ⟨Sτ ,ν⟩

)−1
. (25)

B. Update equation of q(τ ,ν)

From (21), the update equation of q(τ ,ν) is

ln q∗(τ ,ν) =

Eq(ξ\τ ,ν) [ln (p(x|τ ,ν)p(τ |aτ , bτ , ρτ )p(ν|aν , bν , ρν))]
+ const.. (26)

From (7), (11), and (12), without loss of generality, we can
assume that q(τ ,ν) is decomposed as follows.

q(τ ,ν) =

n∏
i=1

q(τi)
∏

(j,k)∈E

q(νjk). (27)

By arranging the terms in (26) that include τi, νjk, we obtain

q∗(τi) = GIG
(
aτ , bν +

⟨
(wT

i x)
2
⟩
, ρτ − 1

2

)
, (28)

q∗(νjk) = GIG
(
aν , bν +

⟨
(xj − xk)

2
⟩
, ρν − 1

2

)
. (29)

In order to update q(x), we need the expected values⟨
τ−1
j

⟩
,
⟨
ν−1
jk

⟩
. We describe the analytic forms of these vari-

ables for some special cases that are used in the experiments.
1. bτ , bν → 0, ρτ = ρν = 1:⟨

τ−1
i

⟩
=

√
aτ√⟨

(wT
i x)

2
⟩ , (30)

⟨
ν−1
jk

⟩
=

√
aν√

⟨(xj − xk)2⟩
. (31)

2. aτ , aν → 0, ρτ , ρν < 0:⟨
τ−1
i

⟩
=

1
2 − ρτ

1
2

(
bτ +

⟨
(wT

i x)
2
⟩) , (32)⟨

ν−1
jk

⟩
=

1
2 − ρν

1
2 (bν + ⟨(xj − xk)2⟩)

. (33)

C. Update equation of q(s)

From (21), the update equation of q(s) is

ln q∗(s) = Eq(ξ\s) [ln (p(y|x, s)p(s|ks, θs))] + const.. (34)

From the assumption that p(s|ks, θs) is gamma distribution,
we obtain

q∗(s) = Ga
(
ks +

m

2
, θs +

1

2

⟨
||y −Ax||22

⟩)
, (35)⟨

||y −Ax||22
⟩
= ||y −Ax̄||22 + Tr(ATAΣx). (36)
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The expected value ⟨s⟩ is given by

⟨s⟩ =
ks +

m
2

θs +
1
2 ⟨||y −Ax||22⟩

. (37)

IV. ADAPTIVE COMPRESSED SENSING

In this section, we consider the problem of how to design
a new measurement or projection a∗. That is, assuming
that the measurement signal y for measurement matrix A is
obtained and (approximate) posterior distribution p(x|y) is
calculated, we consider the situation that we can choose the
next measurement a∗, which will be added to the measurement
matrix A. The content in this section is a brief review of the
contents in articles [5] [8]. We adopt the expected differential
entropy of posterior distribution as an evaluation criterion for
a∗. This is defined as follows:

h(a∗) = Ep(y∗|y,A,a∗)H(p(x|y, A,a∗, y∗)), (38)

where H denotes the differential entropy function. Assuming
that p(x|y) is multivariate Gaussian distribution N (µ,Σ), we
have

h(a∗) = − ln
(
1 + saT

∗ Σa∗
)
+ const. (39)

Therefore, if we can freely design a∗, the optimal solution
is to set the eigenvector of Σ with largest eigenvalue2. If we
have to select a∗ from a set of vectors Ã, the optimal solution
is to select a∗ that maximizes a∗Σa∗ from the set Ã.

In our algorithm, the posterior distribution is approximated
with multivariate Gaussian and it outputs the covariance matrix
Σx (see (25)), this matrix can be directly used to design a∗.

V. EXPERIMENTS

A. Comparison with optimization based algorithm

The main objective of the experiments here is to examine
the utility of our proposed method by showing that it properly
works for the compressed sensing problem of a sparse image.
We consider the problem to recover the original image of the
64×64 Shepp-Logan phantom image from its compressed and
noisy observation (Fig. 1). Due to the computational cost, we
divide the image into 2×2 = 4 regions and set each image as
an original signal (therefore, n = 1024). Let x1, . . . ,x4 denote
these original signals. The original signals are multiplied by
measurement matrix A and contaminated by Gaussian noise
ϵ. The measurement matrix A ∈ R192×1024 is constructed by
drawing i.i.d. from the standard Gaussian distribution N (0, 1),
and then each row of A is normalized to unit magnitude.
The precision parameter of the noise vector is s = 1.0E6.
Daubechies 4 wavelet [13] is used for W .

For the proposed algorithm, we set the parameters as
follows. For the hyperparameters ks, θs of the precision param-
eter of the noise, we set ks = 1.0E16 and θs = 1.0E10. Con-
sidering the correspondence with the optimization problem (5),
we should set bτ , bν → 0 and ρτ = ρν = 1. However, in such
a case, we have an implementation issue in updating

⟨
τ−1
i

⟩
2We assume that ||a∗|| = 1.
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Fig. 1. Recovery results of Shepp-Logan image. Left: Original Image. Center:
Recovered image based on the proposed algorithm. Right: Recovered image
based on the optimization method (5).

TABLE I
PSNR [DB] AND SSIM OF RECOVERED IMAGES

method Proposed Optimization
MSE 5.03E-4 6.55E-4
PSNR 39.01 37.85
SSIM 0.9712 0.9671

and
⟨
ν−1
jk

⟩
according to (30) and (31) since their denominators

tend to take 0. Therefore, we consider the case where aτ , aν →
0 and ρτ , ρν < 0. The values of bτ , bν , ρτ , ρν are determined
so that they maximize p(x1, . . . ,x16|bτ , bν , ρτ , ρν)3.

For the optimization problem (5), the parameter δ is set
to 1.0E − 3, which is equal to the standard deviation of the
noise. The value of the parameter λ is determined as follows.
Considering the corresponding prior distribution (14), one way
to determine the value of λ is to set λ =

√
aν/

√
aτ . Thus, we

consider the prior distribution (8) (11) (12) with bτ , bν → 0
and ρτ = ρν = 1 and find the values of aτ , aν that maximize
p(x1, . . . ,x16|aτ , aν), and then set λ =

√
aν/

√
aτ . It is

one of the advantages of the statistical approach that we can
statistically determine the values of hyper parameters in this
way.

Table I shows mean squared error (MSE), peak signal-to-
noise ratio (PSNR) [dB] and structural similarity (SSIM) of
the recovered images. Recovered images are shown in Fig. 1.
From these results, we can see that the proposed algorithm
is competitive with the optimization based method and the
proposed method shows slightly better performance. However,
more important point is that we can obtain the information of
the posterior information of the unknown signal. We will see
this in the next experiment.

B. Adaptive compressed sensing
As discussed in Section IV, the posterior information of

x can be used to design the measurement matrix A. In this
experiment, we study the performance of the design based on
the posterior information. In this experiment, we divide the
image into 4×4 = 16 regions and set each image as an original
signal (therefore, n = 256). The initial 32 measurements are
constructed by using the standard Gaussian distribution as
in the previous experiment. The remaining 64 measurements

3In practice, these parameters should be determined by using similar images
obtained in advance.
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Fig. 2. Comparison of adaptive design and random design. The horizontal
axis shows the number of measurements and the vertical axis shows the
reconstruction error in terms of MSE.

are sequentially constructed by finding the eigenvector of the
covariance matrix of the approximate posterior distribution
with the maximum eigenvalue and then normalized to unit
magnitude. It is compared to the random construction. Fig. 2
shows the reconstruction error (MSE) of the optimized design
and random design. As with the result in [5], we can see that
the reconstruction error of the optimized design is significantly
smaller than that of the random design. This result indicates
the effectiveness of using the information of the posterior
distribution.

VI. CONCLUSIONS

In this paper, we proposed a hierarchical modeling for image
signals that are sparse in a specific transform domain and finite
differences at the same time. The proposed model includes var-
ious models of past studies as special cases. As an application
of the proposed model, we considered the compressed sensing
problem and developed an estimation algorithm for the original
signal based on the variational inference method. Experiments
results showed that the proposed method is comparative with
the optimization based method. We also showed that the
adaptive design for the compressed sensing problem based on
the information of the posterior distribution works effectively.

Although the proposed scheme is powerful, one of the main
drawbacks of it is its computational cost. In the algorithm,
it requires the inversion of a matrix and it is not practical
for very high dimensional problems. Constructing a reduced
computational complexity algorithm is a future work.
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