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Abstract—Currently, executing computation intensive and time
sensitive tasks among the network becomes a significant chal-
lenge. Traditional cloud computing executes the task with high
latency and energy cost. Mobile edge computing (MEC) is
proposed as a supplement to cloud computing. In this paper,
we formulate a problem to minimize the energy cost in MEC,
considering transmit power and latency constraints. To solve
the proposed mixed integer nonlinear programming problem, we
propose a joint Benders decomposition and distributed Dinkel-
bach algorithm. The Benders decomposition performs as an outer
loop algorithm, which separates the original problem into the
subproblem and master problem. The distributed Dinkelbach
algorithm solves subproblem in the inner loop in a distributed
manner. The simulation results show that our proposed algorithm
is energy efficient with high reliability.

Index Terms—Mobile edge computing, energy efficient, Ben-
ders decomposition, distributed Dinkelbach algorithm, resource
allocation.

I. INTRODUCTION

Currently, mobile edge computing (MEC) becomes a pop-
ular topic in developing the new generation of the wireless
communication network. Different from the traditional cloud
computing, MEC is much closer to the user devices with low
latency and better mobility. The computing nodes and small
servers provided by MEC at the edge of the network give
mobile users larger computing capability. Some heavy tasks
may be impossible for local users to execute, especially for
some Internet of Things (IoT) applications. Also, MEC can
reduce the latency comparing to cloud computing. Although
the MEC has a limited capacity for certain tasks, it performs
as a good tradeoff between computing and delay.

Energy efficient design is significant in MEC. This is due
to the maximum available energy of the users’ devices are
constrained by battery capacity [1]. There are many energy-
consuming tasks for the mobile devices, such as playing 3-D
games and editing videos. By offloading computation-intensive
tasks to the edge cloud, mobile user devices can reduce energy
consumption remarkably. The energy cost in the local device
is more critical since the edge cloud usually keeps charging.
Although the users can choose to offload the tasks to the edge
cloud, both communication and local computing cost a large
amount of energy. Thus, energy efficient algorithms are often
proposed to save the battery life of the devices. Moreover,
beamforming and MIMO can be introduced to reduce the costs
of communicating [2].

Although the energy efficient and latency constrained MEC
network has been studying deeply and widely, there is little

work gives the general algorithm framework for the mixed in-
teger programming in this scenario. In this paper, we consider
the energy efficient MEC network. Our goal is to minimize
the energy cost with the constraints of transmit power and
latency. The main contributions of this paper are summarized
as follows.

• We formulate the energy efficient MEC optimization
problem as a mixed integer nonlinear programming prob-
lem (MINLP). The transmit power and latency constraints
are both considered.

• We propose an algorithm framework by joint Benders de-
composition and distributed Dinkelbach algorithm. Ben-
ders decomposition is adopted for separating the original
problem into a subproblem and master problem. The
distributed Dinkelbach algorithm is used for dealing
with the fractional programming form of the subproblem
distributedly. The algorithm framework is easy for solving
general mixed integer programming problems in mobile
edge computing.

• We implement and verify our proposed algorithm in the
section of simulation results. The convergence of our
algorithm is fast and the solution is the global optimal
solution. The rest of the simulation results show the good
performance of the algorithm.

The rest of the paper is organized as follows. In Section II,
the related work on mobile edge computing in different aspects
is presented. In Section III, we introduce the system model and
formulate the optimization problem for the MEC network. In
Section IV, we give the whole procedure and discussions of
the proposed algorithm. The simulation results are shown in
Section V, and Section VI concludes the paper.

II. RELATED WORK

Nowadays, MEC network is considered as a crucial tech-
nique to alleviate the burden of the network and improve
the Quality of Service (QoS). Many researchers propose
new designs and architectures to enhance the performance
of edge computing. In [4], the authors propose a data-driven
model to optimize the unmanned aerial vehicles (UAVs) aided
edge computing network where the users are smart vehi-
cles detecting cyber-threat using a probabilistic data structure
(PDS)- based approach. In [5], the authors propose coded
computation in the mobile edge computing with the benefits
of optimality, universality, and mobility. In [6], the authors
propose an IoT architecture for the quick service restaurants
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and describe various edge computing applications. In [7], the
authors propose the Stackelberg game-based ADMM to solve
the proactive caching in large-scale mobile edge networks.
In [8], the authors give a framework of edge computing for
healthcare application, which using deep learning with high
accuracy. In [9], the authors introduce the former standards for
edge computing and propose a novel framework with moving
resources closer distance to the users to reduce the signaling
and latency for IoT services.

Energy efficiency is an important research area for MEC.
Not only energy efficient algorithms are proposed, but also
architecture and battery techniques are improved. In [10], the
authors propose a user-centric energy-aware mobility man-
agement (EMM) scheme in Ultra-Dense Networks (UDN). In
[11], the authors propose a novel framework for small-cell base
stations (SBSs) edge computing by maximizing the system
performance and constrained by energy. In [12], the authors
consider energy consumption of offloading in small cells from
both task computation and communication aspects, including
fronthaul and backhaul. In [13], the authors give a framework
in edge computing with renewable energy resources, which
edge computing system and power supply system should
cooperate together. In [14], the authors propose an energy-
efficient vehicular edge computing (VEC) framework with
battery constraint, which is solved by an alternating direc-
tion method of multipliers (ADMM)-based energy-efficient
resource allocation algorithm.

Latency is another key factor in computing, which is often
the major requirement for many applications. Thus, many
works have been down considering both energy and latency
in MEC networks. In [15], the authors joint optimize com-
munication and computing in MEC with energy and latency
constraints. In [16], the authors propose the mobility-aware
hierarchical MEC framework with low energy cost and latency.
In [17], the authors analyze both the computation latency and
communication latency in the MEC network composed by a
radio access network cascaded with a CS network. In [18],
the authors give an online dynamic tasks assignment for the
MEC system with energy harvesting (EH) ability to make the
tradeoff between energy and latency.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the frame of our system.
Then, the problem of the network is formulated.

A. System Model

We consider there are N mobile device users within the
edge cloud network. For each user, a computation task needs
to be executed locally or offload to the edge cloud. The task
model is assumed as the same as [19] which denoted as Un =
(ωn, sn), where ωn is the overall CPU cycles per bit for the
task and sn is the data length of the task. In this paper, we
assume that the task is not divisible which means the users
can only choose to compute task locally or offload to the edge
cloud. For the nth user, we use hn to denote the channel gain
between the edge cloud and the user. In this paper, we assume

that the channel state information (CSI) is known at the edge
cloud. In addition, the users do not move during offloading,
which means hn is a constant. We assume that there is no
interference among edge computing users. Thus, the uplink
data rate for the nth user can be expressed as

Rn = Blog2

(
1 +

pnhn
σ2

)
, (1)

where B is the available bandwidth. pn is the transmit power
for the nth user. σ2 is the noise power of the devices. The
MEC has two different kind of delay, which are transmission
delay and computing delay. The transmission delay for the nth

user is calculated as
T tn =

sn
Rn

. (2)

For the computing delay, we assume that the edge cloud
allocates Ωen computing resources to the nth user. Thus the
computing duration on the edge cloud for the nth user is
formulated as

T cn =
ωn
Ωen

. (3)

Thus, the time duration of the nth user’s task on the edge
cloud is given as follows

T en = T tn + T cn =
sn
Rn

+
ωn
Ωen

. (4)

For the local computing delay, we assume the capability of
computing for the nth user is Ωln. Thus, the time consumed
at the local user device is as

T ln =
ωn
Ωln

. (5)

As the common consumption in most papers, we assume that
the delay of sending computing results back to the users is not
included in our formulation. The reason to do so is that the
data length of the result is much smaller than the input data
and the data rate downlink is higher than the uplink.

The energy consumptions happen both for local computing
users and edge computing users. For the nth local computing
user, the energy cost is given as

Eln = φ
(
Ωln
)2
ωn, (6)

which is the same as proposed in [20]. φ is the parameter
corresponding to the different chip architecture. For the nth

edge computing user, the energy is mainly consumed during
the transmission, which is shown as

Een = pnT
t
n =

pnsn
Rn

. (7)

B. Problem Formulation

We aim to minimize the energy cost for the MEC network.
We use δn to indicate the computing strategy of the nth user. If
the user choose to offload the task to the edge cloud, δn = 1.
Otherwise, δn = 0. Furthermore, we use pmaxn to indicate
the maximum transmit power for the nth user. T totaln is the
computing deadline for the nth task.
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Thus, the problem is formulated as

min
δ,p

N∑
n=1

δnE
e
n +

N∑
n=1

(1− δn)Eln (8)

s.t 0 ≤ pn ≤ pmaxn ∀n, (9)

δnT
e
n + (1− δn)T ln ≤ T totaln ∀n, (10)

δn ∈ {0, 1} ∀n, (11)

where constraint (9) is the maximum transmit power constraint
for all users. Constraint (10) indicates that the delay for the
tasks cannot exceed the tolerance. Constraint (11) is the binary
constraint for the binary variable.

The problem formulated is an MINLP problem. In the next
section, we will propose the joint Benders decomposition and
Dinkelbach algorithm to solve problem (8).

IV. PROPOSED ALGORITHM

In this section, we propose our algorithm which is composed
by the Benders decomposition and Dinkelbach algorithm. The
Benders decomposition is the outer loop algorithm, and the
Dinkelbach algorithm performs the inner loop algorithm.

A. Benders Decompostiion

Benders decomposition is widely used for solving mixed
integer programming. The principle is to separate the prob-
lem into two kinds of problems and solve them iteratively.
The whole procedure for solving our proposed problem is
described as follows.

First, we need to initialize the parameters for the iteration.
The loop index i is set as 1. The scalar variable α, which will
be explained later, is set to αdown with enough low value.

Then, we need to solve the subproblem. The subproblem
is formulated by fixing the binary variable of the original
problem. Thus, the continuous subproblem is given as

min
δ,p

N∑
n=1

δnE
c
n (12)

s.t (9), (10),

δn = δin, ∀n. (13)

δin is the fixed constant in the ith iteration. We denote that the
dual variable for the constraint (13) is γin. This subproblem is
solved by the Dinkelbach algorithm which is presented in the
Section IV-B.

Next, we need to generate the upper bound and lower bound
for the iteration control. The upper bound is given by obtaining
the result of subproblem, which is calculated as

U i =

N∑
n=1

δin
pinsn

Blog2

(
1 +

pinhn
σ2

) +

N∑
n=1

(1− δin)φ
(
Ωln
)2
ωn,

(14)
where pin is the optimal solution from the subproblem in the
ith iteration. The lower bound is

Li = αi, (15)

Algorithm 1 Benders Decomposition

1: Initialize: loop index i, αi = αdown.
2: while U i − Li ≥ ε do
3: Subproblem
4: solve subproblem using Dinkelbach algorithm
5: Bounds calculation
6: calculate upper and lower bound U i and Li

7: by (14) and (15)
8: Master problem
9: step 1: update loop index i = i+ 1

10: step 2: add new Benders cut to the problem (16)
11: step 3: solve the problem in (16) to obtain the
12: optimal value of δ and α
13: end while

which is given from the master problem. The iteration stops
when the difference between the upper bound and lower bound
is less than the pre-defined threshold.Otherwise, the iteration
will go on.

Then, we need to solve the master problem. After we update
the loop index i = i+1, the continuous variable p is fixed to
the previous solution. The master problem is formulated as

min
α

α (16)

s.t
N∑
n=1

δµn
pµnsn

Blog2

(
1 + pµnhn

σ2

) +
N∑
n=1

(1− δµn)φ
(
Ωln
)2
ωn

+
N∑
n=1

γµn (δn − δµn) ≤ α µ = 1, ..., i− 1, (17)

αdown ≤ α, (18)
(11).

Constraint (17) is called the Benders cut, and it is generated
from the previous iterations. In each iteration, a new Benders
cut will added to the master problem to make a better approx-
imation using hyperplanes. By solving the master problem,
we can obtain the optimal solution of the binary variable
for solving the subproblem in the next iteration. The whole
procedure is described in Algorithm 1.

B. Distributed Dinkelbach Algorithm

The Dinkelbach algorithm is used for transforming the frac-
tional programming into a parametric subtractive form. The
continuous subproblem (12) is a fractional programming prob-
lem with the transmit power variable p. Thus, we reformulate
the objective function in (12) with a continuous auxiliary
variable λ. The objective function, which is a monotonically
increasing function, is given as

f(λ) = λl
N∑
n=1

δinp
i
nsn −

N∑
n=1

Blog2

(
1 +

pinhn
σ2

)
. (19)

The non-negative λl updates in each iteration of the Dinkel-
bach algorithm.
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Algorithm 2 Distributed Dinkelbach Algorithm

1: Initialize: loop index l = 0, maximum tolerance σ and
2: λl = 0
3: while |λl

∑N
n=1 δ

i
np
i
nsn−

∑N
n=1Blog2

(
1 +

pinhn
σ2

)
| ≥ σ

do
4: User n: Solve problem (21) to obtain the optimal
5: solution pl∗n and the dual variable γl∗n
6: with λl

7: Edge cloud: Updates λl as (25) and broadcast to
8: all users
9: l = l + 1

10: end while

Therefore, the problem for each iteration is reformulated as

min
δ,p

λl
N∑
n=1

δinp
i
nsn −

N∑
n=1

Blog2

(
1 +

pinhn
σ2

)
(20)

s.t (9), (10), and (13),

which is a convex problem. To promote the utilization of the
resources and increase the efficiency, we solve this problem in
a distributed manner. For user n, solve the problem in iteration
l as follow

min
δn,pn

λlδlnp
l
nsn −Blog2

(
1 +

plnhn
σ2

)
(21)

s.t 0 ≤ pn ≤ pmaxn , (22)

δnT
e
n + (1− δn)T ln ≤ T totaln , (23)

δn = δln, (24)

which is easy to solve for each user. After solve the problem,
the users send the optimal solution pl∗n and the dual variable
γl∗n back to the edge cloud. Then, the edge cloud update the
λl as

λl =

∑N
n=1Blog2

(
1 +

pl∗n hn
σ2

)
∑N
n=1 δ

l
np
l∗
n sn

. (25)

We note that although the edge cloud only uses the last
dual variable for updating the Benders cut constraint in the
master problem, the users have no information about the
iteration procedure. Thus, users need to send the results back
to the edge with extra energy cost. However, the energy
cost for sending results and update the small-scale problem
(21) is quite negligible. Therefore, we ignore the energy cost
during the distributed computing and signaling. The whole
procedure of the distributed Dinkelbach algorithm is presented
in Algorithm 2.

V. SIMULATION RESULTS

In this section, we give simulation results to show the
effectiveness of our proposed algorithm. We assume that all
users are uniformly distributed in a cell with a radius of 100 m.
The mobile users are static, and we assume the distance-based
path loss and the Rayleigh multi-path fading are included in
our channel model. The available bandwidth for transmission
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Fig. 1: Average number of iterations versus number of users.
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Fig. 2: Energy cost versus average data length of the task.

is set to 20 MHz. The power of Gaussian noise is 2∗10−13 W.
We obtain task parameters, such as overall CPU cycle per bit
ωn and the data length sn, from the probability distribution.
The allocated computing resources Ωen for edge computing
relate to the task size. The computing capability for each user
Ωln is randomly generated lower than the one-tenths of the
edge cloud capacity. The initial lower bound of α is set to
αdown = −25. We adopt Matlab with the MOSEK solver for
implementing the proposed algorithm. All shown results are
generated after over 100 times simulation.

A. Covergence Performance

In Fig. 1, we show the average number of iterations versus
the number of users. The maximum transmit power pmax is
set to 23 dBm, and the user number is set to 10. We can see
from the figure that both the outer loop algorithm and inner
loop algorithm can converge very fast. Although the iterations
increasing with the number of users, the increasing rate is
tolerable. The average number of iterations keep below 10
with less than 30 users.

B. Impact of the Task Data Length

In Fig. 2, we give the energy cost of the MEC versus the
average data length of the task with different numbers of users.
We can see that the energy cost is increasing with the average
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Fig. 3: Running time versus the maximum transmit power.

data length. More average data length will cause more energy
from the network to execute it. While the number of users
increasing, the energy cost increasing also. This is due to
more users will need to execute more tasks, which is quite
straightforward.

C. Impact of the Maximum transmit power

Fig. 3 depicts the running time versus the maximum transmit
power with different numbers of users. From the figure, we can
see that our proposed algorithm increase only a little with the
increasing of transmit power. Although more user will increase
the running time, it’s still tolerable as an iteration algorithm.
The main part of the running time consumed at the Dinkelbach
algorithm, which is distributedly computed. If we care more
about the time, a centralized algorithm will be an alternative.

VI. CONCLUSIONS

In this paper, we formulated an energy cost minimization
problem including transmit power and latency constraints in
mobile edge computing. The proposed problem is MINLP
problem. Thus, we proposed a joint Benders decomposition
and distributed Dinkelbach algorithm to solve the problem.
The Benders decomposition is an outer framework algorithm
by dividing the original problem into subproblem and master
problem, which are solved iteratively. In subproblem, we use
the distributed Dinkelbach algorithm to deal with the fractional
programming and solve the problem in a distributed manner.
The simulation results have shown that our proposed algorithm
has a good performance for the mobile edge computing.
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