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Abstract—Capturing high-resolution hyperspectral (HS) im-
ages is very difficult. To solve this problem, hyperspectral
pansharpening techniques have been widely studied. These tech-
niques estimate an HS image of high spatial and spectral resolu-
tion (high HS image) from a pair of an observed low resolution
HS image (low HS image) and an observed high resolution
panchromatic (observed PAN) image. Given HS and PAN images
often contain noise, but most of the existing methods would not
consider it, so that the results have artifacts, noise and spectral
distortion in such a situation. To tackle this issue, we propose
a new hyperspectral pansharpening method considering noise in
both given HS and PAN images. Our method estimates not only
a high HS image but also a clean PAN image simultaneously,
leading to high quality and robust estimation. The proposed
method effectively exploits observed information and a-priori
knowledge, and it is reduced to a nonsmooth convex optimization
problem, which is efficiently solved by a primal-dual splitting
method. Our experiments demonstrate the advantages of our
method over existing hyperspectral pansharpening methods.

I. INTRODUCTION

A hyperspectral (HS) image has 1D spectral information
in addition to 2D spatial information, which contains rich
information, e.g., information on invisible light and narrow
wavelength interval. Since it can visualize the intrinsic char-
acteristics of scene objects and environmental lighting, hy-
perspectral imaging is a promising research topic and offers
many applications in a wide range of fields, e.g., remote
sensing, agriculture and biomedical engineering [1], [2]. These
applications require an HS image of high spatial and spectral
resolution (high HS image). However, since the amount of
incident energy is limited, and there are critical tradeoffs
between the spatial resolution and the spectral resolution of
HS imaging systems, it is a very difficult task to capture a
high HS image.

Hyperspectral pansharpening techniques [3], [4] try to
resolve this dilemma, and have been actively studied [5]–[16].
They estimate a high HS image using a pair of an observed
HS image of high spectral resolution but low spatial resolution
(low HS image) and an observed high spatial resolution
panchromatic image (observed PAN image), where a PAN
image has only 2D spatial information, i.e., a gray scale image.

Most of recent hyperspectral pansharpening methods [12]–
[16] utilize a-priori knowledge on an HS image and observed
information on a low HS image and an observed PAN im-
age, and estimate high HS images by solving optimization
problems. These methods can estimate better HS images than
traditional panshapenning methods. In addition, the method

proposed in [16] considers a noisy low HS image and effec-
tively uses a-priori knowledge, which are spatial and spectral
smoothness, so that it can estimate a high HS image without
artifacts and spectral distortion. However, since these methods
do not consider that an observed PAN image may also contains
noise, they cannnot achieve high quality estimation, when
the observed PAN image is noisy, and thus the resulting HS
images often have artifacts and spectral distortion.

To resolve the above problems, we propose a new robust
hyperspectral pansharpening method, which considers noisy
observed HS and PAN images. The proposed method estimates
not only a high HS image but also a clean PAN image,
leading to high quality and robust estimation. The method is
built upon a convex optimization problem, where its objective
function consists of regularization terms for HS and PAN
images, respectively, and an edge similarity term between HS
and PAN images. Data-fidelity to a low HS and an observed
PAN image and their dynamic ranges are evaluated by hard
constraints. This problem fully utilizes observed information
and a-priori knowledge of an HS and a PAN image, so that
it can estimate a high HS image without artifacts and spectral
distortion even if both observed images are contaminated by
severe noise. To solve the optimization problem, we adopt
a primal-dual splitting method [17], which is a proximal
splitting algorithm and has been successfully applied to image
restoration [18]–[21]. Experimental results on hyperspectral
pansharpening illustrate superior performance of the proposed
method compared with existing hyperspectral pansharpening
methods.

II. PROPOSED METHOD

A. Observation Model

Let ū ∈ RNB be a true high HS image with N pixels and
B spectral bands. In hyperspectral pansharpening, a low HS
image v and an observed PAN image p are assumed to be
given with the observation model:

v = SBū+ n1 ∈ R
NB
r , (1)

p = Rū+ n2 ∈ RN , (2)

where S ∈ RNB
r ×NB is a downsampling matrix with a

downsampling rate of r (r is divisor of N ), B is a blur
matrix, n1 and n2 are additive white Gaussian noises with
standard deviations σ1 and σ2, respectively, and R ∈ RN×NB

is a matrix representing the spectral response of the observed
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PAN image (R calculates weighted average along the spectral
direction). In general, since HS images contain more noise
than PAN images, we assume σ1 > σ2. This model says that
both the low HS image and the observed PAN image contain
considerable noise, which is a natural situation in hyperspectral
imaging.

B. Problem Formulation

Based on the model in Sec. II-A, we formulate a hyperspec-
tral pansharpening problem as a convex optimization problem.
This problem estimates not only a high HS image u ∈ RNB

but also a clean PAN image q ∈ RN , leading to high quality
and robust estimation.

min
u,q

HSSTV(u) + λ∥Du−DMq∥1,2 + ∥Dq∥1,2

s.t.


SBu ∈ Bv

2,ε := {x ∈ RNB
r |∥x− v∥2 ≤ ε},

q ∈ Bp
2,η := {x ∈ RN |∥x− p∥2 ≤ η},

u ∈ [µmin, µmax]
NB ,

q ∈ [0, 1]N ,

(3)

where D = (D⊤
v D

⊤
h )

⊤ ∈ R2NB×NB is a spatial difference
operator with Dv and Dh being vertical and horizontal dif-
ference operators, respectively, ∥ · ∥1,2 is the mixed ℓ1,2 norm,
which calculates the ℓ2 norm of spatial difference values of
each pixel, and the ℓ1 norm of them after that. In Prob. (3), the
parameter λ > 0 is the parameter adjusting evaluation degree
of the second term, and M ∈ RNB×N is a linear operator that
replicates the estimated PAN image B times along the spectral
direction.

The first term in Prob. (3) is a regularization function for HS
image restoration named as hybrid spatio-spectral total vari-
ation (HSSTV). This regularization function simultaneously
evaluates both the spatio-spectral piecewise smoothness and
the direct spatial piecewise smoothness of an HS image. In
[22], HSSTV is defined by

HSSTV(u) :=

∥∥∥∥[ DDbu
ωDu

]∥∥∥∥
1,p

=: ∥Aωu∥1,p, (4)

where Db is a spectral difference operator, ω is a parameter
balancing between the spatio-spectral piecewise smoothness
DDbu and the direct spatial piecewise smoothness Du, and
∥ · ∥1,p is the mixed ℓ1,p norm with p = 1 or 2. HSSTV is our
previous work, and it has been shown to be very effective
in HS image restoration. By using HSSTV, the proposed
hyperspectral pansharpening method can do robust estimation
when the low HS image and the observed PAN image contain
noise.

The second term in Prob. (3) evaluates edge similarity
between the high HS image u and the estimated PAN image
q, which is originally proposed in [23]. Specifically, we can
assume that the non-zero differences of the high HS image
are sparse and correspond to edges, and that their positions
should be the same as those of the estimated PAN image.
Hence, evaluating their errors by the mixed ℓ1,2 norm is a
reasonable approach for exploiting the spatial information on
the estimated PAN image.

The first constraint in (3) serves as data-fidelity to the low
HS image v and is defined as the v-centered ℓ2-norm ball
with the radius ε > 0. Likewise, the second constraint in (3)
plays data-fidelity role to the observed PAN image p and is
defined as the p-centered ℓ2-norm ball with the radius η > 0.
As mentioned in [16], [22], [24]–[27], such a hard constraint
facilitates the parameter setting because ε and η have a clear
meaning. The third and fourth constraint in (3) represent the
dynamic range of a HS image and a PAN image with µmin <
µmax, respectively.

C. Optimization

Since Prob. (3) is a convex but highly constrained nons-
mooth optimization problem, we require a suitable iterative
algorithm, e.g., an alternating direction method of multipliers,
to solve it. In this paper, we adopt a primal-dual splitting
method [17]. It can solve convex optimization problems of
the form:

min
u

g(u) + h(Lu), (5)

where g and h are proper lower semicontinuous convex
functions and proximable, i.e., the proximity operators [28] of
g and h are computable, and L is a linear operator. Here, the
proximity operator of a proper lower semicontinuous convex
function f is defined as follows: for γ > 0,

proxγf (x) := argmin
y

f(y) +
1

2γ
∥y − x∥22.

Since the primal-dual splitting method can solve a problem as
long as it satisfy (5), we utilize this method for nonsmooth
optimization problem.

When above condition is satisfied, the algorithm solving
Prob. (5) is given by⌊

u(n+1) = proxγ1g(u
(n) − γ1L

⊤y(n)),

y(n+1) = proxγ2h∗(y(n) + γ2L(2u
(n+1) − u(n))),

where γ1, γ2 > 0 are stepsizes of the primal-dual splitting
method, which satisfy γ1γ2(σ1(L))

2 ≤ 1 (σ1(L) is the largest
singular value of L). The function h∗ is the convex conjugate
of h, and the proximity operator of h∗ is available via that of
h [29, Theorem 14.3(ii)] as follows:

proxγh∗(x) = x− γ prox 1
γ h

(
1
γx

)
. (6)

To solve it by the primal-dual splitting method, we reformulate
Prob. (3) into Prob. (5).

First, to put the four constraints in Prob. (3) into the
objective function, we introduce the indicator functions of
them. The indicator function of a nonempty closed convex
set C is defined by

ιC(x) :=

{
0, if x ∈ C,
∞, otherwise. (7)

Then, Prob. (3) can be rewritten as

min
u,q

∥Aωu∥1,p + λ∥Du−DMq∥1,2 + ∥Dq∥1,2
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+ ιBv
2,ε

(SBu) + ιBp
2,η

(q) + ι[µmin,µmax]NB (u) + ι[0,1]N (q).

(8)

Because of (7), Prob. (3) and Prob. (8) are equivalent.
Then, by letting

g : RN(B+1) → R2 : (u,q) 7→ (ι[µmin,µmax]NB (u), ι[0,1]N (q))

h : R((6+
1
r )B+3)N → R ∪ {∞} : (y1,y2,y3,y4,y5) 7→

∥y1∥1,p + λ∥y2∥1,2 + ∥y3∥1,2 + ιBv
2,ε

(y4) + ιBp
2,η

(y5),

L : RN(B+1) → R((6+
1
r )B+3)N :

(u,q) 7→ (Aωu,Du−DMq,Dq,SBu,q),

Prob. (8) is reduced to Prob. (5). Using (6), the resulting
algorithm for solving (3) is summarized in Algorithm 1.

We explain how to calculate the proximity operator of the
indicator function of C. This proximity operator equals the
metric projection onto C, which is characterized by

PC(x) = argmin
z

∥z− x∥2 s.t. z ∈ C.

The proximity operators in steps 2 and 12 can be computed
as follows: for i = 1, . . . , NB,

[proxγι[µmin,µmax]NB
(x)]i = [P[µmin,µmax]NB (x)]i

= min{max{xi, µmin}, µmax},
(9)

proxγιBv
2,ε

(x) = PBv
2,ε

(x) =

{
x, if x ∈ Bv

2,ε,

v + ε(x−v)
∥x−v∥2

, otherwise.
(10)

For step 3, one can calculate prox[0,1]N (x) by substituting
0, 1, and N for µmin, µmax and NB in (9), respectively.
Likewise, for step 13, p and η are substituted for v and ε in
(10), respectively, so that proxBp

2,η
(x) can be computed.

The proximity operators of the ℓ1 norm and the mixed ℓ1,2
norm in steps 6 and 7 are reduced to simple soft-thresholding
type operations: for γ > 0 and i = 1, . . . , 2n,

[proxγ∥·∥1
(x)]i = sgn(xi)max {|xi| − γ, 0} ,

[proxγ∥·∥1,2
(x)]i = max

{
1− γ

(∑1
j=0 x

2
ĩ+jn

)− 1
2

, 0

}
xi,

where n is the number of pixels in a target image, i.e., n =
NB and N for the high HS image u and the estimated PAN
image q, respectively, sgn is the sign function, and ĩ := ((i−1)
mod n) + 1.

III. EXPERIMENTS

We demonstrate the advantages of the proposed method
over existing hyperspectral pansharpening methods. In this
experiments, we generated a pair of a low HS and an observed
PAN image based on (1) and (2), estimated the high HS
image from the pair using each method, and evaluated the
estimated high HS images based on four standard quality
measures: Cross Correlation (CC), the Spectral Angle Mapper
(SAM) [30], the Root Mean Squared Error (RMSE) and Erreur
Relative Globale Adimensionnelle de synthèse (ERGAS) [31].

Algorithm 1: A primal-dual splitting method for
Prob. (3).

input : u(0), q(0), y(0)
1 , y(0)

2 , y(0)
3 , y(0)

4 , y(0)
5

1 while A stopping criterion is not satisfied do do
2 u(n+1) = proxγ1ι[µmin,µmax]NB

(u(n) − γ1(A⊤
ω y

(n)
1 +

D⊤y
(n)
2 +B⊤S⊤y

(n)
4 ));

3 q(n+1) =

proxγ1ι[0,1]N
(q(n)−γ1(−M⊤D⊤y

(n)
2 +D⊤y

(n)
3 +y

(n)
5 ));

4 y
(n)
1 ← y

(n)
1 + γ2Aω(2u(n+1) − u(n));

5 y
(n)
2 ←
y
(n)
2 + γ2(D(2u(n+1) − u(n))−DM(2q(n+1) − q(n)));

6 y
(n)
3 ← y

(n)
3 + γ2D(2q(n+1) − q(n));

7 y
(n)
4 ← y

(n)
4 + γ2SB(2u(n+1) − u(n));

8 y
(n)
5 ← y

(n)
5 + γ2(2q(n+1) − q(n));

9 y
(n+1)
1 = y

(n)
1 − γ2 prox 1

γ2
,∥·∥1,p

(
y
(n)
1
γ2

)
;

10 y
(n+1)
2 = y

(n)
2 − γ2 prox λ

γ2
,∥·∥1,2

(
y
(n)
2
γ2

)
;

11 y
(n+1)
3 = y

(n)
3 − γ2 prox 1

γ2
,∥·∥1,2

(
y
(n)
3
γ2

)
;

12 y
(n+1)
4 = y

(n)
4 − γ2 prox 1

γ2
,Bv

2,ε

(
y
(n)
4
γ2

)
;

13 y
(n+1)
5 = y

(n)
5 − γ2 prox 1

γ2
,Bp

2,η

(
y
(n)
5
γ2

)
;

14 n← n+ 1;

We used a Moffett field dataset as the true high HS image,
which it is clipped in a region of size 256 × 128 × 176 and
normalized its dynamic range into [0, 1], i.e., µmin = 0 and
µmax = 1 in Prob. (3). In (1) and (2), the downsampling rate
of S was set as r = 4, B was set to a 9 × 9 Gaussian blur
matrix, and R was set to an weighted-average matrix with its
weights wi (i = 1, . . . , B) were defined by

wi =

{
1, if 1 ≤ i ≤ 41
0, otherwise.

Then, we experimented with three pair of the standard de-
viations, (σ1, σ2) = (0.1, 0.025), (0.1, 0.05), (0.1, 0.075). The
above procedures follow Wald’s protocol [32], so that one can
see that it is a standard quality assessment methodology of
hyperspectral pansharpening.

As compared methods, we utilize 11 existing methods:
SFIM [11], MTF-GLP [9], MTF-GLP-HPM [10], GS [7],
GSA [8], PCA [5], GFPCA [6], CNMF [15], Bayesian
Naive [12], Bayesian Sparse [13] and HySure [14]. To set
all parameters of these methods other than HySure, we used
setting in a MATLAB toolbox of hyperspectral pansharpen-
ing1. For HySure, we set its hyperparameter as λϕ = 0.1σ1 to
enhance its performance, and other parameters were set in the
same way with other methods. For our method, the parameters
ε and η in (3) were set to oracle value, i.e., ε = ∥v−SBū∥2,
η = ∥p − Rū∥2. Moreover, we varied λ ∈ [0.01, 0.1] and
ω ∈ [0, 0.1] to inspect suitable them. We set the stepsizes, the
max iteration number and the stopping criterion of the primal-

1http://openremotesensing.net/
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TABLE I
QUALITY MEASURES FOR σ = 0.05 (LEFT) AND σ = 0.1 (RIGHT).

σ2 = 0.025 σ2 = 0.05 σ2 = 0.075
method CC SAM RMSE ERGAS CC SAM RMSE ERGAS CC SAM RMSE ERGAS

SFIM [11] 0.4528 38.87 1571 23.86 0.4170 39.45 1691 25.32 0.4259 39.59 1680 25.63
MTF-GLP [9] 0.6920 34.68 974.4 16.05 0.6284 35.47 1112 17.76 0.5826 36.03 1210 18.92

MTF-GLP-HPM [10] 0.4605 38.89 1576 23.80 0.4286 39.54 1680 25.11 0.4429 39.57 1643 25.25
GS [7] 0.5946 39.77 1101 20.54 0.5108 41.04 1213 22.39 0.4310 42.00 1311 24.02

GSA [8] 0.6841 41.71 1083 20.11 0.6201 44.77 1303 23.81 0.5459 48.48 1601 28.89
PCA [5] 0.5913 39.93 1111 20.72 0.5086 41.21 1221 22.53 0.4297 42.17 1317 24.13

GFPCA [6] 0.9019 11.18 462.1 8.045 0.8813 11.54 500.6 8.762 0.8694 11.71 520.2 9.138
CNMF [15] 0.8863 15.10 512.1 8.338 0.7839 16.23 729.0 11.90 0.6811 17.69 951.5 15.48

Bayesian Naive [12] 0.8498 27.20 602.2 11.07 0.7782 30.88 800.9 14.26 0.6920 35.00 1052 18.38
Bayesian Sparse [13] 0.8526 26.68 594.1 10.95 0.7830 30.34 785.4 14.03 0.7003 34.35 1023 17.93

HySure [14] 0.9273 15.93 402.9 7.017 0.8704 20.46 557.1 9.714 0.7868 25.34 774 13.52
proposed (ℓ1) 0.9515 9.777 322.4 5.672 0.9409 9.891 344.4 6.135 0.9350 9.919 356.7 6.387

proposed (ℓ1,2) 0.9516 9.763 322.2 5.666 0.9410 9.878 344.2 6.130 0.9351 9.907 356.5 6.382

CC SAM RMSE ERGAS

Fig. 1. Quality measures versus λ in (3) (top) / ω in (4) (bottom).

dual splitting method to γ1 = 0.005, γ2 = 1/1100γ1, 5000
and ∥u(n) − u(n+1)∥2/∥u(n)∥2 < 1.0× 10−4, respectively.

As shown above, we adopt CC, SAM, RMSE and ERGAS
as quality measures, which are defined as follows: for i =
1, . . . , N and j = 1, . . . , B,

CC(u, ū) =

1

B

B∑
j=1

∑N
i=1(ui+(j−1)N−αu,j)(ūi+(j−1)N−αū,j)√∑N

i=1(ui+(j−1)N−αu,j)2
∑N

i=1(ūi+(j−1)N−αū,j)2
,

SAM(u, ū) =
1

N

N∑
i=1

arccos

(
u⊤
i ūi

∥ui∥2∥ūi∥2

)
,

RMSE(u, ū) =
∥u− ū∥2√

NB
,

ERGAS(u, ū) =
100

r

√√√√√ 1

B

B∑
j=1

∥u∗
j − ū∗

j∥22(
1
p1

⊤u∗
j

)2′
,

respectively, where ui = [ui, ui+N , . . . , ui+(B−1)N ] ∈ RB

and u∗
j = [uN(j−1)+1, uN(j−1)+2, . . . , uN(j−1)+N ] ∈ RN

are the spectral and spatial vectors of u, respectively,
αu,j =

∑N
i=1 ui+(j−1)N , αū,j =

∑N
i=1 ūi+(j−1)N and 1 =

[1, . . . , 1] ∈ RN . Moreover, the closer CC is 1 and the smaller
SAM, RMSE and ERGAS are, the more alike the estimated
high HS image u and the true high HS image ū.

Table I shows CC, SAM, RMSE and ERGAS of the high
HS images estimated by the existing and proposed methods
(p = 1 or 2 in (4)) for σ2 = 0.025, 0.05 and 0.075. For all the
quality measures and all standard deviations, one can see that
the proposed method outperforms all the existing methods.

Fig. 1 plots CC, SAM, RMSE and ERGAS of the high
HS images estimated by the proposed method versus λ in (3)
and ω in (4), respectively, where we set ω = 0.01 in the
λ graphs and λ = 0.03 in the ω graphs. In CC, RMSE and
ERGAS case, we found that λ ∈ [0.02, 0.05] and ω ∈ [0, 0.02]
are good choices, and HSSTV almost need not to evaluate

883

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



observed observed SFIM MTF-GLP MTF-GLP-HPM GS GSA PCA
HS image PAN image

GFPCA CNMF Bayes Naive Bayes Sparse HySure ℓ1-HSSTV ℓ1,2-HSSTV original HS image

Fig. 2. Resulting HS images (σ1 = 0.1, σ2 = 0.05).

the direct spatial piecewise smoothness of an HS image in
this experimental setting. This is because the second term in
Prob. (3) can evaluate it not just edge similarity. For SAM
case, λ ∈ [0.06, 0.08] and ω ∈ [0.05, 0.08] are good choices.

Fig. 2 is the estimated high HS images in the (σ1, σ2) =
(0.1, 0.05) case, which depicts as RGB images (R = 16th, G
= 32nd and B = 64th bands). One can see that the results
estimated by most of the existing methods remain noise in the
observed PAN image and include artifacts. In addition, since
the color in the results by GFPCA, CNMF and HySure is
different from that in the original HS image, it shows that these
methods produce spectral distortion. In contrast, the proposed
method can estimate the high HS image without noise, artifacts
and spectral distortion, and it is most similar to the true high
HS image.

IV. CONCLUSION

We have proposed a new hyperspectral pansharpening
method from a pair of noisy HS and PAN images. To consider
noise in the observed PAN image, the proposed method esti-
mates not only a high HS image but also a clean PAN image,
and exploits observed information and a-priori knowledge on
both the high HS image and the clean PAN image, so that
it becomes robust and effective. Through our experiments, we
found that the proposed method achieves better estimation than
existing hyperspectral pansharpening methoods.
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