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Abstract—We propose a new regularization method for 3D
MOCAP (Motion Capture) signal restoration. As a MOCAP
signal restoration method, methods considering low-rankness
and smoothness or Truncated Nuclear Norm (TrNN) for low-
rank approximation have been proposed. However, with these
methods, the smoothness in the time direction of the MOCAP
signal cannot be sufficiently restored. In this study, from the
a priori knowledge that many of human movements involve
smooth acceleration/deceleration and the a priori knowledge
that the acceleration/deceleration patterns are similar among
related joints, we introduce the regularization based on the
second-order differentiation in the time direction. In numerical
experiments, we apply this method to MOCAP signal restoration
with continuous missing in the time direction and show that the
performance is superior to the conventional methods.

I. INTRODUCTION

Motion capture (MOCAP) technology for acquisition and
analysis of human joint information is widely used in various
fields such as computer animation, movie production, virtual
reality and medical rehabilitation [1], [2], [3]. At the stage of
capturing actions, there is a problem that loss of acquired data
occurs even with specialized equipments. This defect is due to
occlusion and marker ambiguity. The problem becomes more
serious when simpler MOCAP equipment are used, and it is
indispensable to restore missing values of acquired data [4],
[5]. To address the problem, a number of deficit interpolation
methods have been proposed [6], [7], [8], [9].

MOCAP signal interpolation can be achieved by completing
a matrix consisting of data of each joint coordinate. In recent
years, a method using nuclear norm regularization, which is
used as a matrix completion method, has been proposed [2],
[5], [11], [12], [13]. In these methods, by using the low-
rank characteristic of the MOCAP signal, noise removal is
performed and at the same time, the values of missing markers
are estimated. Candes et al. [14] have approximated the low
rankness by solving the nuclear norm minimization problem
and proved that it can be restored accurately from only a few
observation entries. Based on this, Lai et al. [10] applied the
nuclear norm minimization shown in the following equation
to restore the loss of MOCAP data.

min
X

||X||∗ s.t. XΩ = MΩ, (1)

where || · ||∗ is the nuclear norm of a matrix, M ∈ Rm×n

is incomplete observed motion data, where each row of M
corresponds to each marker. Ω is a set of data positions
observed without any loss, and thus XΩ = MΩ is a constraint
to save data other than the missing parts.

Furthermore, the following optimization problem was pro-
posed in [12].

min
X,S

||X||∗+λ||S||1+
µ

2
Θ(X) s.t. (X+ S)Ω = MΩ, (2)

where S is a sparse component including noise and outliers
included in the observed data, and Θ(·) is a smoothing term
with respect to the time direction.

Hu et al. [17] pointed out the disadvantage of a method
of uniformly reducing the sum of the singular values of the
MOCAP data and found that the nuclear norm is truncated,
which is approximated as the sum of min(m,n)− r singular
values, and they proposed the following model with truncated
nuclear norm (TrNN).

min
X,S

||X||r+λ||S||1+
µ

2
Θ(X) s.t. (X+ S)Ω = MΩ, (3)

where ||X||r =
∑min(m,n)

i=r+1 σi(X) is the TrNN for X ∈ Rm×n,
and σi(X) represents the i-th largest singular value of X .
Since information possessed by MOCAP data can be repre-
sented by a small fraction of singular values, TrNN enables
more effective restoration.

It is one of the important a priori information in MO-
CAP data restoration that human motion has smooth accel-
eration/deceleration and similarity between related joints of
the pattern is large, but in the above conventional methods,
this issue is not addressed. Depending on the design of the
smoothing term in (3), the acceleration/deceleration pattern of
motion may be destroyed due to smoothing. In such a case,
unnaturalness may occur in the operation of restored data.

In this research, we introduce the second-order differential
regularization to TrNN for a MOCAP data restoration task. By
this regularization, it is possible to restore the missing portion
while considering the acceleration/deceleration information
compared with the conventional method. Furthermore, while
in the conventional method, the MOCAP data is directly
approximated by a low-rank matrix, but in the proposed
method, the low-rank approximation is performed simulta-
neously with the second-order regularization. This makes it
possible to estimate the defective part from the viewpoint
of the acceleration/deceleration pattern and achieves more
accurate restoration. The convex optimization problem using
this regularization can be solved by the alternate direction
multiplier method (ADMM). In the experiment, we take the
MOCAP signal restoration problem using two kinds of missing
methods as an example and confirm its performance.
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In Section II, we describe the details of the proposed method
and the solution in the optimization problem. In Section III, we
restore the MOCAP signal with two kinds of deficits, random
deficiency and continuous missing in the time direction, and
show the superiority of the proposed method. In Section IV,
we summarize this research and describe its future prospects.

II. PROPOSED METHOD

A. Problem formulation

Based on the discussion in Section I, the proposed model
in this study is represented by the following minimization
problem,

min
X

||X||r + β1||D1X||1 + β2||D2X||∗

s.t. XΩ = MΩ,
(4)

The column of matrix X ∈ Rm×n consists of the coordinate
values of xyz corresponding to each marker, m is the signal
length, and n is (the number of markers)×3. where || · ||1
represents the ℓ1 norm. D1 and D2 are the differential
operators denoted as

D1 =


1 −1

1 −1
. . . . . .

1 −1

 ∈ Rm×m,

D2 = D1D1,

respectively.
As discussed in [17], since the evaluation function using

TrNN is not a convex function, it is hard to find an optimal
solution. By replacing the TrNN with the approximate expres-
sion used in [16], Eq.(4) can be rewritten as

min
X

||X||∗ − Tr(AlXBT
l ) + β1||D1X||1 + β2||D2X||∗

s.t. XΩ = MΩ,
(5)

Al and Bl are matrices composed of the vectors in Ul =
(u1, . . . ,um) ∈ Rm×m, Σl ∈ Rm×n, Vl = (v1, . . . ,vm) ∈
Rn×n, which is obtained by singular value decomposition
Xl = UlΣlVl

T of Xl in the l-th iteration as

Al = (u1, . . . ,ur)
T,Bl = (v1, . . . ,vr)

T. (6)

We repeatedly compute Al and Bl based on Xl at each
iteration and solve the minimization problem (5), and thus the
MOCAP data considering acceleration/deceleration informa-
tion can be restored. This process is shown in Algorism 1.

B. Computation of optimal solution

Since the fact that ||X||∗−Tr(AlXBT
l ) is a convex function

as is indicated in [16], the objective function expressed by (5)
is also a convex function. In this paper, the alternate direction
multiplier method (ADMM) is adopted as an algorithm for
solving the convex optimization problem. In order to convert
(5) into an unconstrained optimization problem, we introduce

Algorithm 1 Iterative Scheme
Input: M,Ω

Initialize: X0 = MΩ

while stopping criterion is satisfied do
[Ul ,Σl ,Vl ] = svd(Xl)
Compute Al ,Bl as (6).
Xl+1 = argmin

X
||X||∗ − Tr(AlXBT

l ) + β1||D1X||1 +
β2||D2X||∗ s.t. XΩ = MΩ

end while
Output: X̂, the recoverd motion matrix.

an indicator function. The indicator function ιMi
correspond-

ing to the box constraint of the closed convex set Mi(i ∈ Ω),
which is defined as

ιMi (Xi) =

{
0 Xi = Mi ,

+∞ otherwise,

Using this indicator function, Eq.(5) is made to be an un-
constrained convex optimization problem of the following
expression,

min
X

||X||∗ − Tr(AlXBT
l ) + β1||D1X||1 + β2||D2X||∗

+
∑
i∈Ω

ιMi
(Xi).

(7)

Next, the auxiliary variables are defined as
W1 := X, W2 := X, W3 := D1X, W4 := D2X,
W := [WT

1 ,W
T
2 ,W

T
3 ,W

T
4 ]

T, and each term is separated, it
can be expressed as

g(W) = ||W1||∗ −Tr(AlW2B
T
l ) + β1||W3||1 + β2||W4||∗,

(8)
and by setting it as G := [I, I,DT

1 ,D
T
2 ]

T, the extended La-
grange function becomes

L(X,W,Y, ρ) =||W1||∗ − Tr(AlW2B
T
l ) + β1||W3||1

+ β2||W4||∗ +
ρ

2
||GX−W||2F

+YT(GX−W).
(9)

We follow the update of each variable in ADMM. First,
solving Equation (9) w.r.t. X yields

Xk+1 =(2I+ β1D
T
1 D1 + β2D

T
2 D2)

−1((Wk
1 −

1

ρ
Yk

1)

+(Wk
2 −

1

ρ
Yk

2) + β1D
T
1 (W

k
3 −

1

ρ
Yk

3)

+β2D
T
2 (W

k
4 −

1

ρ
Yk

4)),

(10)

and applies the box constraint at the observation point to the
updated Xk+1,

Xk+1 = Xk+1
Ωc +MΩ. (11)
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Algorithm 2 ADMM algorithm for solving Prob. (5)
Input: M,Ω,Al ,Bl , β1, β2, ρ

Initialize: X0,W0
1,Y

0
1,W

0
2,Y

0
2,W

0
3,Y

0
3,W

0
4,Y

0
4

while stopping criterion is satisfied do
Update Xk+1 using (10) and (11).
Wk+1

1 = D 1
ρ
(Xk+1 + 1

ρY
k
1)

Wk+1
2 = Xk+1 + 1

ρ (A
T
l Bl +Yk

2)

Wk+1
3 = S 1

ρ
(D1X

k+1 + 1
ρY

k
4)

Wk+1
4 = D 1

ρ
(D2X

k+1 + 1
ρY

k
4)

Yk+1
1 = Yk

1 + ρ(Xk+1 −Wk+1
1 )

Yk+1
2 = Yk

2 + ρ(Xk+1 −Wk+1
2 )

Yk+1
3 = Yk

3 + ρ(D1X
k+1 −Wk+1

3 )
Yk+1

4 = Yk
4 + ρ(D2X

k+1 −Wk+1
4 )

end while

Next, each auxiliary variable is updated based on the
following formula,

Wk+1
1 = argmin

W1

||W1||∗ +
ρ

2
||Xk+1 −W1 +

1

ρ
Yk

1 ||2F

= D 1
ρ
(Xk+1 +

1

ρ
Yk

1), (12)

Wk+1
2 = Xk+1 +

1

ρ
(AT

l Bl +Yk
2), (13)

Wk+1
3 = S 1

ρ
(D1X

k+1 +
1

ρ
Yk

3), (14)

Wk+1
4 = D 1

ρ
(D2X

k+1 +
1

ρ
Yk

4), (15)

where Sτ is a soft thresholding operator given as

Sτ (X) = sign(Xi)max{|Xi| − τ, 0}, (16)

and sign(·) is the sign of (·). Dτ is a soft thresholding operator
with respect to the singular values defined by

Dτ (X)= UDτ (Σ)VT

(where,Σ = diag(max{σi − τ , 0}), (17)

where

X = UΣVT (where,Σ = diag({σi}1≤i≤r)), (18)

is the singular value decomposition of X.
Finally, update the dual variables based on the following

formula,

Yk+1
1 = Yk

1 + ρ(Xk+1 −Wk+1
1 ), (19)

Yk+1
2 = Yk

2 + ρ(Xk+1 −Wk+1
2 ), (20)

Yk+1
3 = Yk

3 + ρ(D1X
k+1 −Wk+1

3 ), (21)
Yk+1

4 = Yk
4 + ρ(D2X

k+1 −Wk+1
4 ). (22)

These operations are summarized in Algorithm 2. Also, this
algorithm ensures convergence under appropriate parameters
β1, β2.

III. EXPERIMENTS

In order to show the effectiveness of the proposed method,
experiments were conducted on the MOCAP data restoration
problem applying two kinds of deficits, random deficit and
continuous deficit in the time direction, and comparison was
made between the original TrNN [16] and Hu et al.’s model
[17]. Missing data is randomly set by removing markers so that
the missing rate is mr = [0.2, 0.3, . . . , 0.6] from each frame.
Continuous missing data for the time direction is obtained
by continuously removing ml = [20, 30, . . . , 60] frames with
10 markers randomly selected from each frame. As for the
experimental data, samples obtained from CMU MOCAP
database is used. In addition, as an evaluation index of each
method in the experiment, RMSE shown in the following
formula is adopted,

RMSE =
||(X− X̂)|Ωc ||F√

|Ωc|
. (23)

In order to make the ranges of the evaluation values between
different motion data uniform to some extent, the experiment
is conducted by normalizing the whole data to a fixed mean
and variance. Also, in any of the methods, the initial value
was obtained by estimating the defective portion using linear
interpolation.

Fig. 1 shows the results of plotting the average value of
each of the three methods with respect to three different length
data (Jump, Soccer, Boxing1) acquired from CMU MOCAP
Database2. As for the restoration results of random missing
data, there was no big difference between the conventional
method [17] and the proposed method. These results show
that it can be sufficiently restored by direct smoothing for
instantaneous deficits such as random deficits. By contrast, for
the restoration results of consecutive missing data, a critical
difference was observed between the conventional method and
the proposed method. As the length of the defect increases, the
advantage of the proposed method becomes more prominent.

As for the destruction of acceleration/deceleration pattern
due to smoothing discussed in Section I, it is conceivable that
even in the proposed method, the motion pattern becomes uni-
form by low-rank approximation of second-order differential.
Fig. 2 shows the singular values of the data obtained by taking
the second derivative of the data restored by the proposed
method in order to confirm the effect of regularization on the
restoration results. The missing data has a larger value for
the lower singular values as compared with the non-missing
data, which means that the correlation of the joints with
similar patterns is lost. Looking at the singular values of the
restoration results by the proposed method, it is found that
the distribution is close to clean data, and the lost correlation
is restored. Also, since the singular value is not too small
compared with the original data, it can be seen that over-
uniformity of the acceleration/deceleration pattern due to the

1Motion data with indexes 13 13, 10 01, and 13 17 among the released
motion data was used.

2http://mocap.cs.com.edu/
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(a) jump

(b) soccer

(c) boxing

Fig. 1. RMSE of restoration results applying each method. The results of
applying the random deficiency are shown in the left column, and the results
of applying the continuous deficiency are shown in the right column. Results
of data with different lengths are arranged, and the number of frames is 439,
801, and 4840 respectively. The longer the continuous loss length is, the more
prominent the advantage of the proposed method is.

Fig. 2. A plot of singular values of a matrix obtained by the second derivative
of restored data by non-missing data, missing data and proposed method.
Clean data is indicated by a red solid line, missing data due to continuous
missing (ml = 60) is indicated by a red dashed line, and restored data is
indicated by a blue solid line. Regarding restoration data, the results of five
trials are plotted. It can be understood that the correlation destroyed by the
defect is repaired.

low-rank approximation of the second-order differentiation has
not occurred.

From the above results, it was shown that the performance

of the proposed model is superior to that of the conventional
method, for the MOCAP data restoration problem with con-
tinuous missing in the time direction.

IV. CONCLUSIONS

In this paper, we proposed a new regularization for 3D
MOCAP signal restoration. It is a regularization considering
the smoothness in the time direction and the correlation of
each joint in the MOCAP signal, especially paying attention to
the property that many of human motion accompanies smooth
acceleration/deceleration. Moreover, based on the a priori
knowledge that they have similar patterns among related joints,
smoothing with the low-rank prior is performed. By solving
the convex optimization problem using this regularization with
ADMM, high precision MOCAP restoration is achieved. Ex-
periments showed better results than the conventional method
in the restoration performance of consecutive missing data.
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